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8. Development of homology model, docking protocol and machine-learning based

scoring functions for identification of Electrophorus electricus’s AChE inhibitors
8.1. Introduction

SBDD involves the use of the protein structure and features to design the ligands, which
is accomplished through various in silico techniques, including molecular docking and
MD simulation methods [252]. The use of SBDD methods depends upon the availability
of a 3-dimensional protein structure. In the absence of protein structure, homology
modelling remains an important technique for the prediction of structure. Molecular
docking is a popular technique used for virtual screening. However, the validation of
docking protocols is still a tedious process. One of the frequently available methods is to
compare protein-ligand complex obtained from experimental data and docking to
establish the pose reproducibility. The results are calculated in terms of RMSD between
the docked and co-crystallised poses of the ligand [253]. The other method includes
docking of a set of ligands with known experimental activity data and comparing the
docking score with it using ranking, classification or regression-based methods [242,
254]. Another crucial factor involved in the success of molecular docking is the prediction
accuracy of the scoring function (SF) available with the docking program. Sometimes, it
is observed that the performance of problem-specific customised scoring is better than the
general SFs. Further, the use of ML and deep learning techniques in the development of
such SF have gained acceptance in recent years in providing validated results [176, 255-

257].

AChE, obtained from Electrophorus electricus (ee), which shares structural homology
with the human AChE, is widely used for the screening of AChE inhibitors. Since the 3-
dimensional crystal structure of the enzyme from ee is not available and therefore, it is
challenging to use the SBDD approach for the identification of inhibitors. In the present

study, a homology model for eeAChE was developed and was subjected to its structural
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refinement through energy minimisation. The docking protocol was also developed and
validated by redocking a set of co-crystallised inhibitors from mouse AChE, and their
interaction profiles were compared. The results indicated a poor performance of the
Autodock SF. Hence, a batch of machine learning-based SFs was developed and
validated. It also included the development of dedicated ML-based SFs for obtaining

improved prediction results.

8.2. Materials and methods

8.2.1. Sequence alignment and analysis

The protein sequence for eeAChE was obtained from Uniport web database (accession
code 0O42275). The sequence similarity search was carried out using blastp (BLASTP
2.9.0+) with the help of Blosum62 scoring matrix and gaps were allowed during sequence
comparison [188, 258, 259].

8.2.2. Active site mapping
The active site cavity was mapped by using CavityPlus (http://www.pkumdl.cn/) web

server, that provided a comprehensive analysis of cavities of the protein [260]. The cavity

analysis for AChE obtained from Tetronarce californica (tc), Mus musculus (mm), and

Homo sapiens (hs) was performed on chain A of the protein using the default parameters.
8.2.3. Homology modelling

The homology modelling for protein structure of eeAChE was performed. VVarious models

were developed using SWISS-MODEL web server accessible via the ExXPASy

(https://swissmodel.expasy.org) [261]. The sequence of eeAChE (UniProt access code —

042275) was used for carrying out a template search. The templates obtained were used

to build the eeAChE models. The quality of the obtained homology models were checked
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through Global Model Quality Estimation (GMQE ), QMEAN [262] and Ramachandran
plot obtained from Molprobity [263] [197].

8.2.4. Homology model refinement and protein preparation
The selected homology models were refined using DOCKPREP utility of Chimera-1.4.
The PDB was further uploaded to the PDB2PQR server (http://nbcr-

222.ucsd.edu/pdb2pgr_2.1.1) to assign protonation states to the various amino acid

residues of model at a physiological pH of 7.4 [264, 265]. The obtained PDB was
subjected to energy minimisation using Amber18 with the ff14SB as a force field using
method stated in section 4.2.9 [200, 266, 267].

8.2.5. Ligand preparation and grid generation
The ligand preparation was carried out using method reported in section 4.2.7. Autogrid-
4.2.6 was used to calculate grid maps. The grid box size was set to 84 x 66 x 72 with a
grid point spacing of 0.375 A. The grid centre was placed at 51.05, 28.382 and 54.297,
representing X, Y and Z coordinates, respectively.

8.2.6. Molecular docking and validation of docking protocol and scoring function.
The molecular docking was performed through Autodock-4.2.6. LGA along with Solis-
Water local search to identify the various poses [196, 235]. The docking results were
processed by a python script, i.e., vstools v0.16. The post docking analysis and
visualisation were performed by Discovery studio visualiser 2020. The docking protocol
was validated through two approaches. The structures of the ligands that were co-
crystallised with mmAChE were collected and docked on the eeAChE. The interactions
obtained from docked protein-ligand complexes were compared with the respective native
co-crystals. The other validation process involved docking of the pre-collected dataset of
ligands with known ICso against the eeAChE using the predefined protocol. The

comparison of the obtained binding energies with their 1Cso was carried out through three
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approaches. The first approach used binary classification involving the division of
datasets into two classes, i.e., active and moderately active. The area under the receiver
operating characteristic curve (ROC) was determined assuming the docking as a
classification-based problem. The other method involved treating the docking results as
continuous data similar to the regression problem. It was validated using a coefficient of
determination between actual plCso and predicted binding energies and pKi after using
appropriate data pre-processing viz. logarithmic conversion of predicted Ki and
experimental 1Cso values.
8.2.7. Development of the scoring functions for eeAChE

SFs were developed through ML and deep learning techniques using various python
libraries. A set of three SFs were developed using the principles of binary classification,
multiclass classification and regression. The binary and multiclass classification SFs were
developed using various ML algorithms viz. support vector classification (SVC), LR,
KNN, RF, Naive Bayesian and a variety of ensembled based techniques. A grid search
was carried out to identify the best hyperparameter combinations. Initially, a
hyperparameter tuning was performed for each algorithm and the selection of the best
hyperparameters was carried out on the basis of mean accuracy obtained from 5-fold
validation. The best model selected from each algorithm was tested on an independent
test set to select the final model for formulating the SF. The final model was selected by
comparing the various scores viz. confusion matrix, accuracy, precision, recall and F1-
score. Further, the third set of ML and deep learning models were developed using
regression-based algorithms viz. linear regression, ridge regression, elasticnet regression,
lasso regression, support vector regression (SVR), RF regressor, Bayesian Ridge
regression, Stochastic gradient regression and neural networks. These models were

validated by using the coefficient of determination (r?), which defines the dependence of

Page | 191



Development of homology model, docking protocol and machine-learning based scoring
functions for identification of Electrophorus electricus’s AChE inhibitors

one variable on another and ranges between 0 to 1. A higher value of r? represents a better
fitting of the line or manifold plain on the data. The Q%x-based metrics were used to
ascertain model performance on the test data. The value of Q%1 and Q% should be greater
than 0.5 for an acceptable quality of the model. The value less than the threshold indicated
that though the model fits better on the training set; but have poor predictivity on a
different dataset, i.e., overfitting. Further, MAE and Golbraikh and Tropsha’s criteria

were also used for the evaluation of the model.

8.3. Results and discussion

8.3.1. Sequence alignment and analysis

The eeAChE is 633 amino acids containing protein with a molecular weight of 71,815
Da. The first 23 amino acid residues are part of a signal peptide responsible for protein
translocation, which is eventually cleaved. The blast search reflected that the top 500
reported hits were of two types of enzymes, i.e., Carboxylic ester hydrolases (CEHs) and
AChE. Further, about 88.9 % of the hits were CEH of various organisms and, their 3D
structures were not reported. The blast search also returned 6 % of hits as AChE with
Triplophysa tibetana AChE being most similar to eeAChE (81.3 %). However, the
significant queries returned had no 3D protein structures reported (Figure 8.1). The
tcAChE, mmAChE and hsAChE obtained from blast search have sequence identities of
64.5, 59.8 and 60.8 %, respectively with eeAChE. The PDB structures of AChE of the

three organisms were available in the PDB databank (https://www.rcsb.org/). AChE

crystal structure of Drosophila melanogaster was also available but had a low sequence
identity of 35.91 % with eeAChE. In the protein sequence analysis, the residues having
physiochemically similar properties were treated as similar residues. Similar residues
present in eeAChE sequence were found in a range of 12-15 %, when compared with the

three organisms. The three selected organisms had a high homology of more than 70 %,
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except for drosophila that shared a low homology with eeAChE (Figure 8.1). The
sequence alignment also showed that all the major residues of various sites of AChE were
identical and highly conserved among the organisms. The conserved residues of major

sites were highlighted in Figure 8.2, representing the aligned sequences.
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Figure 8.1 (a) Hits returned from a protein blast search using eeAChE as a query. (b)
Comparison of eeAChE sequence with other organisms.

8.3.2. Active site mapping

CavityPlus helps in identifying various cavities along with their druggability scores. Thus,
the mapping of active site and tunnel were performed for tcAChE, mmAChE and hsAChE
using PDB codes 1EA5, 5DTI and 4EY4, respectively, that could serve as potential

templates for homology model development for eeAChE.
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042275 eeAChE 1 --QTDPELTIMTRLGQVQGTRLPVPDRSHVIAFLGIPFAEPPLGKMRFKPPEPKKPWNDV 58
P04058 1 --DDHSELLVNTKSGKVMGTRVPVL-SSHISAFLGIPFAEPPVGNMRFRRPEPKKPWSGV 57
P21836 mmAChE 1 EGREDPQLLVRVRGGQLRGIRLKAP-GGPVSAFLGIPFAEPPVGSRRFMPPEPKRPWSGV 59
P22303 hsAChE 1 EGREDAELLVTVRGGRLRGIRLKTP-GGPVSAFLGIPFAEPPMGPRRFLPPEPKQPWSGV 59
il z s *:: * ‘k: " " E *x*********:* * * ****:**."k
042275 eeAChE 59 FDARDYPSACYQIVTSYPGFSGTEMINPNRMMSEDCLYLNVWVPATPRPHNLTVMVWIY 118
P04058 58 WNASTYPNNCQONVEEQFPGFSGSEMINPNREMSEDCLYLNIWVPS-PRPKSTTVMVWIY 116
P21836 mmAChE 60 LDATTFQNVCYQIVETLYPGFEGTEMINPNRELSEDCLYLNVWTPYPRPASPTPVLIWIY 119
P22303 hsAChE 60 VDA'I"1‘FQSVCYQEV!:TLYPGFEGTEL@NPNRELSEDCLYLNVWTPYPRPTSPTPVLVWIY 119
s . * Kk kokok :k*A 9( * Kk ok kk ok k ‘k*****x‘k:*.* *::***
042275 eeAChE 119 GEZEFfiSGSSSLDVYDGRYLAHSEKVVVVSMNYRVSAFGFLALNGSAEAPGNVGLLDQRLA 178
P04058 117 GEEF{SGSSTLDVYNGKYLAYTEEVVLVSLSYRVGAFGFLALHGSQEAPGNVGLLDQRMA 176
P21836 mmAChE 120 GEEF{SGAASLDVYDGRFLAQVEGAVLVSMNYRVGTFGFLALPGSREAPGNVGLLDQRLA 179
P22303 hsAChE 120 GEEFI{SGASSLDVYDGRFLVQAERTVLVSMNYRVGAFGFLALPGSREAPGNVGLLDQRLA 179
*x**x**:::****:*::*‘ * .*:**:_***‘:****** * % ************:*
042275 eeAChE 179 LQWVQDNIHFFGGNPKQVTIFGEJ GAASVGMHLLSPDSRPKFTRAILQSGVPNGPWRTV 238
P04058 177 LQWVHDNIQFFGGDPKTVTIFGEJGGASVGMHILSPGSRDLFRRAILQSGSPNCPWASV 236
P21836 mmAChE 180 LQWVQENIAAFGGDPMSVTLFGEJIGAASVGMHILSLPSRSLFHRAVLQSGTPNGPWATV 239
P22303 hsAChE 180 LQWVQENVAAFGGDPTSVTLFGEELGAASVGMHLLSPPSRGLFHRAVLQSGAPNGPWATV 239
dkdkok ook kok ok ok hok g kkkkokk kkkkkk o okk * ok ko kkokkkk kk kk ok
042275 eeAChE 239 SFDEARRRAIKLGRLVGCPD----GNDTDLIDCLRSKQPQDLIDQEJLVLPFSGLIRISF 294
P04058 z 237 SVAEGRRRAVELGRNLNCNL----NSDEELIHCLREKKPQELIDVE NVLPFDSI RSF 292
P21836 mmAChE 240 SAGEARRRATLLARLVGCPPGGAGGNDTELIACLRTRPAQDLVDHEJHVLPQESIRISF 299
P22303 hsAChE 240 GMGEARRRATQLAHLVGCPPGGTGGNDTELVACLRTRPAQVLVNHE HVLPQESV/3RISF 299
*.**** *_: :.* R s X * Kk Kk : * *:: *k ok ok ok ..:*****
042275 eeAChE 295 VPVIDGVVFPDTPEAMLNSGNFKDTQILLGVNQNIGSHILIfiGAPGFSKDNESLITREDF 354
P04058 : 293 VPVIDGEFFPTSLESMLNSGNFKKTQILLGVNKDIGS[ LL{GAPGFSKDSESKISREDF 352
P21836 mmAChE 300 VPVVDGDFLSDTPEALINTGDFQDLQVLVGVVKDIGSH LV}{GVPGFSKDNESLISRAQF 359
P22303 hsAChE 300 VPVVDGDFLSDTPEALINAGDFHGLQVLVGVVKQBGSBELVEGAPGFSKDNESLISRAEF 359
x"(*:r* i % *:::*:*:*: *:*:** ::*x*:*w:**'******_** x:* :*
042275 eeAChE 355 LQGVRMSVPHANEIGLEAVILQYTDWMDEDNPIKNREAMDDIVGDHNVVCPLQHFAKMYA 414
P04058 353 MSGVKLSVPHANDLGLDAVTLQYTDWMDDNNGIKNRDGLDDIVGDHNVICPLMHFVNKYT 412
P21836 mmAChE 360 LAGVRIGVPQASDLAAEAVVLHYTDWLHPEDPTHLRDAMSAVVGDHNVVCPVAQLAGRLA 419
P22303 hsAChE 360 LAGVRVGVPQVSDLAAEAVVLHYTDWLHPEDPARLREALSDVVGDHNVVCPVAQLAGRLA 419
k*::_**:'.:_. :'A‘** ~A~Ak~k:_ s s ‘k..:. :**kkkk.)\A:
042275 eeAChE 415 QYSILOGQTGTASQGNLGWGNSGSASNSGNSQVSVYLYMFDHRASNLVWPEWMGVILGYE 474
P04058 413 KFG-========mm e e e e NGTYLYFFNHRASNLVWPEWMGVILGYE 443
P21836 mmAChE 420 AQG-=======mmmm e e e ARVYAYIFEHRASTLTWPLWMGVEIGYE 450
P22303 hsAChE 420 AQG-========= e e ARVYAYVFEHRASTLSWPLWMGVELGYE 450

g S demdikRok A ek dkkkk: ek

042275 eeAChE 475 IEFVFGLPLEKRLNYTLEEEKLSRRMMKYWANFARTGNPNINVDGSIDSRRRWPVEFTSTE 534

P04058 444 IEFVFGLPLVKELNYTAEEEALSRRIMHYWATFAKTGNPNEPH----SQESKWPLFTTKE 499

P21836 mmAChE 451 IEFIFGLPLDPSLNYTTEERIFAQRLMKYWTNFARTGDPNDPRDS---KSPQWPPYTTAA 507

P22303 hsAChE 451 IEFIFGIPLDPSRNYTAEEKIFAQRLMRYWANFARTGDPNEPRDP---KAPQWPPYTAGA 507

rr*:r*:*x * * * **. :.:*:*:**:‘*k:*x:kw = :** :vl-:

042275 eeAChE 535 QRHVGLNTDSLKVHKGLKSQFCALWNRFLPRLLNVTENIDDAERQWKAEFHRWSSYMMHW 594

P04058 tcI 500 QRKFIDLNTEPMKVHQRLRVQMCVEFWNQFLPKLLNATACDGELSSS-—======m====mm 544

P21836 mmAChE 508 QQYVSLNLKPLEVRRGLRAQTCAFWNRFLPKLLSATDTLDEAERQWKAEFHRWSSYMVHW 567

P22303 hsAChE 508 QQYVSLDLRPLEVRRGLRAQACAFWNRFLPKLLSATDTLDEAERQWKAEFHRWSSYMVHW 567
_1'.. A: * k.:kk **k * % .*

042275 eeAChE 595 KNQFDHYSKQERCTNL 610

P04058 ; 545 ——ssmmms s 544

P21836 mmAChE 568 KNQFDHYSKQERCSDL 583

P22303 hsAChE 568 KNQFDHYSKQDRCSDL 583

B Catalytic active site B Oxyanion hole

Bl Anionic site Acyl binding pocket

B Peripheral anionic site

Figure 8.2 Sequence alignment of AChE Electrophorus electricus with Tetronarce
californica, Mus musculus and Homo sapiens.
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a
042275 eeAChE 70 QYVDTSY 76 81 GTEMWNP 87 116 W 118 YGGGFYSGS 129 L 131 VY 132
P04058 69 QYVDEQF 75 80 GSEMWNP 86 114 W 116 YGGGFYSGS 127 L 129 VY 130
kkkk - % % d g ok ok ok * % % e g gk ok ok ke * * %k
P21836 mmAChE 71 QYVDTLY 77 82 GTEMWNP 88 119 YGGGFYSGA 130 L 132 VY 133
khkkkk * Khkkhkdkkk khkkkkkk . * * %
P22303 hsAChE 71 QYVDTLY 77 82 GTEMWNP 88 119 YGGGFYSGA 130 L 132 VY 133
*hkkdkhk X % % % % ok ok ok ********: * * %
042275 eeAChE 201 ESAG 204 235 W 277 ID 278 280 EWLVLPFSGLFRFS 293 329 EGSYFLIYGA 338
P04058 199 ESAG 202 233 W 275 ID 276 278 EWNVLPFDSIFRFS 291 327 EGSFFLLYGA 336
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*kkk * .k hk kkk | ckkkk Tkkdkk o kok
P22303 hsAChE 202 ESA 204 285 EWHVLPQESVFRFS 298 334 EGSYFLVYGA 344
*kk ok kkk | ckkkk Kkkdokk s kkk
042275 eeAChE 360 M 463 W 470 IHGY 473 474 EI 475
P04058 358 L 432 W 439 IHGY 442 I 444
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Figure 8.3 (a) Sequence comparison (b) % homology, identity and similarity of active
site and tunnel of eeAChE with other organisms.

Sixteen cavities were identified from tcAChE, but only one druggable site consisting of
an active catalytic site and the leading tunnel was predicted. Similarly, twelve and
fourteen cavities are identified for mmAChE and hsAChE, respectively, with one cavity
each containing the tunnel and catalytic site residues Sequence analysis was performed
from the obtained data to identify the similarity of the active site and tunnel residues
between eeAChE and the organisms. The results of the sequence comparison are
presented in Figure 8.3. Interestingly, the homology of the three selected proteins with

eeAChE sequence was approximately 90 % or more. In case of tcAChE, it was observed
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that 65 residues made up the active site with two residues had radical replacements, five
and three residues displayed conservative and semi-conservative replacements,
respectively, when compared with corresponding eeAChE residues. Further, 65 and 59
residues were involved in the active site formation for mmAChE and hsAChE,
respectively. The mmAChE have 5, 3 and 5 non-conservative, semi-conservative and
conservative replacement respectively, in comparison to the corresponding eeAChE
sequence. While, hsAChE has 3 radical replacements and 3 and 5 semi-conservative and
conservative replacements, respectively, in relation to eeAChE (Figure 8.3) [268].
8.3.3. Homology modelling
The template search on SWISS MODEL retrieved 48 templates. Three PDB of AChE
from Tetronarce californica, Mus musculus, and Homo sapiens, having higher resolution,
were selected for homology modelling. It was ensured that none of these PDB had any
mutations and were XRD-derived protein structures due to better atomic resolution.
GMQE scores of all the models were in an acceptable range of 0.70 — 0.74. Three out of
nine homology models were selected for model refinement that displayed better QMEAN
scores. It was observed that all of the developed models had 91 — 93% residues in the
favoured region and 0 — 2% outliers. The details of the homology models, PDB templates
and their quality are indicated in Table 8.1.
8.3.4. Homology model refinement and protein preparation

Three homology models, one each from Tetronarce californica, Mus musculus, and
Homo sapiens, were selected based on the QMEAN scores. The selected models were
subjected to protein preparation. The correct protonation states of various amino acid
residues were assigned using PDB2PQR server at physiological pH of 7.4. The energy
minimisation was performed to reduce the inconsistency in the prepared model and was

carried out using Amber18. The protein structure at each stage of energy minimisation
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was assessed by the structure assessment tool available on the SWISS-MODEL. A
thorough comparison of models at every minimisation stage on the various parameters

are presented in Figure 8.4.

Table 8.1 Validation data of the developed homology models of eeAChE from crystal
structures of various organisms.

S. Templat Resol Organism GMQ QME Ramachandra Ramachandra Model code

No ePDB ution E AN n  Favoured n Outliers (%)
A) (%)
1 sepg 24 Homo 074  -0.78 92.76 0.88 eeAChE_SFP
sapiens Q
2 srQN 23  Torpedo 070 -0.85 92.02 0.35 eeAChE_6FQ
californica N
3 cop 25 Mus 073 -0.94 91.71 053 eeAChE_2C0
musculus P
4 Mus
1KU6 25 073  -1.32 91.07 1.77 eeAChE_1KU6
musculus -
5 Homo
5HF5 22 giens 073  -1.42 92.58 0.71 eeAChE_5HF5
6 4PQE g  Homo 073  -1.46 92.38 1.06 eeAChE_4PQE
sapiens
7
6EUE 20  Torpedo 071  -1.47 92.20 0.89 eeAChE_6EUE
californica
8 JWHP 22 Mus 073  -1.48 92.58 159 eeAChE_2WH
musculus [
9  5enyx 21 Torpedo 070  -2.06 91.84 1.42 eeAChE_SEH
californica X

The coordinates obtained from stages 6, 6 and 5 of the energy minimisation of homology
models obtained from templates of Mus musculus (MmAChE: 2COP), Tetronarce
californica (tcAChE: 6FQN) and Homo sapiens (hsAChE: 5FPQ), respectively, displayed
optimum features. In the case of eeAChE_2COP, the clash score decreased along with
rotamer outliers and bad angles. However, there was a slight increase in Ramachandran
outliers. The model eeAChE_6FQN displayed a decrease in the bad angles, rotamer
outliers and clash score. The protein model obtained from Homo sapiens showed low
Ramachandran outliers, low rotamer outliers and bad angles. Three optimised protein
models were then compared, and the 3D structure obtained from Mus musculus showed a
minimum deviation (Table 8.2). The final PDB (eeAChE_2COP_min6) and its
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Ramachandran plot are represented in Figure 8.4. The obtained PDB was converted into

pdbqgt format using Autodock Tools-1.5.6 [269].

Table 8.2 Comparison of validation parameters of selected homology models obtained
from energy minimisation.

Model MolProbity Clash Ramachandran Ramachandran Rotamer C-Beta Bad Bad
Score Score Favoured (%) Outliers (%) Outliers  Deviations Bonds Angles
(%)
eeAChE_2COP  1.25 0.57 92.37 0.6 1.28 0 0 16
eeAChE_5FPQ 1.38 1.03 91.6 0.4 1.28 0 0 18
eeAChE_6FNQ 1.47 229 9273 0.61 0.86 0 0 20

8.3.5. Ligand preparation and grid generation

The 3-dimensional coordinates of molecules were generated from SMILES strings which
were subjected to energy minimisation using the MMFF94s force field. Subsequently, the
minimised structures were converted to pdbqt files using AutoDockTools-1.5.6. The grid
box used in the study covered the whole active site and the tunnel, which had been mapped
and is indicated in Figure 8.2.

8.3.6. Molecular docking and validation of docking protocol and scoring function.
Autodock-4.2.6 uses a semi-empirical force field in its SF to evaluate various generated

poses. The binding free energy is calculated as:

AG = (Vbound = - Vunbound ©5) + (Mbound © 7 = Vunbound ™) + (Vbound " = Vunbound © - + ASconf)
where, L and P refers to the ligand and protein and the conformational entropy lost upon
binding (ASconf). The pairwise energy term (V) represents the contributions of van der
Waals, electrostatic, hydrogen bond, de-solvation and torsional penalty involved in

protein-ligand binding.

A; iqj —12/202
V= Wvdw Z TU U + thond Z E(t){ 10} + Wele Z = + Wsul Z(Sivi + SJVl)e( r”/Zd ) + WturNtor
ij

T i ur e(riy) nis

Page | 198



Development of homology model, docking protocol and machine-learning based scoring
functions for identification of Electrophorus electricus’s AChE inhibitors

180

[
MolProbity Score Clash Score Ramachandran Ramachandran
5 5 Favoured (%) Outliers (%)
95 15
2
1 1
90
£ 05
0 0 85 0
Rotamer Outliers C-Beta Deviations Bad Bonds Bad Angles
(%) 2 2 50
3 40
30
2 1 1
20
2 10 II I II
0 o -— — — 0 0
d
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
-200000 L L L L 1 L 1 L )
3 -220000
£
S~
T -240000
4
=
> -260000
20
Y
£ -280000
2 -300000
=
i)
o -320000
a.
-340000
Stages of minimisation
Homology model ™ Stage1 M stage 2 Stage 3 Stage 4
Stage 5 B Stage 6 Stage 7 B stage 8 B Stage 9

Figure 8.4 (a) Homology model of eeAChE, (b) Ramachandran plot of homology model
after energy minimisation, (c) Validation score of protein structure at various stages of
energy minimisation, (d) Potential energy (Kcal/mol) of the protein model during energy
minimisation.
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Conventionally, the ligands that were co-crystalised with protein are redocked and an
RMSD is determined between the docked and co-crystallised poses for validation of the
docking protocols [197, 267]. However, in this case, a homology model of eeAChE was
built and hence no co-crystallised ligand could be obtained. Hence, a set of fifteen co-
crystallised ligands with mmAChE were selected from the PDB databank. These ligands
were docked with eeAChE and the poses with the lowest binding energy were selected.
The interactions of the selected pose of the ligand with eeAChE were compared with the
mmACAhE interactions, as both the enzymes, had active site homology of about 88 %. The
results are presented in Figures 8.5, 8.6 and 8.7. The ligand 59z, when docked on eeAChE
retained interactions with Trp85, Trp281, Phe290, Tyr332, Phe333, Tyr336 and His471,;
while A36 retained binding with three out of four interacting residues, i.e., Trp85, Tyr123
and Tyr332, when compared with mmAChE. The ligands B2V and B3W displayed
interactions with four and three out of five and six residues, respectively, on comparison

with mouse AChE.

B32 retained interactions with Trp85, Tyr123, Tyr332 and His471 and displayed an
additional interaction with Tyr473 in comparison to mmAChE. The ligand C56 displayed
retention of five out of seven interacting residues when docked to eeAChE, while DUC
retained one out of two interacting residues along with extra interactions with Tyr71,
Asp73, Leu284, Phe290, Arg291 and Tyr336 with eeAChE when compared to co-
crystallised mouse AChE. E5H, E5K and GC8 displayed three, three and two out of three,
five and five interactions, respectively with mmAChE when docked with eeAChE. E5H
retained interactions with Trp85, Trp281, Tyr332, and E5K with Trp85, Trp281 and
Tyr336. Similarly, N2K, Q4Q, SOF, Z5K and ZN4 retained five, four, three, four and
three interactions with eeAChE out of eight, seven, five, six and six interactions present

in mmAChE.
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Figure 8.7 (a, b, c, d, €) 3D interaction diagrams of N2K, Q4Q, SOF, Z5K and ZN4 with
eeAChE, (f) Comparison of the interaction profile of N2K, Q4Q, SOF, Z5K and ZN4

with mmAChE and eeAChE.
Overall, it was observed that the ligands interacted with all the major residues upon

docking with eeAChE similar to mmAChE. Thus, it indicated that the ligand-bound in a
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similar manner in both enzymes and validated the docking protocol. The quantitative
aspect of the validation process was performed by generating a dataset of eeAChE

inhibitors from the Bindingdb database (http://bindingdb.org/) [270]. Fifteen ligands, co-

crystallised with the enzyme, were used for the identification of crucial fingerprints
responsible for AChE inhibition (Figure S14 in appendix). The fingerprint search was
performed with the help of RDKkit, which resulted in the identification of CCN(C)C, a
SMILES string, present in all mmAChE inhibitors and ACh. The N,N-
dimethylethanamine group was used as a substructure filter to obtain a dataset of 1507
compounds from a total of 4,846 eeAChE inhibitors. Further, it was ensured that the
selected compounds should have less than 16 rotatable bonds as desired for Autodock-
4.2.6. The SMILES strings were converted to the tripos mol format using pybel module
of open babel and stripped off the salt molecules. The obtained set was then converted to
pdbqgt format followed by docking on eeAChE using Autodock-4.2.6 through an in-house
build python script with multiprocessing capability to speed up the process. The best
poses for the ligands with the lowest binding energies were obtained from output files
using a python script, vstools_v0.16. The obtained binding energies were used for the
validation process along with the reported ICso values. The cut-off values of 100, 1000,
2000 and 10000 nM were selected for assigning the ligands with binary classification
labels, i.e., active and inactive. ROC curves were plotted for all the selected cut-off values.
ROC is a plot between the true positive and false positive rates (TPR and FPR) obtained

from a classification model.

TPR / Recall = —F
[ Recall = 5——N
FP
FPR= ——
FP+TN

where TP: true positive, FP: False positive, TN: True negative and FN: False Negative
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The area under curve (AUC) represents the degree of the separability of various classes
of a classification model. The value of the AUC ranges from 0 to 1, the higher the AUC
more accurate is the prediction. The value of the cut-off ICso(s) and ROC-AUC are
presented in Figure 8.8. The results indicated that the cut-off value of 10000 nM has the
highest AUC value of 0.6355 but had an imbalanced class. Further, the regression-based
analysis was carried out after the transformation of the I1Cso values due to their wide range
of distribution from 0.12 to 1233105 nM. The scatter plot of binding energy vs pICso
displayed a poor coefficient of determination of 0.007. Similarly, the plot between
predicted pki vs plCso has also shown the coefficient of determination to be 0.007 (Figure
8.8). However, any mathematical model with a good predictivity should have this value
as high as possible, and for the best fit model, it tends to be 1.
8.3.7. Development and validation of the scoring functions for eeAChE

In the present study, various machine and deep learning models were developed and
validated using three strategies, i.e., binary classification, multiclass classification and

regression.

8.3.7.1. Dataset preparation

The poses, obtained after docking of 1507 compounds, were used to calculate 102
molecular descriptors using RDkit. Protein-ligand interaction profiler (https://plip-
tool.biotec.tu-dresden.de/plip-web/plip/index) was used to identify the interactions
between protein and ligand along with the number of different types of interactions.
Finally, the molecular descriptors, interaction profiles and binding energies were

combined to form the final dataset of 677 features.
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8.3.7.2. Development of scoring function based on binary classification models

ICso of the compounds i.e., independent feature, was converted to two classes, active (ICso
< 1000 nM) and inactive, with a cut-off value of 1000 nM for the development of binary
models (Figure 8.9). Seventeen machine learning algorithms were employed for model
development using various combinations of hyperparameters and five-fold validation.
Logistic regression, SVM and KNN were trained on the scaled dataset. The

standardisation and normalisation techniques were employed.
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Figure 8.9 (a) Proportion of compounds used in training and test sets for the ML, (b)
Compounds labelled as active and inactive at ICsp cut-off value of 1000 nM for binary
classification, (c) Compounds labelled as most active, active and moderately active at ICso
cut-off values of 1000 and 10000 nM for multi-class classification, (d) Distribution of the
compounds in training and test sets on a log 1Cso scale for regression modelling.

The LR yielded similar accuracy on training and test sets obtained from both data pre-
processing techniques. However, SVM and KNN showed better results with a normalised
dataset on both training and test sets. The probability-based Naive Bayesian classifiers
have poor results with the lowest accuracies among all the algorithms. The multinomial

and complement based Naive Bayesian classifiers were unable to fit on the dataset.
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Further, a decision tree has a flow chart based architecture that has branches and leaves
representing the outcome of the test and a class label, respectively, while the RF is a
cluster of various decision trees [271]. It was observed that both methods performed
equally well on the training set. Still, the test set accuracy of the decision tree was higher
than the random forest during binary classification. The opted techniques provided better
accuracy than the native Autodock-4.2.6 SF but the accuracy above 80% is greatly
appreciated for any ML model. Ensembled methods are essential techniques that improve
predictivity by combining various models together. The ensemble models available with
scikit-learn library are ada-boost, bagging, extra trees, gradient boosting and histgradient
boosting classifiers. It was indicated that except the ada-boost classifier, all other
classifiers improved the prediction accuracy on both training and test sets compared with
the previous algorithms. Hence, the most appropriate ensembled classifier was identified
through a comparison of precision, recall and F1 scores. Precision is usually defined as
the number of TPs identified by an ML model from all the predicted positives, while recall
identifies the fraction of true positives identified from all actual positives. As the precision
of the model improves, the value of recall typically falls and vice versa. Usually, the
selection of a model depends upon the trade-off between precision and recall by
identifying a sweet spot where both values are high. Thus, besides the two parameters, F1
score, which is a harmonic average of precision and recall, plays an important role in the

model selection.

The precision and recall scores indicated that the bagging classifier has better predictivity
for identifying TPs, i.e., the active compounds, which is the primary function of any SF.
Further, the precision also indicated that the classifier had reduced the number of FPs,
which was crucial for the performance. It was clearly indicated that the bagging classifier

outperformed other classifiers with an F1 score of 83.7 % (Table 8.3).
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Table 8.3 Validation scores of various machine learning algorithms used to develop binary scoring function.

Training
dataset (k = Test dataset
5)

Algorithm Parameters Feature Accuracy  Accurac  Precisio Recall F1 score

g scaling @)% y(®)  nE) (%) (%)
Logistic Regression ﬁbfir?g:r’ max iter = 10000, penalty = 11, solver = Standardisation 74.19+2.86 7527 7239 7582 7527
Logistic Regression C =10, max iter = 10000, penalty = 11, solver = saga Normalisation 74 +£2.84 75.05 74.48 69.85 75.05
Support Vector Classifier C =1, gamma = 1, kernel = poly Standardisation 78.08 + 1.96 71.96 67.82 74.64 71.07
Support Vector Classifier C = 10, gamma = scale, kernel = rbf Normalisation 75.5+2.37 75.71 74.87 71.29 73.03
K-nearest neighbour metric = manhattan, n neighbors = 3 Standardisation 81.21 + 1.62 76.82 73.63 77.51 75.52
K-nearest neighbour metric = manhattan, weights = distance, n neighbors=5  Normalisation 78.93 £ 1.39 80.57 76.88 82.77 79.72
Naive Bayes Guassian - 48.2+ 3.6 47.9 4741 99.06 64.13
Naive Bayes Bernoulli - 65.3+16 63.57 61.32 61.03 61.17
Random Forest max depth = 15, max leaf nodes = 10, min samples leaf 7523+134 7262 7129 6995 7061

= 2, n estimators = 100
Decision tree criterion = gini, max depth =8, min samples leaf =2, 7561+229 7792 7556 78.4 76.95
min samples split = 8

AdaBoost Classifier 2lgortthm = SAMME.R, learning fate = 0.1, n estimators 7704323 7902 741 8L77T  79.02
Bagging Classifier max features = 500, n estimators = 5000 - 81.68 +1.73 83.66 81.81 85.52 83.26
Extra Trees Classifier criterion = gini, max features = sgrt, n estimators = 1000 - 81.96 + 4.05 81.23 81.42 78.8 81.23
Grad!e.nt Boosting criterion = ms_e, learning r_ate =1, loss = exponential, ) 83.1+ 269 8167 80.73 811 8167
Classifier max features = auto, n estimators = 10000
Hist Gradient Boosting —16,ming rate = 0.01, max iter = 100 8124261 8189 8271 7972 8189

Classifier

* Expressed as Mean £ SD
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8.3.7.3. Development of scoring function based on multiclass classification models

A multiclass based SF was also developed by using ICso cut-off value of 2000 and 10000
nM, that led to the division of dataset into three classes, i.e., most active (ICso < 1000
nM), active (ICso > = 1000 and ICsg <10000 nM) and moderately active (ICso >= 10000
nM) (Figure 8.9). Various classification algorithms were tested to obtain the best model.
A wide range and combinations of hyperparameters were tested through the grid search
method along with five-fold validation. LR, linear SVC, KNN and ridge classifier were
tested on both standardised and normalised data. It was observed that all the four
algorithms performed poorly with the accuracy of less than 70 % on training as well as
test sets, except KNN which showed training accuracies of 70.64 % and 71.08 % on
standardised and normalised datasets, respectively (Table 8.4). The probability-based
classifiers, i.e., Gaussian and Bernoulli Naive Bayesian poorly performed. Further, the
decision tree and extra tree classifiers had also performed poorly, when compared to their
binary classification performance. The ensemble algorithms again outperformed others
and have better accuracies among all. Generally, the bagging classifier performs data
fitting on smaller sets of training dataset and then take the average of predictions made
by all individual models to reach a final decision [272]. In contrast, extra tree classifier
generates decision trees with all data available in the training set, followed by creating
subsets of the features randomly to generate models [273]. Both algorithms performed
well on the training and test datasets, with almost equal accuracies. In multiclass
problems, we used micro-averaging that led to an equal value of precision, recall and f1-
scores. Micro-averaging did not distinguish between different classes, but averaged their
metric scores and hence performed well on unequally distributed classes, as in the case.
The bagging classifier performed slightly better with AUC for ROC of 87.0% compared

to extra tree classifier (Figure 8.10 (b)).
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Table 8.4 Validation scores of various machine learning algorithms used to develop multiclass scoring function.

Training dataset

(k = 5) Test dataset
Algorithm Parameters Feature scaling Accuracy™* Accuracy  Precision  Recall F1score
Logistic Regression ttinomial sendlty — 12 sohver — nowton-cg  Standardisation  58.921.98 59.6 506 506 596
Logistic Regression © =10 max 'gzrn;tlyogol(i' ';‘:\'/térc':azzga Normalisation 57.02 & 2.47 62.69 6269 6269 6269
Linear SVC C = 1, class weight = balanced, loss = squared gy, 4o isation 57.49 + 1.58 60.92 6092  60.92  60.92
hinge, multi class = ovr, penalty = 12
Linear SVC S};t}?ﬂg:‘f c")‘\’/er'g;;n;ﬁ;'i”fzed' loss =hinge.  ormalisation 57.87 + 1.94 62.47 6247 6247 6247
K-Neighbors Classifier algorithm = auto, metric = manhattan, n Standardisation 65.08 + 2.65 70.64 7064 7064 7064
neighbors = 3, weights = distance
K-Neighbors Classifier ﬁgg[}'égrr: Z guﬁégﬁigiziggmzuan’ : Normalisation 64.32+2.78 71.08 71.08 71.08 71.08
Ridge Classifier class weight = balanced, solver = auto Standardisation 57.21+1.85 60.92 60.92 60.92 60.92
Ridge Classifier class weight = balanced, solver = auto Normalisation 56.73 + 2.66 60.48 60.48 60.48 60.48
Gaussian NB 469+29 48.56 48.56 48.56 48.56
Bernoulli NB 543+1.8 49.66 49.66 49.66 49.66
Decision Tree Classifier oenen ;3}'2;&%::&:3 min samples 63.47 £ 2.52 62.91 6291 6291 6291
AdaBoost Classifier 2lgortthm = S/ MAME, learning rate = 1, n . 78.17 +2.19 78.8 788 788 788
Bagging Classifier max features = 500, n estimators = 10000 82.92 + 3.05 83 83 83 83
Extra Trees Classifier CrLerion = entioby, max features = sqrt, n 82.92 + 155 82.27 8227 8227 8227
criterion = mse, learning rate = 1, loss =
Gradient Boosting Classifier ~ exponential, max features = sqrt, n estimators = 80.93 + 2.64 82.56 82.56 82.56 82.56
1000
HistGradient Boosting classifier learning rate = 0.01, classifier max 67,65+ 213 61.45 61.45 61.45 61.45

Classifier

iter = 1000

* Expressed as Mean £ SD
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8.3.7.4. Development of scoring functions based on regression-based models

The quantitative output would provide much better information about the order of the
predicted activity, which is crucial for any virtual screening. Hence, a wide range of
regression-based models were developed in order to ascertain the activity in terms of the
predicted ICso using various ML and deep learning algorithms. The 1Csop was the
dependent feature and was processed on a logarithmic scale (Figure 8.9 (d)). It was
observed that all the selected algorithms did not show any difference in model fitting on
normalised and standardised data. The r? values were better for random forest regressor
and neural networks. At the same time, all other algorithms displayed an underfitting,
which was also indicated from the mean absolute and mean squared error values of
training and test datasets. The Q% and Q% values for every algorithm were almost equal,
indicating that the mean of training set lies in closeness with the test set mean and the test
set covers the complete response domain of the model. Both neural networks and RF
regressor have these values higher than 0.5, which was the acceptable threshold. The
criteria proposed by Golbraikh and Tropsha assisted in determining the external
predictiveness of the model [274]. It accounted for the observed (Yobs), predicted (Y pred)

activities, and squared correlation coefficients (r%o or r'o?).

_ z:Yobs * pred

z“szred

_ z:Yobs * pred
xY?

obs

2:(Yobs — k * Ypred)2
2:(Yobs - Yobs)2

z"(Yobs -k x Ypred)2
z“(Ypred - Ypred)z
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According to these criteria, models are considered satisfactory if all of the following

conditions are satisfied:

Qfraining > 0.5
i R%,, > 06
iii. 1-1r{/r?<01and085 < k < 1150r1 —r§/r* <
0.1and 0.85 < k* < 1.15
iv. ¢ — 13| < 0.3
It was observed that only the neural network and RF satisfied the criteria. These criteria
are especially important for non-linear methods such as neural networks as in such cases,
r? is always high and tend to be close to 1, but only fewer of such models perform well
on the external test sets. The models showing better prediction on both training and test
sets, could only pass the above criteria. Finally, the models were also tested for MAE
criteria which states that:
. Good prediction: MAE < 0.1 X training set range AND MAE+3 X 5<0.2X
training set range.
ii. Bad prediction: MAE > 0.15 X training set range OR MAE +3 X 6 > 0.25 X

training set range

the o value denotes the standard deviation of the absolute error values for the test dataset.
If both of the criteria (i) and (ii) are not satisfied, then the model is considered of moderate
quality. However, if the test set is large enough, then it is allowed to drop 5% of samples
with high absolute errors, as such data points are outliers and heavily penalise the
predictivity of the model. The RF regression-based models were only satisfying the MAE
criteria on 95 % of test dataset and were selected. Although, the performance of RF
regression algorithm was almost similar on both standardised and normalised data with a
slightly better performance on standardised data and hence this model was selected for

the development of an SF (Table 8.5).
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Table 8.5 Validation scores of various machine learning algorithms used to develop regression-based scoring function.

Model Feature scaling Coefficient of MAE Test MAE MAE MAE MSE Test MSE Q%rn Q%2 TROPSA
determination Train criteria criteria Train criteria
(train) (95%)
Linear normalisation 0.544 2439.997  1.286  Bad Bad 2693373901 2.793  -420204120 ; Fail
regression 420426134
Ir_elgf:srsion standardisation 0.543 65660877079 1.285  Bad Bad  824E+23 2797 -120E+23 -129E+23 Fail
Ridge regression  normalisation 0.439 1.657 1.425 Bad Bad 4421 3.434 0.31 0.31 Fail
Ridge regression  standardisation 0.492 1.668 1.36 Bad Bad 4.587 3.11 0.284 0.284 Fail
Lasso regression  normalisation 0 2.077 2.016 Bad Bad 6.41 6.124 0 -0.001 Fail
Lasso regression  standardisation 0 2.077 2.016 Bad Bad 6.41 6.124 0 -0.001 Fail
Elasticnet normalisation 0.048 2.02 197  Bad Bad 6.32 6.01 0.02 0.026 Fail
regression
Elasticnet standardisation 0.048 2.021 1962  Bad Bad 6.094 5.83 0.049 0.049 Fail
regression
SVR regression normalisation 0.406 1.645 1.42 Bad Bad 4.365 3.641 0.319 0.319 Fail
SVR regression  standardisation 0.554 1.566 1.143 Bad Bad 4.047 2.731 0.369 0.368 Fail
Bayesian Ridge normalisation 0.408 1.669 1468  Bad Bad 4429 3626  0.309 0.309 Fail
regression
Bayesian Ridge standardisation 0.403 1.68 1475  Bad Bad 4474 3658  0.302 0.302 Fail
regression
RandomFarest  normalisation 0.94 1.157 0443  Bad Good 2.38 0362  0.629 0.629 Pass
regression
fezr;g;’s%iore“ standardisation 0.94 1.148 0444 Bad  Good 2342 0367 0635 0.634 Pass
SGD regression  normalisation 0.373 1.689 1.522 Bad Bad 4.474 3.84 0.302 0.302 Fail
SGD regression  standardisation 0.407 1.791 1.487 Bad Bad 6.145 3.63 0.041 0.041 Fail
Neural network  normalisation 0.992 1.431 017  Bad Bad 3357 0048 039300001  0.389 Fail
Neural network  standardisation 0.977 1.357 0309 Bad Moderate  3.14 0146 0491 0.491 Fail

*%

* Batch size = 32, loss = Mean squared error, Activation function = relu, Optimiser = Adamax and number of hidden layers = 3

** Batch size = 16, loss = Huber loss, Activation function = relu, Optimiser = Adamax and number of hidden layers =
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8.3.8. Improved scoring function
When the AUC of ROC of the Autodock SF were compared with selected binary and

multiclass models, a significant improvement in model predictivity was observed
(Figure. 8.10). Further, the selected regression model also displayed improved results
when compared to the native SF. Hence, the selected models were compiled and
converted to a python-based package, Protein-Ligand Scoring Function (PLSF), which

could be obtained through the website (http://:www.drugdesign.in/tools).

8.3.9. Applicability domain

The applicability domain is another important aspect of any prediction process, which
defines a chemical space used for building ML model. It is generally described in terms
of chemical descriptors and features for which the prediction results could be reliable.
Any compound that falls out of this space would have an unreliable prediction result. In
this study, the applicability domain is defined with two conditions, i.e., presence of a N,N-

dimethylethanamine group and number of the rotatable bonds less than sixteen.
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Figure 8.10 (a, b) Receiver operating characteristic of binary and multiclass scoring
function, respectively for the bagging classifier. (c) Plot between log ICso and predicted
LoglCso of the training and test sets for RF regressor. (d) Plot between log ICso and
predicted Log ICsg of the training and and 95% of the test set after removing outliers for
RF regressor.
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