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8. Development of homology model, docking protocol and machine-learning based 

scoring functions for identification of Electrophorus electricus’s AChE inhibitors 

8.1. Introduction 

SBDD involves the use of the protein structure and features to design the ligands, which 

is accomplished through various in silico techniques, including molecular docking and 

MD simulation methods [252]. The use of SBDD methods depends upon the availability 

of a 3-dimensional protein structure. In the absence of protein structure, homology 

modelling remains an important technique for the prediction of structure. Molecular 

docking is a popular technique used for virtual screening. However, the validation of 

docking protocols is still a tedious process. One of the frequently available methods is to 

compare protein-ligand complex obtained from experimental data and docking to 

establish the pose reproducibility. The results are calculated in terms of RMSD between 

the docked and co-crystallised poses of the ligand [253]. The other method includes 

docking of a set of ligands with known experimental activity data and comparing the 

docking score with it using ranking, classification or regression-based methods [242, 

254]. Another crucial factor involved in the success of molecular docking is the prediction 

accuracy of the scoring function (SF) available with the docking program. Sometimes, it 

is observed that the performance of problem-specific customised scoring is better than the 

general SFs. Further, the use of ML and deep learning techniques in the development of 

such SF have gained acceptance in recent years in providing validated results [176, 255-

257].  

AChE, obtained from Electrophorus electricus (ee), which shares structural homology 

with the human AChE, is widely used for the screening of AChE inhibitors. Since the 3-

dimensional crystal structure of the enzyme from ee is not available and therefore, it is 

challenging to use the SBDD approach for the identification of inhibitors. In the present 

study, a homology model for eeAChE was developed and was subjected to its structural 
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refinement through energy minimisation. The docking protocol was also developed and 

validated by redocking a set of co-crystallised inhibitors from mouse AChE, and their 

interaction profiles were compared. The results indicated a poor performance of the 

Autodock SF. Hence, a batch of machine learning-based SFs was developed and 

validated. It also included the development of dedicated ML-based SFs for obtaining 

improved prediction results. 

 

8.2. Materials and methods 

8.2.1. Sequence alignment and analysis 

The protein sequence for eeAChE was obtained from Uniport web database (accession 

code O42275). The sequence similarity search was carried out using blastp (BLASTP 

2.9.0+) with the help of Blosum62 scoring matrix and gaps were allowed during sequence 

comparison [188, 258, 259].  

8.2.2. Active site mapping 

The active site cavity was mapped by using CavityPlus (http://www.pkumdl.cn/) web 

server, that provided a comprehensive analysis of cavities of the protein [260]. The cavity 

analysis for AChE obtained from Tetronarce californica (tc), Mus musculus (mm), and 

Homo sapiens (hs) was performed on chain A of the protein using the default parameters. 

8.2.3. Homology modelling 

The homology modelling for protein structure of eeAChE was performed. Various models 

were developed using SWISS-MODEL web server accessible via the ExPASy 

(https://swissmodel.expasy.org) [261]. The sequence of eeAChE (UniProt access code – 

O42275) was used for carrying out a template search. The templates obtained were used 

to build the eeAChE models. The quality of the obtained homology models were checked 

http://www.pkumdl.cn/
https://swissmodel.expasy.org/
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through Global Model Quality Estimation (GMQE ), QMEAN [262] and Ramachandran 

plot obtained from Molprobity [263] [197].  

8.2.4. Homology model refinement and protein preparation 

The selected homology models were refined using DOCKPREP utility of Chimera-1.4. 

The PDB was further uploaded to the PDB2PQR server (http://nbcr-

222.ucsd.edu/pdb2pqr_2.1.1) to assign protonation states to the various amino acid 

residues of model at a physiological pH of 7.4 [264, 265]. The obtained PDB was 

subjected to energy minimisation using Amber18 with the ff14SB as a force field using 

method stated in section 4.2.9 [200, 266, 267].  

8.2.5. Ligand preparation and grid generation 

The ligand preparation was carried out using method reported in section 4.2.7. Autogrid-

4.2.6 was used to calculate grid maps. The grid box size was set to 84 × 66 × 72 with a 

grid point spacing of 0.375 Ǻ. The grid centre was placed at 51.05, 28.382 and 54.297, 

representing X, Y and Z coordinates, respectively. 

8.2.6. Molecular docking and validation of docking protocol and scoring function. 

The molecular docking was performed through Autodock-4.2.6. LGA along with Solis-

Water local search to identify the various poses [196, 235]. The docking results were 

processed by a python script, i.e., vstools_v0.16. The post docking analysis and 

visualisation were performed by Discovery studio visualiser 2020. The docking protocol 

was validated through two approaches. The structures of the ligands that were co-

crystallised with mmAChE were collected and docked on the eeAChE. The interactions 

obtained from docked protein-ligand complexes were compared with the respective native 

co-crystals. The other validation process involved docking of the pre-collected dataset of 

ligands with known IC50 against the eeAChE using the predefined protocol. The 

comparison of the obtained binding energies with their IC50 was carried out through three 

http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1
http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1
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approaches. The first approach used binary classification involving the division of 

datasets into two classes, i.e., active and moderately active. The area under the receiver 

operating characteristic curve (ROC) was determined assuming the docking as a 

classification-based problem. The other method involved treating the docking results as 

continuous data similar to the regression problem. It was validated using a coefficient of 

determination between actual pIC50 and predicted binding energies and pKi after using 

appropriate data pre-processing viz. logarithmic conversion of predicted Ki and 

experimental IC50 values. 

8.2.7. Development of the scoring functions for eeAChE 

SFs were developed through ML and deep learning techniques using various python 

libraries. A set of three SFs were developed using the principles of binary classification, 

multiclass classification and regression. The binary and multiclass classification SFs were 

developed using various ML algorithms viz. support vector classification (SVC), LR, 

KNN, RF, Naïve Bayesian and a variety of ensembled based techniques. A grid search 

was carried out to identify the best hyperparameter combinations. Initially, a 

hyperparameter tuning was performed for each algorithm and the selection of the best 

hyperparameters was carried out on the basis of mean accuracy obtained from 5-fold 

validation. The best model selected from each algorithm was tested on an independent 

test set to select the final model for formulating the SF. The final model was selected by 

comparing the various scores viz. confusion matrix, accuracy, precision, recall and F1-

score. Further, the third set of ML and deep learning models were developed using 

regression-based algorithms viz. linear regression, ridge regression, elasticnet regression, 

lasso regression, support vector regression (SVR), RF regressor, Bayesian Ridge 

regression, Stochastic gradient regression and neural networks. These models were 

validated by using the coefficient of determination (r2), which defines the dependence of 
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one variable on another and ranges between 0 to 1. A higher value of r2 represents a better 

fitting of the line or manifold plain on the data. The Q2
ext-based metrics were used to 

ascertain model performance on the test data. The value of Q2
F1 and Q2

F2 should be greater 

than 0.5 for an acceptable quality of the model. The value less than the threshold indicated 

that though the model fits better on the training set; but have poor predictivity on a 

different dataset, i.e., overfitting. Further, MAE and Golbraikh and Tropsha’s criteria 

were also used for the evaluation of the model. 

8.3. Results and discussion 

8.3.1. Sequence alignment and analysis 

The eeAChE is 633 amino acids containing protein with a molecular weight of 71,815 

Da. The first 23 amino acid residues are part of a signal peptide responsible for protein 

translocation, which is eventually cleaved. The blast search reflected that the top 500 

reported hits were of two types of enzymes, i.e., Carboxylic ester hydrolases (CEHs) and 

AChE. Further, about 88.9 % of the hits were CEH of various organisms and, their 3D 

structures were not reported. The blast search also returned 6 % of hits as AChE with 

Triplophysa tibetana AChE being most similar to eeAChE (81.3 %). However, the 

significant queries returned had no 3D protein structures reported (Figure 8.1). The 

tcAChE, mmAChE and hsAChE obtained from blast search have sequence identities of 

64.5, 59.8 and 60.8 %, respectively with eeAChE. The PDB structures of AChE of the 

three organisms were available in the PDB databank (https://www.rcsb.org/). AChE 

crystal structure of Drosophila melanogaster was also available but had a low sequence 

identity of 35.91 % with eeAChE. In the protein sequence analysis, the residues having 

physiochemically similar properties were treated as similar residues. Similar residues 

present in eeAChE sequence were found in a range of 12-15 %, when compared with the 

three organisms. The three selected organisms had a high homology of more than 70 %, 

https://www.rcsb.org/
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except for drosophila that shared a low homology with eeAChE (Figure 8.1). The 

sequence alignment also showed that all the major residues of various sites of AChE were 

identical and highly conserved among the organisms. The conserved residues of major 

sites were highlighted in Figure 8.2, representing the aligned sequences.  

 

Figure 8.1 (a) Hits returned from a protein blast search using eeAChE as a query. (b) 

Comparison of eeAChE sequence with other organisms. 

8.3.2. Active site mapping  

CavityPlus helps in identifying various cavities along with their druggability scores. Thus, 

the mapping of active site and tunnel were performed for tcAChE, mmAChE and hsAChE 

using PDB codes 1EA5, 5DTI and 4EY4, respectively, that could serve as potential 

templates for homology model development for eeAChE. 
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Figure 8.2 Sequence alignment of AChE Electrophorus electricus with Tetronarce 

californica, Mus musculus and Homo sapiens. 
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Figure 8.3 (a) Sequence comparison (b) % homology, identity and similarity of active 

site and tunnel of eeAChE with other organisms. 

Sixteen cavities were identified from tcAChE, but only one druggable site consisting of 

an active catalytic site and the leading tunnel was predicted. Similarly, twelve and 

fourteen cavities are identified for mmAChE and hsAChE, respectively, with one cavity 

each containing the tunnel and catalytic site residues Sequence analysis was performed 

from the obtained data to identify the similarity of the active site and tunnel residues 

between eeAChE and the organisms. The results of the sequence comparison are 

presented in Figure 8.3. Interestingly, the homology of the three selected proteins with 

eeAChE sequence was approximately 90 % or more. In case of tcAChE, it was observed 
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that 65 residues made up the active site with two residues had radical replacements, five 

and three residues displayed conservative and semi-conservative replacements, 

respectively, when compared with corresponding eeAChE residues. Further, 65 and 59 

residues were involved in the active site formation for mmAChE and hsAChE, 

respectively. The mmAChE have 5, 3 and 5 non-conservative, semi-conservative and 

conservative replacement respectively, in comparison to the corresponding eeAChE 

sequence. While, hsAChE has 3 radical replacements and 3 and 5 semi-conservative and 

conservative replacements, respectively, in relation to eeAChE (Figure 8.3) [268].  

8.3.3. Homology modelling 

The template search on SWISS MODEL retrieved 48 templates. Three PDB of AChE 

from Tetronarce californica, Mus musculus, and Homo sapiens, having higher resolution, 

were selected for homology modelling. It was ensured that none of these PDB had any 

mutations and were XRD-derived protein structures due to better atomic resolution. 

GMQE scores of all the models were in an acceptable range of 0.70 – 0.74. Three out of 

nine homology models were selected for model refinement that displayed better QMEAN 

scores. It was observed that all of the developed models had 91 – 93% residues in the 

favoured region and 0 – 2% outliers. The details of the homology models, PDB templates 

and their quality are indicated in Table 8.1. 

8.3.4. Homology model refinement and protein preparation 

Three homology models, one each from Tetronarce californica, Mus musculus, and 

Homo sapiens, were selected based on the QMEAN scores. The selected models were 

subjected to protein preparation. The correct protonation states of various amino acid 

residues were assigned using PDB2PQR server at physiological pH of 7.4. The energy 

minimisation was performed to reduce the inconsistency in the prepared model and was 

carried out using Amber18. The protein structure at each stage of energy minimisation 
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was assessed by the structure assessment tool available on the SWISS-MODEL. A 

thorough comparison of models at every minimisation stage on the various parameters 

are presented in Figure 8.4.  

Table 8.1 Validation data of the developed homology models of eeAChE from crystal 

structures of various organisms. 

The coordinates obtained from stages 6, 6 and 5 of the energy minimisation of homology 

models obtained from templates of Mus musculus (mmAChE: 2C0P), Tetronarce 

californica (tcAChE: 6FQN) and Homo sapiens (hsAChE: 5FPQ), respectively, displayed 

optimum features. In the case of eeAChE_2C0P, the clash score decreased along with 

rotamer outliers and bad angles. However, there was a slight increase in Ramachandran 

outliers. The model eeAChE_6FQN displayed a decrease in the bad angles, rotamer 

outliers and clash score. The protein model obtained from Homo sapiens showed low 

Ramachandran outliers, low rotamer outliers and bad angles. Three optimised protein 

models were then compared, and the 3D structure obtained from Mus musculus showed a 

minimum deviation (Table 8.2). The final PDB (eeAChE_2C0P_min6) and its 

S.

No

. 

Templat

e PDB 

Resol

ution 

(Å) 

Organism GMQ

E 

QME

AN 

Ramachandra

n Favoured 

(%) 

Ramachandra

n Outliers (%) 

Model code 

1 
5FPQ 2.4 

Homo 

sapiens 
0.74 -0.78 92.76 0.88 

eeAChE_5FP

Q 

2 
6FQN 2.3 

Torpedo 

californica 
0.70 -0.85 92.02 0.35 

eeAChE_6FQ

N 

3 
2C0P 2.5 

Mus 

musculus 
0.73 -0.94 91.71 0.53 

eeAChE_2C0

P 

4 
1KU6 2.5 

Mus 

musculus 
0.73 -1.32 91.07 1.77 eeAChE_1KU6 

5 
5HF5 2.2 

Homo 

sapiens 
0.73 -1.42 92.58 0.71 eeAChE_5HF5 

6 
4PQE 2.9 

Homo 

sapiens 
0.73 -1.46 92.38 1.06 eeAChE_4PQE 

7 
6EUE 2.0 

Torpedo 

californica 
0.71 -1.47 92.20 0.89 eeAChE_6EUE 

8 
2WHP 2.2 

Mus 

musculus 
0.73 -1.48 92.58 1.59 

eeAChE_2WH

P 

9 
5EHX 2.1 

Torpedo 

californica 
0.70 -2.06 91.84 1.42 

eeAChE_5EH

X 
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Ramachandran plot are represented in Figure 8.4. The obtained PDB was converted into 

pdbqt format using Autodock Tools-1.5.6 [269]. 

Table 8.2 Comparison of validation parameters of selected homology models obtained 

from energy minimisation. 

Model MolProbity 

Score 

Clash 

Score 

Ramachandran 

Favoured (%) 

Ramachandran 

Outliers (%) 

Rotamer 

Outliers 

(%) 

C-Beta 

Deviations 

Bad 

Bonds 

Bad 

Angles 

eeAChE_2C0P 1.25 0.57 92.37 0.6 1.28 0 0 16 

eeAChE_5FPQ 1.38 1.03 91.6 0.4 1.28 0 0 18 

eeAChE_6FNQ 1.47 2.29 92.73 0.61 0.86 0 0 20 

8.3.5. Ligand preparation and grid generation 

The 3-dimensional coordinates of molecules were generated from SMILES strings which 

were subjected to energy minimisation using the MMFF94s force field. Subsequently, the 

minimised structures were converted to pdbqt files using AutoDockTools-1.5.6. The grid 

box used in the study covered the whole active site and the tunnel, which had been mapped 

and is indicated in Figure 8.2. 

8.3.6. Molecular docking and validation of docking protocol and scoring function. 

Autodock-4.2.6 uses a semi-empirical force field in its SF to evaluate various generated 

poses. The binding free energy is calculated as: 

ΔG = (Vbound 
L-L - Vunbound 

L-L) + (Vbound 
P-P - Vunbound 

P-P) + (Vbound 
P-L - Vunbound 

P-L + ΔSconf) 

where, L and P refers to the ligand and protein and the conformational entropy lost upon 

binding (ΔSconf). The pairwise energy term (V) represents the contributions of van der 

Waals, electrostatic, hydrogen bond, de-solvation and torsional penalty involved in 

protein-ligand binding. 

𝑉 =  𝑊𝑣𝑑𝑤 ∑
𝐴𝑖𝑗

𝑟𝑖𝑗
12

𝑖,𝑗

+ 
𝐵𝑖𝑗

𝑟𝑖𝑗
6 + 𝑊ℎ𝑏𝑜𝑛𝑑 ∑ 𝐸(𝑡) {

𝐶𝑖𝑗

𝑟𝑖𝑗
12 +

𝐷𝑖𝑗

𝑟𝑖𝑗
10} + 𝑊𝑒𝑙𝑒 

𝑖,𝑗

∑
𝑞𝑖𝑞𝑗

𝑒(𝑟𝑖𝑗) 𝑟𝑖𝑗𝑖,𝑗

+ 𝑊𝑠𝑜𝑙 ∑(𝑆𝑖𝑉𝑗 + 𝑆𝑗𝑉𝑖)𝑒
(−𝑟𝑖𝑗

2 2𝜎2⁄ )
+ 𝑊𝑡𝑜𝑟𝑁𝑡𝑜𝑟

𝑖,𝑗
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Figure 8.4 (a) Homology model of eeAChE, (b) Ramachandran plot of homology model 

after energy minimisation, (c) Validation score of protein structure at various stages of 

energy minimisation, (d) Potential energy (Kcal/mol) of the protein model during energy 

minimisation. 
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Conventionally, the ligands that were co-crystalised with protein are redocked and an 

RMSD is determined between the docked and co-crystallised poses for validation of the 

docking protocols [197, 267]. However, in this case, a homology model of eeAChE was 

built and hence no co-crystallised ligand could be obtained. Hence, a set of fifteen co-

crystallised ligands with mmAChE were selected from the PDB databank. These ligands 

were docked with eeAChE and the poses with the lowest binding energy were selected. 

The interactions of the selected pose of the ligand with eeAChE were compared with the 

mmAChE interactions, as both the enzymes, had active site homology of about 88 %. The 

results are presented in Figures 8.5, 8.6 and 8.7. The ligand 5gz, when docked on eeAChE 

retained interactions with Trp85, Trp281, Phe290, Tyr332, Phe333, Tyr336 and His471; 

while A36 retained binding with three out of four interacting residues, i.e., Trp85, Tyr123 

and Tyr332, when compared with mmAChE. The ligands B2V and B3W displayed 

interactions with four and three out of five and six residues, respectively, on comparison 

with mouse AChE.  

B32 retained interactions with Trp85, Tyr123, Tyr332 and His471 and displayed an 

additional interaction with Tyr473 in comparison to mmAChE. The ligand C56 displayed 

retention of five out of seven interacting residues when docked to eeAChE, while DUC 

retained one out of two interacting residues along with extra interactions with Tyr71, 

Asp73, Leu284, Phe290, Arg291 and Tyr336 with eeAChE when compared to co-

crystallised mouse AChE. E5H, E5K and GC8 displayed three, three and two out of three, 

five and five interactions, respectively with mmAChE when docked with eeAChE. E5H 

retained interactions with Trp85, Trp281, Tyr332, and E5K with Trp85, Trp281 and 

Tyr336. Similarly, N2K, Q4Q, SOF, Z5K and ZN4 retained five, four, three, four and 

three interactions with eeAChE out of eight, seven, five, six and six interactions present 

in mmAChE.  
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Figure 8.5 (a, b, c, d, e) 3D interaction diagrams of 5GZ, A36, B3V, B3W and B32 with 

eeAChE, (f) Comparison of the interaction profile of 5GZ, A36, B3V, B3W and B32 with 

mmAChE and eeAChE. 
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Figure 8.6 (a, b, c, d, e) 3D interaction diagrams of C56, DUC, E5H, E5K and GC8 with 

eeAChE, (f) Comparison of the interaction profile of C56, DUC, E5H, E5K and GC8 with 

mmAChE and eeAChE. 
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Figure 8.7 (a, b, c, d, e) 3D interaction diagrams of N2K, Q4Q, SOF, Z5K and ZN4 with 

eeAChE, (f) Comparison of the interaction profile of N2K, Q4Q, SOF, Z5K and ZN4 

with mmAChE and eeAChE. 

Overall, it was observed that the ligands interacted with all the major residues upon 

docking with eeAChE similar to mmAChE. Thus, it indicated that the ligand-bound in a 
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similar manner in both enzymes and validated the docking protocol. The quantitative 

aspect of the validation process was performed by generating a dataset of eeAChE 

inhibitors from the Bindingdb database (http://bindingdb.org/) [270]. Fifteen ligands, co-

crystallised with the enzyme, were used for the identification of crucial fingerprints 

responsible for AChE inhibition (Figure S14 in appendix). The fingerprint search was 

performed with the help of RDkit, which resulted in the identification of CCN(C)C, a 

SMILES string, present in all mmAChE inhibitors and ACh. The N,N-

dimethylethanamine group was used as a substructure filter to obtain a dataset of 1507 

compounds from a total of 4,846 eeAChE inhibitors. Further, it was ensured that the 

selected compounds should have less than 16 rotatable bonds as desired for Autodock-

4.2.6. The SMILES strings were converted to the tripos mol format using pybel module 

of open babel and stripped off the salt molecules. The obtained set was then converted to 

pdbqt format followed by docking on eeAChE using Autodock-4.2.6 through an in-house 

build python script with multiprocessing capability to speed up the process. The best 

poses for the ligands with the lowest binding energies were obtained from output files 

using a python script, vstools_v0.16. The obtained binding energies were used for the 

validation process along with the reported IC50 values. The cut-off values of 100, 1000, 

2000 and 10000 nM were selected for assigning the ligands with binary classification 

labels, i.e., active and inactive. ROC curves were plotted for all the selected cut-off values. 

ROC is a plot between the true positive and false positive rates (TPR and FPR) obtained 

from a classification model.  

𝑇𝑃𝑅 / 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

where TP: true positive, FP: False positive, TN: True negative and FN: False Negative 

http://bindingdb.org/
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The area under curve (AUC) represents the degree of the separability of various classes 

of a classification model. The value of the AUC ranges from 0 to 1, the higher the AUC 

more accurate is the prediction. The value of the cut-off IC50(s) and ROC-AUC are 

presented in Figure 8.8. The results indicated that the cut-off value of 10000 nM has the 

highest AUC value of 0.6355 but had an imbalanced class. Further, the regression-based 

analysis was carried out after the transformation of the IC50 values due to their wide range 

of distribution from 0.12 to 1233105 nM. The scatter plot of binding energy vs pIC50 

displayed a poor coefficient of determination of 0.007. Similarly, the plot between 

predicted pki vs pIC50 has also shown the coefficient of determination to be 0.007 (Figure 

8.8). However, any mathematical model with a good predictivity should have this value 

as high as possible, and for the best fit model, it tends to be 1. 

8.3.7. Development and validation of the scoring functions for eeAChE 

In the present study, various machine and deep learning models were developed and 

validated using three strategies, i.e., binary classification, multiclass classification and 

regression.  

8.3.7.1. Dataset preparation 

The poses, obtained after docking of 1507 compounds, were used to calculate 102 

molecular descriptors using RDkit. Protein-ligand interaction profiler (https://plip-

tool.biotec.tu-dresden.de/plip-web/plip/index) was used to identify the interactions 

between protein and ligand along with the number of different types of interactions. 

Finally, the molecular descriptors, interaction profiles and binding energies were 

combined to form the final dataset of 677 features. 
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Figure 8.8 (a, b, c) IC50 cut-off, area under the curve and receiver operating characteristic 

of the docking validation set for validation of the Autodock scoring function using binary 

classification. (d) Scatter plot showing the relationship between binding energy and pIC50. 

(e) Scatter plot showing the relationship between pKi and pIC50. 
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8.3.7.2. Development of scoring function based on binary classification models 

IC50 of the compounds i.e., independent feature, was converted to two classes, active (IC50 

< 1000 nM) and inactive, with a cut-off value of 1000 nM for the development of binary 

models (Figure 8.9). Seventeen machine learning algorithms were employed for model 

development using various combinations of hyperparameters and five-fold validation. 

Logistic regression, SVM and KNN were trained on the scaled dataset. The 

standardisation and normalisation techniques were employed.  

 

Figure 8.9 (a) Proportion of compounds used in training and test sets for the ML, (b) 

Compounds labelled as active and inactive at IC50 cut-off value of 1000 nM for binary 

classification, (c) Compounds labelled as most active, active and moderately active at IC50 

cut-off values of 1000 and 10000 nM for multi-class classification, (d) Distribution of the 

compounds in training and test sets on a log IC50 scale for regression modelling. 

The LR yielded similar accuracy on training and test sets obtained from both data pre-

processing techniques. However, SVM and KNN showed better results with a normalised 

dataset on both training and test sets. The probability-based Naïve Bayesian classifiers 

have poor results with the lowest accuracies among all the algorithms. The multinomial 

and complement based Naïve Bayesian classifiers were unable to fit on the dataset. 
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Further, a decision tree has a flow chart based architecture that has branches and leaves 

representing the outcome of the test and a class label, respectively, while the RF is a 

cluster of various decision trees [271]. It was observed that both methods performed 

equally well on the training set. Still, the test set accuracy of the decision tree was higher 

than the random forest during binary classification. The opted techniques provided better 

accuracy than the native Autodock-4.2.6 SF but the accuracy above 80% is greatly 

appreciated for any ML model. Ensembled methods are essential techniques that improve 

predictivity by combining various models together. The ensemble models available with 

scikit-learn library are ada-boost, bagging, extra trees, gradient boosting and histgradient 

boosting classifiers. It was indicated that except the ada-boost classifier, all other 

classifiers improved the prediction accuracy on both training and test sets compared with 

the previous algorithms. Hence, the most appropriate ensembled classifier was identified 

through a comparison of precision, recall and F1 scores. Precision is usually defined as 

the number of TPs identified by an ML model from all the predicted positives, while recall 

identifies the fraction of true positives identified from all actual positives. As the precision 

of the model improves, the value of recall typically falls and vice versa. Usually, the 

selection of a model depends upon the trade-off between precision and recall by 

identifying a sweet spot where both values are high. Thus, besides the two parameters, F1 

score, which is a harmonic average of precision and recall, plays an important role in the 

model selection. 

The precision and recall scores indicated that the bagging classifier has better predictivity 

for identifying TPs, i.e., the active compounds, which is the primary function of any SF. 

Further, the precision also indicated that the classifier had reduced the number of FPs, 

which was crucial for the performance. It was clearly indicated that the bagging classifier 

outperformed other classifiers with an F1 score of 83.7 % (Table 8.3). 
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Table 8.3 Validation scores of various machine learning algorithms used to develop binary scoring function. 
 

 
 

Training 

dataset (k = 

5) 

Test dataset 

Algorithm Parameters 
Feature 

scaling 

Accuracy 

(%) * 

Accurac

y (%) 

Precisio

n (%) 

Recall 

(%) 

F1 score 

(%) 

Logistic Regression 
C = 500, max iter = 10000, penalty = l1, solver = 

liblinear 
Standardisation 74.19 ± 2.86 75.27 72.39 75.82 75.27 

Logistic Regression C = 10, max iter = 10000, penalty = l1, solver = saga Normalisation 74 ± 2.84 75.05 74.48 69.85 75.05 

Support Vector Classifier C = 1, gamma = 1, kernel = poly Standardisation 78.08 ± 1.96 71.96 67.82 74.64 71.07 

Support Vector Classifier C = 10, gamma = scale, kernel = rbf Normalisation 75.5 ± 2.37 75.71 74.87 71.29 73.03 

K-nearest neighbour metric = manhattan, n neighbors = 3 Standardisation 81.21 ± 1.62 76.82 73.63 77.51 75.52 

K-nearest neighbour metric = manhattan, weights = distance, n neighbors = 5 Normalisation 78.93 ± 1.39 80.57 76.88 82.77 79.72 

Naïve Bayes Guassian - 48.2 ± 3.6 47.9 47.41 99.06 64.13 

Naïve Bayes Bernoulli - 65.3 ± 1.6 63.57 61.32 61.03 61.17 

Random Forest 
max depth = 15, max leaf nodes = 10, min samples leaf 

= 2, n estimators = 100 
- 75.23 ± 1.34 72.62 71.29 69.95 70.61 

Decision tree 
criterion = gini, max depth = 8, min samples leaf = 2, 

min samples split = 8 
- 75.61 ± 2.29 77.92 75.56 78.4 76.95 

AdaBoost Classifier 
algorithm = SAMME.R, learning rate = 0.1, n estimators 

= 1000 
- 77.04 ± 3.23 79.02 74.1 81.77 79.02 

Bagging Classifier max features = 500, n estimators = 5000 - 81.68 ± 1.73 83.66 81.81 85.52 83.26 

Extra Trees Classifier criterion = gini, max features = sqrt, n estimators = 1000 - 81.96 ± 4.05 81.23 81.42 78.8 81.23 

Gradient Boosting 

Classifier 

criterion = mse, learning rate = 1, loss = exponential, 

max features = auto, n estimators = 10000 
- 83.1 ± 2.69 81.67 80.73 81.1 81.67 

Hist Gradient Boosting 

Classifier 
learning rate = 0.01, max iter = 100  81.2 ± 2.61 81.89 82.71 79.72 81.89 

* Expressed as Mean ± SD
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8.3.7.3. Development of scoring function based on multiclass classification models 

A multiclass based SF was also developed by using IC50 cut-off value of 1000 and 10000 

nM, that led to the division of dataset into three classes, i.e., most active (IC50 < 1000 

nM), active (IC50 > = 1000 and IC50 <10000 nM) and moderately active (IC50 >= 10000 

nM) (Figure 8.9). Various classification algorithms were tested to obtain the best model. 

A wide range and combinations of hyperparameters were tested through the grid search 

method along with five-fold validation. LR, linear SVC, KNN and ridge classifier were 

tested on both standardised and normalised data. It was observed that all the four 

algorithms performed poorly with the accuracy of less than 70 % on training as well as 

test sets, except KNN which showed training accuracies of 70.64 % and 71.08 % on 

standardised and normalised datasets, respectively (Table 8.4). The probability-based 

classifiers, i.e., Gaussian and Bernoulli Naïve Bayesian poorly performed. Further, the 

decision tree and extra tree classifiers had also performed poorly, when compared to their 

binary classification performance. The ensemble algorithms again outperformed others 

and have better accuracies among all. Generally, the bagging classifier performs data 

fitting on smaller sets of training dataset and then take the average of predictions made 

by all individual models to reach a final decision [272]. In contrast, extra tree classifier 

generates decision trees with all data available in the training set, followed by creating 

subsets of the features randomly to generate models [273]. Both algorithms performed 

well on the training and test datasets, with almost equal accuracies. In multiclass 

problems, we used micro-averaging that led to an equal value of precision, recall and f1-

scores. Micro-averaging did not distinguish between different classes, but averaged their 

metric scores and hence performed well on unequally distributed classes, as in the case. 

The bagging classifier performed slightly better with AUC for ROC of 87.0% compared 

to extra tree classifier (Figure 8.10 (b)).  
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Table 8.4 Validation scores of various machine learning algorithms used to develop multiclass scoring function. 
  

Training dataset 

(k = 5) 
Test dataset 

Algorithm Parameters Feature scaling Accuracy* Accuracy Precision Recall F1 score 

Logistic Regression 
C = 1000, max iter = 10000, multi class = 

multinomial, penalty = l2, solver = newton-cg 
Standardisation 58.92 ± 1.98 59.6 59.6 59.6 59.6 

Logistic Regression 
C = 10, max iter = 10000, multi class = 

multinomial, penalty = l1, solver = saga 
Normalisation 57.02 ± 2.47 62.69 62.69 62.69 62.69 

Linear SVC 
C = 1, class weight = balanced, loss = squared 

hinge, multi class = ovr, penalty = l2 
Standardisation 57.49 ± 1.58 60.92 60.92 60.92 60.92 

Linear SVC 
C = 10, class weight = balanced, loss = hinge, 

multi class = ovr, penalty = l2 
normalisation 57.87 ± 1.94 62.47 62.47 62.47 62.47 

K-Neighbors Classifier 
algorithm = auto, metric = manhattan, n 

neighbors = 3, weights = distance 
Standardisation 65.08 ± 2.65 70.64 70.64 70.64 70.64 

K-Neighbors Classifier 
algorithm = auto, metric = manhattan, n 

neighbors = 5, weights = distance 
Normalisation 64.32 ± 2.78 71.08 71.08 71.08 71.08 

Ridge Classifier class weight = balanced, solver = auto Standardisation 57.21 ± 1.85 60.92 60.92 60.92 60.92 

Ridge Classifier class weight = balanced, solver = auto Normalisation 56.73 ± 2.66 60.48 60.48 60.48 60.48 

Gaussian NB   46.9 ± 2.9 48.56 48.56 48.56 48.56 

Bernoulli NB   54.3 ± 1.8 49.66 49.66 49.66 49.66 

Decision Tree Classifier 
criterion = gini, max depth = 8, min samples 

leaf = 1, min samples split = 4 
 63.47 ± 2.52 62.91 62.91 62.91 62.91 

AdaBoost Classifier 
algorithm = SAMME, learning rate = 1, n 

estimators = 1000 
- 78.17 ± 2.19 78.8 78.8 78.8 78.8 

Bagging Classifier max features = 500, n estimators = 10000  82.92 ± 3.05 83 83 83 83 

Extra Trees Classifier 
criterion = entropy, max features = sqrt, n 

estimators = 1000 
 82.92 ± 1.55 82.27 82.27 82.27 82.27 

Gradient Boosting Classifier 

criterion = mse, learning rate = 1, loss = 

exponential, max features = sqrt, n estimators = 

1000 

 80.93 ± 2.64 82.56 82.56 82.56 82.56 

HistGradient Boosting 

Classifier 

classifier learning rate = 0.01, classifier max 

iter = 1000 
 67.65 ± 2.13 61.45 61.45 61.45 61.45 

* Expressed as Mean ± SD 
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8.3.7.4. Development of scoring functions based on regression-based models 

The quantitative output would provide much better information about the order of the 

predicted activity, which is crucial for any virtual screening. Hence, a wide range of 

regression-based models were developed in order to ascertain the activity in terms of the 

predicted IC50 using various ML and deep learning algorithms. The IC50 was the 

dependent feature and was processed on a logarithmic scale (Figure 8.9 (d)). It was 

observed that all the selected algorithms did not show any difference in model fitting on 

normalised and standardised data. The r2 values were better for random forest regressor 

and neural networks. At the same time, all other algorithms displayed an underfitting, 

which was also indicated from the mean absolute and mean squared error values of 

training and test datasets. The Q2
F1 and Q2

F2 values for every algorithm were almost equal, 

indicating that the mean of training set lies in closeness with the test set mean and the test 

set covers the complete response domain of the model. Both neural networks and RF 

regressor have these values higher than 0.5, which was the acceptable threshold. The 

criteria proposed by Golbraikh and Tropsha assisted in determining the external 

predictiveness of the model [274]. It accounted for the observed (Yobs), predicted (Ypred) 

activities, and squared correlation coefficients (r2
0 or r`0

2). 

𝑘 =  
Σ𝑌𝑜𝑏𝑠 ∗ 𝑌𝑝𝑟𝑒𝑑

Σ𝑌𝑝𝑟𝑒𝑑
2  

𝑘` =  
Σ𝑌𝑜𝑏𝑠 ∗ 𝑌𝑝𝑟𝑒𝑑

Σ𝑌𝑜𝑏𝑠
2  

𝑟0
2  =  1 −  

Σ(𝑌𝑜𝑏𝑠  −  𝑘 ∗  𝑌𝑝𝑟𝑒𝑑)2

Σ(𝑌𝑜𝑏𝑠  −  𝑌̅𝑜𝑏𝑠)2
      

𝑟0
`2  =  1 −  

Σ(𝑌𝑜𝑏𝑠  −  𝑘` ∗  𝑌𝑝𝑟𝑒𝑑)2

Σ(𝑌𝑝𝑟𝑒𝑑  −  𝑌̅𝑝𝑟𝑒𝑑)2
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According to these criteria, models are considered satisfactory if all of the following 

conditions are satisfied: 

i. 𝑄𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2  >  0.5 

ii. 𝑅𝑡𝑒𝑠𝑡
2  >  0.6 

iii. 1 − 𝑟0 
2/ 𝑟2  < 0.1 𝑎𝑛𝑑 0.85 ≤   𝑘  ≤  1.15  𝑜𝑟 1 −  𝑟`0 

2 / 𝑟2  <

0.1 𝑎𝑛𝑑 0.85 ≤   𝑘`  ≤  1.15    

iv. |𝑟0 
2  −  𝑟`0 

2  |   <  0.3  

It was observed that only the neural network and RF satisfied the criteria. These criteria 

are especially important for non-linear methods such as neural networks as in such cases, 

r2 is always high and tend to be close to 1, but only fewer of such models perform well 

on the external test sets. The models showing better prediction on both training and test 

sets, could only pass the above criteria. Finally, the models were also tested for MAE 

criteria which states that: 

i. Good prediction: MAE ≤ 0.1 X training set range AND MAE ± 3 X σ ≤ 0.2 X 

training set range. 

ii. Bad prediction: MAE > 0.15 X training set range OR MAE ± 3 X σ > 0.25 X 

training set range 

the σ value denotes the standard deviation of the absolute error values for the test dataset. 

If both of the criteria (i) and (ii) are not satisfied, then the model is considered of moderate 

quality. However, if the test set is large enough, then it is allowed to drop 5% of samples 

with high absolute errors, as such data points are outliers and heavily penalise the 

predictivity of the model. The RF regression-based models were only satisfying the MAE 

criteria on 95 % of test dataset and were selected. Although, the performance of RF 

regression algorithm was almost similar on both standardised and normalised data with a 

slightly better performance on standardised data and hence this model was selected for 

the development of an SF (Table 8.5). 



 

Page | 214  

 

Table 8.5 Validation scores of various machine learning algorithms used to develop regression-based scoring function. 

Model Feature scaling Coefficient of 

determination 

(train) 

MAE Test MAE 

Train  

MAE 

criteria 

MAE 

criteria 

(95%) 

MSE Test MSE 

Train 

Q2
F1 Q2

F2 TROPSA 

criteria 

Linear 

regression  

normalisation 
0.544 2439.997 1.286 Bad Bad 2693373901 2.793 -420204120 

-

420426134 
Fail 

Linear 

regression  

standardisation 
0.543 65669877079 1.285 Bad Bad 8.24E+23 2.797 -1.29E+23 -1.29E+23 Fail 

Ridge regression  normalisation 0.439 1.657 1.425 Bad Bad 4.421 3.434 0.31 0.31 Fail 

Ridge regression  standardisation 0.492 1.668 1.36 Bad Bad 4.587 3.11 0.284 0.284 Fail 

Lasso regression  normalisation 0 2.077 2.016 Bad Bad 6.41 6.124 0 -0.001 Fail 

Lasso regression  standardisation 0 2.077 2.016 Bad Bad 6.41 6.124 0 -0.001 Fail 

Elasticnet 

regression  

normalisation 
0.048 2.02 1.97 Bad Bad 6.32 6.01 0.02 0.026 Fail 

Elasticnet 

regression  

standardisation 
0.048 2.021 1.962 Bad Bad 6.094 5.83 0.049 0.049 Fail 

SVR regression  normalisation 0.406 1.645 1.42 Bad Bad 4.365 3.641 0.319 0.319 Fail 

SVR regression  standardisation 0.554 1.566 1.143 Bad Bad 4.047 2.731 0.369 0.368 Fail 

Bayesian Ridge 

regression  

normalisation 
0.408 1.669 1.468 Bad Bad 4.429 3.626 0.309 0.309 Fail 

Bayesian Ridge 

regression  

standardisation 
0.403 1.68 1.475 Bad Bad 4.474 3.658 0.302 0.302 Fail 

RandomForest 

regression  

normalisation 
0.94 1.157 0.443 Bad Good 2.38 0.362 0.629 0.629 Pass 

RandomForest 

regression  

standardisation 
0.94 1.148 0.444 Bad Good 2.342 0.367 0.635 0.634 Pass 

SGD regression  normalisation 0.373 1.689 1.522 Bad Bad 4.474 3.84 0.302 0.302 Fail 

SGD regression  standardisation 0.407 1.791 1.487 Bad Bad 6.145 3.63 0.041 0.041 Fail 

Neural network 

* 

normalisation 
0.992 1.431 0.17 Bad Bad 3.357 0.048 0.39300001 0.389 Fail 

Neural network 

** 

standardisation 
0.977 1.357 0.309 Bad Moderate 3.14 0.146 0.491 0.491 Fail 

* Batch size = 32, loss = Mean squared error, Activation function = relu, Optimiser = Adamax and number of hidden layers = 3 

** Batch size = 16, loss = Huber loss, Activation function = relu, Optimiser = Adamax and number of hidden layers =  



Development of homology model, docking protocol and machine-learning based scoring 

functions for identification of Electrophorus electricus’s AChE inhibitors 

 

Page | 215  

 

8.3.8. Improved scoring function 

When the AUC of ROC of the Autodock SF were compared with selected binary and 

multiclass models, a significant improvement in model predictivity was observed 

(Figure. 8.10). Further, the selected regression model also displayed improved results 

when compared to the native SF. Hence, the selected models were compiled and 

converted to a python-based package, Protein-Ligand Scoring Function (PLSF), which 

could be obtained through the website (http://:www.drugdesign.in/tools).  

8.3.9. Applicability domain 

The applicability domain is another important aspect of any prediction process, which 

defines a chemical space used for building ML model. It is generally described in terms 

of chemical descriptors and features for which the prediction results could be reliable. 

Any compound that falls out of this space would have an unreliable prediction result. In 

this study, the applicability domain is defined with two conditions, i.e., presence of a N,N-

dimethylethanamine group and number of the rotatable bonds less than sixteen.  
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Figure 8.10 (a, b) Receiver operating characteristic of binary and multiclass scoring 

function, respectively for the bagging classifier. (c) Plot between log IC50 and predicted 

LogIC50 of the training and test sets for RF regressor. (d) Plot between log IC50 and 

predicted Log IC50 of the training and and 95% of the test set after removing outliers for 

RF regressor.  

 


