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2. Literature review 

2.1. Cholinesterase 

2.1.1. Acetylcholinesterase  

AChE (EC 3.1.1.7) is a serine hydrolase involved in the metabolism of ACh. It terminates 

the action of ACh at the neuronal synapse and neuromuscular junction (NMJ). AChE has 

a serine residue located deep down the end of the gorge in the active site, which acts as a 

nucleophile and is responsible for the initiation of the hydrolysis by attacking the carbonyl 

group of ACh. The oxyanion hole located adjacent to the catalytic site helps in the 

stabilisation of tetrahedral intermediate. The histidine residue acts like acid and base, and 

is involved in the proton transfer, leading to the formation of choline [113]. The aromatic 

anionic site residues are responsible for binding with quaternary nitrogen of choline on 

the active site and provide stability of protein-ACh complex through stacking interactions 

[114]. The acyl binding pocket, located near the active site, is crucial for maintaining the 

substrate specificity of the enzyme. The mutation of phenylalanine of acyl binding pocket 

with alanine leads to a 130-fold increase in enzyme turnover of butyrylthiocholine [115]. 

The structure of AChE revealed a group of mixed β-sheets surrounded by the α-helices, 

rendering similarity with other hydrolases such as serine carboxypeptidase-II and 

haloalkane dehalogenase [116]. The amino acid residues of the peripheral anionic site 

(PAS) provide a guidance mechanism to facilitate the entry and migration of ACh 

molecules in the enzyme (Figure 2.1). The PAS and enzyme tunnel is formed of aromatic 

and some anionic amino acid residues [117].  

AChE is widely distributed in the human body, with its prominent presence observed in 

the cholinergic, non-cholinergic nerve fibres and myoneural junction. It is also present on 

the glial cells and cell membrane of the red blood cells. Conventionally, it is involved in 

the ACh metabolism into acetate and choline. It also facilitates the breakdown of leu-

enkephaline, met-enkephaline, substance-P and other neuropeptides [118, 119]. The 
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presence of AChE in the embryonic heart signifies its role in morphogenesis and pulse 

conduction [120, 121]. Various forms of AChE are globular monomer (G1), dimer (G2) 

and tetramer (G4), tailed tetramer (A4), double-tailed tetramer (A8) and triple tailed 

tetramer (A12) [122].  

2.1.2. Butyrylcholinesterase 

BChE (EC: 3.1.1.8), also referred to as plasma cholinesterase and pseudocholinesterase, 

is a ChE enzyme that is involved in numerous hydrolytic processes. The gene located on 

the third chromosome (3q26) is responsible for encoding the BChE enzyme and displays 

poly-allelism [123]. The locus present on the second chromosome encodes a subunit X 

which is covalently bound to the tetrameric form of the enzyme [124, 125]. The BChE 

monomer is formed of 574 amino acid residues with a molecular weight of ~65.1 KDa. 

A complex glycan with nine asparagine residues appended with the enzyme led to an 

increase in molecular weight to ~ 85 KDa [126]. The polymorphic presence of the enzyme 

in the form of monomer (C1), two monomers linked via disulfide bonds to form a dimer 

(C2), trimer (C3) and tetramer (C4) are evident [127]. It is present significantly in plasma, 

leg muscles, small intestine, liver, skin and lungs. BChE is present, in small amounts, in 

the heart, spleen, stomach, and thyroid. It is also present in the cerebral cortex (3 mg) and 

in smaller quantities in the cerebellum and medulla oblongata in the brain [128].  

BChE has a group of β-sheets encircled by the α-helices, similar to AChE. The enzymatic 

cavity is bowl shape with a larger volume of 500 Å3, contrary to the narrow channel of 

AChE [129]. The catalytic site of the enzyme has three primary residues viz. Ser198, 

Glu325 and His438 form a catalytic triad located 20 Å deep in the enzyme cavity. The 

histidine residue, located close to the serine, is responsible for accepting the proton from 

the hydroxyl group of serine and initiates a nucleophilic attack on the acyl group of 

substrates. The oxyanion hole formed of Gly116, Gly117 and Ala119 residues is located 

near the catalytic site and is responsible for the stabilisation of substrate in the cavity 
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mediated through hydrogen bonding. The NH groups create a dipole moment in the 

cavity. The anionic site (AS), formed from Trp82, is the choline-binding site and is 

present opposite to the catalytic site. It is the crucial residue that forms a π-cation 

interaction with the positive charge present on the choline. The adjacent Met81 residue 

provides extra stability to tryptophan residue through π-sulfur interaction and to Tyr440 

through hydrogen bonds. 

The acyl binding pocket of the enzyme is larger in volume as compared to AChE and is 

lined by Val286 and Val288 residues in contrast to phenylalanine. Hence, it could 

accommodate the larger acyl groups besides the acetyl group. Asp70 and Tyr332 residues 

constitute the PAS and lack three aromatic residues present in AChE (Figure 2.1). The 

cavity of BChE is lined with fewer aromatic residues in comparison to AChE [130]. 

Tyr332 is the crucial residue that initially binds with cationic ligands of the enzyme [131]. 

BChE is responsible for the inactivation/metabolism of substances such as eserine, 

cocaine, choline-based esters, endogenous ACh and ghrelin in the plasma. It also protects 

the body against nerve gas, organophosphorus pesticides and neurotoxins such as 

anatoxin-a(s). The exposure or toxicity of the chemicals could be also be determined after 

a long time of about 12 days due to the longer half-life of the enzyme. These agents form 

a covalent bond with serine residue of the active site and remain in the blood circulation 

[132].  
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Figure 2.1 Structure of (a) AChE and (b) BChE 

2.1.3. Role of cholinesterase in Alzheimer’s disease 

Cholinergic neuronal loss in the brain is one of the phenomena observed in AD and has a 

correlation with memory and cognitive decline. In AD, AChE is responsible for the 

hydrolysis of ACh and subsequent decrease in its level in the hippocampus, which is the 

centre of learning and memory. The inhibition of AChE provides therapeutic benefits by 

the improvement in memory and cognition in AD. The administration of scopolamine in 

the young population displayed memory deficit indicating the role of the cholinergic 

pathway in maintaining memory and cognition [51]. The action of ACh in the synaptic 

cleft is also terminated by BChE, besides AChE. In a healthy brain, this process is 
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dominated by AChE, while the role of BChE is deemed to be nominal. BChE is present 

in the amygdala, neocortex and hippocampus, where it is associated with glial, vascular 

and neuronal cells [133]. A study on AChE knockout mice displayed the absence of 

cholinergic abnormality or deficit in the brain, as its function was performed by BChE 

[134]. Another study indicated that the reduction in AChE levels due to cholinergic 

neuronal loss resulted in an increase in BChE to AChE ratio by 0.6 – 11 in AD patients 

[135]. A study of a selective BChE inhibitor on AD patients indicated that withdrawal of 

ethopropazine led to cognitive impairment, while its re-administration resulted in 

improvement in cognition [136]. This established that BChE has excellent therapeutic 

potential in AD as a promising target, especially in severe AD in the later stage. Further, 

the selective BChE inhibitors may be beneficial due to the absence of classical cholinergic 

side effects observed with the currently available AChE inhibitors. 

2.2. Sulfonamides 

Sulfonamides are bioactive chemicals with a wide range of biological activities, including 

antibacterial, anticancer, anti-carbon anhydrase, anti-diabetic, anti-inflammatory, 

antithyroid, hypoglycaemic, proteases inhibition and diuretic properties [137-140].  

2.2.1. Sulfonamides as cholinesterase inhibitors 

Riaz et al. synthesised pyridine sulfonamide derivatives for the treatment of diabetes and 

AD. The pyridine-2,4,6-tricarbohydrazide was used as the starting material for the 

synthesis of various sulfonamide derivatives in the presence of an aqueous sodium 

carbonate solution. Compounds I and II, i.e., methyl and phenyl derivatives, respectively, 

displayed the AChE and BChE inhibition. The aliphatic substitution (I) at the sulfonyl 

side-chain resulted in better AChE inhibition than the aromatic derivatives (II). On the 

other hand, compounds I and II did not display any trend in BChE inhibition [141]. 
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Figure 2.2 Chemical structure of BChE inhibitors 

Mutahir et al. synthesised novel biphenyl bis-sulfonamide derivatives as dual 

cholinesterase inhibitors. The condensation of the benzidines with benzene sulfonyl 

chloride was carried out in the presence of pyridine as a base. The alkylation or acylation 

was carried using sodium hydride in dimethylformamide with the replacement of acidic 
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proton. Compounds III and IV, hexadecyl derivatives, and V, a benzyl derivative, 

displayed good inhibition of AChE and BChE. It indicated that the substitution of the R1 

group with the alkyl chain resulted in reduced BChE inhibition but increased AChE 

inhibition potency (Figure 2.2) [142]. 

Košak et al. designed piperidine-based BChE inhibitors along with MAO-B inhibitory 

activity. The nitrogen of the piperidine ring was an essential feature for human BChE 

inhibition, as reported in their previous work. At the same time, the introduction of the 

propargyl group might help in MAO-B inhibition, as in selegiline and rasagiline. The 

nipecotamide was used as a starting compound and various naphthyl amides and 

sulfonamides were synthesised to obtain multifunctional anti-AD agents. Compounds VI 

and VII were naphthyl sulfonamide derivatives of piperidine with selective human BChE 

inhibition. The compounds displayed poor inhibition against mouse AChE and human 

MAO enzymes. Study established that the presence of the sulfonamide group, instead of 

the carboxamide, showed better BChE inhibition. Another interesting observation was 

that 1, 3-substituted piperidine was a better scaffold than 1, 4-substitution of piperidine 

for BChE inhibition [143]. Ulus et al. synthesised various sulfonamide derivatives of 

aldehydes, chromenes and tacrines. Initially, substituted benzaldehydes were condensed 

with the 4-sulfamoylbenzoic acid, which was followed by condensation into chromenes 

by reaction with malononitrile and dimendone in the presence of K2CO3 and microwave 

irradiation (6 min. and 100˚ C). Finally, cyclic ketones (pentanone, hexanone and 

heptanone) were reacted with chromenes using AlCl3 under microwave irradiation (10 

min. and 120˚ C) to obtain tacrine sulfonamides. It was observed that the six-membered 

ring showed highest AChE inhibition, and a significant reduction in inhibition was 

observed with the five and seven-membered skeletons at position A. Compounds VIII 

and IX were the most potent compounds with significant AChE and BChE inhibition. It 
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was observed that the tacrine derivatives showed better inhibition of AChE than BChE 

[144]. 

 

Figure 2.3 Chemical structure of BChE inhibitors. 

Taslimi et al. developed hetero-aryl sulfonamides based ChE inhibitors from the reaction 

between various tetrahydro-pyrimidine-thiones and toluyl sulfonyl chloride in the 
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presence of triethylamine in ethanol. The heteroaryl sulfonamides displayed good 

inhibition against AChE with the IC50 reported in the nanomolar ranges. Further, these 

compounds have Ki value in the nanomolar range, indicating strong binding with AChE 

as compared to tacrine. However, the compounds displayed much higher IC50 values 

against the BChE. Compounds X and XI produced IC50 of 760 and 950 nM against AChE 

[145]. Soyer et al. developed a series of 4-phthalimido-benzenesulfonamide derivatives 

as ChE inhibitors. Initially, N-phenylphthalimide was synthesised from phthalic 

anhydride and aniline, which was reacted with chlorosulfonic acid to yield 4-

phthalimido-benzene sulfonyl chloride. Further, anilines were substituted to form 

sulfonamides. Compounds XII and XIII displayed better AChE and BChE inhibition 

among all the synthesised compounds (Figure 2.2). It was observed that the substitution 

at the ortho position of the aniline ring (A) of the sulfonamide group displayed better 

AChE and BChE inhibition than the para-substitution. Substituting the phenyl with a 

heterocyclic ring did not improve the ChE inhibition [146]. Kumar et al. designed ChE 

and MMP dual inhibitors using pharmacophore and data mining techniques. The 3,6-

Diphenyl-1,4-bis(phenylsulfonyl)piperazine-2,5-dione derivatives were identified as 

novel multifunctional anti-AD agents. Amino acids viz. glycine, phenylglycine and 

phenylalanine were reacted with substituted aromatic sulfonyl chlorides. Further, the 

substituted sulfonamide was condensed in ethylene glycol at 120 – 150˚ C to obtain 

substituted piperazine-2,5-dione. Compounds XIV, XV and XVI, the para-chloro 

derivatives, were the most active and displayed inhibition of both AChE and BChE in the 

nanomolar concentration [147]. Isik et al. identified 4‑(benzylideneamino) and 

4‑(benzylamino)‑benzenesulfonamide derivatives as AChE inhibitors. Halogen-

substituted aldehydes were treated with sulfanilamide to obtain benzylidene derivatives, 

which were further reduced in the presence of NaBH4 to obtain benzyl derivatives. The 

dibromo compounds XVII and XIX were found to be most active with a mixed type 
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inhibition against AChE. The dichloro derivatives XVIII and XX were also found to be 

active [148]. Turkes et al. synthesised N-substituted phthalazine sulfonamide compounds 

for AChE and carbonic anhydrase dual inhibition. 4-Sulfonylamide ester obtained from 

4-Sulfamoylbenzoic acid was converted to hydrazide in ethanol. The obtained hydrazide 

was reacted with substituted phthalic anhydrides to obtain phthalazine sulfonamide 

derivatives. The chloro (XXI) and nitro (XXII) derivatives displayed better IC50 than 

others [149]. Rayala et al. synthesised multifunctional hybrid sulfonamides as anti-AD 

agents. It involved the synthesis of sulfonamides of glycine and β-alanine using 

substituted biphenyl sulfonyl chlorides. Further, heterocyclic amines were used for the 

synthesis of amides. Compounds XXIII and XXIV displayed excellent inhibition for 

AChE and BChE (Figure 2.3). These compounds exhibited metal-chelating properties 

and anti-Aβ aggregation [150]. Hassan et al. synthesised sulfonamides of 2-furoyl 

piperazine as BChE inhibitors for the treatment of AD. 2-furyl(1-piperazinyl)methanone 

was reacted with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride in basic pH condition. 

The hydroxyl present on the phenyl ring connected through the sulfonyl group was 

substituted with various aliphatic and aromatic side chains in the presence of LiH. The 

substitution of the R group with aromatic or allylic groups resulted in better BChE 

inhibition. Compound XXV, a propenyl derivative, displayed better inhibition among all 

the compounds, followed by compound XXVI, an ortho-chloro benzyl derivative [151]. 

Makhaeva et al. synthesised conjugates of 4-amino-2,3-polymethylene-quinolines and p-

tosyl sulfonamide as ChE inhibitors for AD. The conjugates were formed by condensation 

of anthranilic acid with cyclic ketones of varying ring sizes, followed by substituting 

variable diamine to yield aminoquinolines. The aminoquinolines were further reacted 

with tosyl chloride in the presence of triethylamine. The most active against AChE was 

compound XXVII, which had a tacrine ring connected with the toluene sulfonamide 

group with a linker of 5 carbons. Compound XXIX was the most active compound, 
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having a seven carbon-containing tacrine ring connected through a three-carbon linker to 

the toluene sulfonamide group [152].  

2.3. Scoring function 

Molecular docking helps in the prediction of ligand pose that suitably and stably binds in 

the active site of the protein. SF is the mathematical function that estimates the binding 

affinity between protein and ligand. 

2.3.1. Classification of scoring function 

SF is classified into four types:  

2.3.1.1. Force-field based scoring function 

Force field-based SF uses bond stretching, bending, torsional forces along with physical 

atomic interactions such as van der Waals and electrostatic interactions. These parameters 

are obtained from experimental data as well as ab initio quantum mechanical calculations 

[153]. The SF of DOCK6 docking program employs Amber based force-field that uses 

two energy components, i.e., an electrostatic and a Lennard-Jones VDW terms [154, 155].  

𝐸 =  ∑ ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12  − 

𝐵𝑖𝑗

𝑟𝑖𝑗
6  + 

𝑞𝑖 𝑞𝑗

𝜀(𝑟𝑖𝑗)𝑟𝑖𝑗

)

𝑗𝑖

 

where rij stands for the distance between protein atom i and ligand atom j, Aij and Bij are 

the VDW parameters, and qi and qj are the atomic charges. Here, the term ε(rij) is a 

distance-dependent dielectric factor that treats the effect of solvent as an implicit 

parameter. The major limitation is that such dielectric factor could not consider the de-

solvation effect produced by ligand binding to the protein surface. The other methods, 

such as free energy perturbation (FEP) and thermodynamic integration (TI) involve the 

treatment of water explicitly and suitably incorporate the solvent’s effect. However, these 

methods are computationally much expensive [156]. Autodock, DOCK3.5(PB/SA), 
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DOCK/GBSA(SDOCK), GOLD, SYBYL/D-Score, are some of the examples of force-

field based SF. 

2.3.1.2. Empirical scoring function 

Empirical SF uses a set of weighted energy components to calculate a protein-ligand 

complex’s binding affinity.  

Δ𝐺 =  ∑ 𝑊𝑖 ⋅ ΔG𝑖

𝑖

 

where ΔGi represents various energy components viz. de-solvation, electrostatics, 

entropy, hydrogen bond, hydrophobicity, VDW energies etc. The modelling of the 

binding affinities of the protein-ligand complexes with obtained poses helps to determine 

the coefficients Wi [157, 158]. The empirical SFs are computationally faster in the 

calculation of binding scores as they calculate simple energy terms compared to force 

field-based SF. SCORE1, developed by Bohm, uses hydrogen bonds, ionic interactions, 

the lipophilic protein-ligand contact surface and the number of rotatable bonds terms for 

calculation. PLIP, FlexX, Glide, SCORE, X-SCORE, LigScore, MedusaScore, SFScore 

are some of the empirical SFs [159]. 

2.3.1.3. Knowledge-based scoring function 

Energy potentials obtained from inherent structural information in experimentally 

determined atomic structures are used in knowledge-based scoring systems. It is also 

known as the statistical-potential based SFs. The inverse Boltzmann relation is used to 

generate pairwise potentials directly from the occurrence frequency of atom pairs in a 

database consisting of experimentally determined protein-ligand complexes. 

𝑤(𝑟) =  −𝑘𝐵𝑇𝑙𝑛[𝑔(𝑟)]  

𝑔(𝑟)  =  𝜌(𝑟)/𝜌 ∗ (𝑟) 
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where kB is the Boltzmann constant, ρ(r) is the number density of the protein-ligand atom 

pair at distance r, T is the absolute temperature (K) and ρ*(r) is the pair density in a 

reference state, where the interatomic interactions are zero. MScore, BLEEP, ITSCore, 

DrugScore, SMoG, DFIRE are some of the knowledge-based SFs.  

2.3.1.4. Machine learning-based scoring function 

ML based SF does not assume a predefined relationship between binding affinity and 

structural characteristics. The function uses various user-defined features as input to 

improve the accuracy over the conventional one [160, 161]. Various ML algorithms such 

as RF, SVM, neural network, decision tree etc. are employed for the development of SFs. 

Table 2.1 Selected machine learning-based scoring functions. 

S.No. Scoring 

function 

ML algorithm Source Reference 

1 BT-Score Gradient boosted 

decision tree 

- [162] 

2 MT-Net Deep neural 

network 

- [162] 

3 RI-Score Random forest http://weilab.math.msu.edu/RI-Score [163] 

4 RF_Score 

v3 

Random forest  http://ballester.marseille.inserm.fr/rf-score-

3.tgz 

[164] 

5 TopBP Gradient boosted 

decision tree, 

Convolutional 

neural network 

- [165] 

6 DLSCORE Deep neural 

network 

https://github.com/sirimullalab/dlscore  [166] 

7 XGB-

Score 

XGBoost https://github.com/HongjianLi/MLSF 

 

[167] 

2.4. Machine learning in drug discovery 

Drug discovery is a multi-stage, long and tedious process with high chances of failure. 

The period of 2002 – 2012 reported a failure of 99.6 % in the discovery of anti-

Alzheimer’s agent. Since, drug discovery relies on various decision-making steps to 

obtain a hit against a target, the ML and Artificial intelligence(AI) could provide firm 

http://weilab.math.msu.edu/RI-Score
http://ballester.marseille.inserm.fr/rf-score-3.tgz
http://ballester.marseille.inserm.fr/rf-score-3.tgz
https://github.com/sirimullalab/dlscore
https://github.com/HongjianLi/MLSF
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support to the complex decision-making processes and increase the chance of the 

successful identification of a drug based on the previously acquired data [168].  

2.4.1. Application of machine learning in pharmacophore modelling 

Hot-Spots-Guided Receptor-Based Pharmacophores (HS-Pharma) is a pharmacophore 

model development program. It is involved in the development of ML-based filter to 

reduce the number of the pharmacophore features. In this, various atom-based cavity 

fingerprints are collected from more than 3500 protein-ligand complexes and 

classification algorithms are used to identify important ligand binding atoms in the protein 

cavity. RF performs well to identify important features that are used to develop a 

structure-based pharmacophore model [169]. Pharmacophore-based interaction 

fingerprint (Pharm-IF) are pharmacophore descriptors and are employed for training ML 

models. It is observed that the ML models trained on these pharmacophore fingerprints 

show better enrichment as compared to PLIF. Pharm-IF fingerprints take into account the 

distance between pharmacophore features [170]. Deep site is another program that 

involves a convolutional neural network (CNN) to detect cavities and predict binding 

affinities. The atomic-based pharmacophoric descriptors were used to train the ML model 

[171]. 

2.4.2. Application of machine learning in quantitative structure-activity 

relationship 

QSAR is conventionally performed by regression techniques to identify the crucial 

molecular features. However, in the past decade, ML based models were reported to 

develop QSAR. Among the various algorithms, RF is a popular technique that deciphers 

the feature importance. Some of the application of ML in QSAR includes anticipation of 

the relationship between chemical structures and toxicities viz. in vitro toxicity [172], in 

vivo toxicity [173], hepatotoxicity [174] and mutagenesis [175].  



Literature review 

 

Page | 36  

2.4.3. Application of machine learning in molecular docking 

Molecular docking involves two phases, i.e., searching the conformation of the ligands 

and identifying the suitable/correct poses. The conformational sampling is carried out by 

using various algorithms. The incremental connection uses small fragments to build the 

ligand in the protein cavity, while in the case of the Monte Carlo simulation, the ligand 

conformation is gradually built by rotation of bonds and translation of the position of the 

ligand in the protein. The genetic algorithm applies mutation and crossover over a fraction 

of the selected population of a generation provided by SF. The other important component 

of molecular docking is SF. ML based SF has recently gained popularity and provides 

better feature mapping. RF-score is one of the ML based SF that was developed using RF 

algorithm employing atom-type pair count as features [176]. ID-Score uses a set of 50 

descriptors to describe the protein-ligand contacts that cover nine types of interactions. 

The SF uses a SVM algorithm was used to train the model over 220 protein-ligand 

complexes [177]. NNScore 2.0 is a neural network-based SF that performed better that 

SF of Vina and Autodock over 12 different protein targets [178]. 

2.4.4. Application of machine learning in molecular dynamics 

The implementation of ML in MD helps in the generation of high-precision force fields. 

The on-the-fly ML method is one of the ways to generate an atomistic force field. The ab 

initio data are picked and added to the training data during the MD calculations. As long 

as the dynamic configuration is accurately represented in the existing database, no 

additional QM calculations are added. ML can also be used to accelerate the trajectory 

generation [179], analyse long simulation data [180], prediction of energies of the ground 

state [181] and prediction of solute-solvent interaction map [182]. 


