CERTIFICATE

It is certified that the work contained in the thesis titled "*Multifunctional metal-organic gels based on low molecular weight N,O donor ligands*" by *MANISH KUMAR DIXIT* has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph. D. Degree.

Signature:

Signature:

Supervisor Prof. Sayed Hadi Hasan (Professor) Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 (UP) **Co-supervisor** Dr. Mrigendra Dubey (Assistant Professor) Discipline of Metallurgy Engineering and Material Science Indian Institute of Technology Indore Indore -453552 (MP)

DECLARATION BY THE CANDIDATE

I, "MANISH KUMAR DIXIT", certify that the work embodied in this thesis is my own bona fide work and carried out by me under the joint supervision of "PROF. SAYED HADI HASAN" as supervisor and DR. MRIGENDRA DUBEY as co-supervisor from "JULY 2014" to "FEBRUARY 2020", at the "DEPARTMENT OF CHEMISTRY", Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work as well as in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 10/02/2020 Place: IIT (BHU), Varanasi Signature of the Student (MANISH KUMAR DIXIT)

CERTIFICATE BY THE SUPERVISOR/CO-SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Supervisor Prof. Sayed Hadi Hasan (Professor, IIT (BHU) **Co-Supervisor**

Signature of Head of Department

Dr. Mrigendra Dubey (Assistant Professor, IIT Indore)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:Multifunctional metal-organic gels based on low molecular weight
N,O donor ligandsName of the Student:Manish Kumar Dixit

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *"DOCTOR OF PHILOSOPHY"*.

Date: 10/02/2020 Place: IIT (BHU) Signature of the Student (MANISH KUMAR DIXIT)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

The words cannot express my deep sense of gratitude to my supervisor Dr. Mrigendra Dubey, Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore, Indore for the continuous support of my Ph. D study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph. D. study. Extension of my sincere thanks for my supervisor Prof. Sayed Hadi Hasan, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi for sanctioning my academic leave to work with Dr. Mrigendra Dubey. I am extremely thankful to my RPEC members Prof. Dhanesh Tiwari (Internal subject expert, HOD), Prof. Sai Ram K (External subject expert), Department of Chemistry and Department of pharmaceutics, Indian Institute of Technology (BHU) respectively, and DPGC Convener Prof. Y. C. Sharma, for their kind support and suggestions during my research work. I use this opportunity to express my gratefulness to the head and all the faculty members of the Department of Chemistry, Indian Institute of Technology (BHU). I am also thankful to all non-teaching staff members of the Department of Chemistry, specially, Mr. Rambeesh Gond for their kind support.

I am also thankful to Head of the Department, Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore, Indore for extending his departmental facilities.

I am thankful to Prof. D. S. Pandey and Dr. Ashish Kumar Gupta of the Department of Chemistry, Institute of Science, and Banaras Hindu University for their time to time guidance and motivation. Thanks, are also due to Bhupendra Kumar Dwivedi, Vishwa Deepak Singh, Dr. Roop Shikha Singh, Dr. Rajendra Prasad Paitandi for their invaluable assistance and advice during my research work.

iv

I would like to thank my lab companion Chinthakuntla Mahendar (IIT Indore), Yeeshu Kumar, Moupia Mukherjee and Jay Shukla for providing me the conducive environment for carrying out my research work, I would also like to express my sincere appreciation to my colleagues Vikas Kumar Singh and Surabhi Gupta for their lively friendship and continuous support at all stages of my research work. I gratefully acknowledge the Gymkhana, Indian Institute of Technology (BHU) for providing the necessary facilities. I would also like to thank my gym companions Rohit Kumar Singh Gautam, Varun Narayan Mishra, Somveer Singh and Mr. Ram Naresh Yadav for their constant support and help. I also wish to thank my friends Geetanjali Shukla (CSMCRI, Gujrat), Md. Waseem (IIT Bombay), Junaid Ali (Hyderabad University), Md. Arif (AMU) for their invaluable suggestions, support and constant help throughout my M.Sc. and this research work as well. I would also like to thank my beloved childhood friend Ravindra Kumar Singh, Chemical Engineer and Sachin Yadav who have continuously guided and motivated me.

I wish to gratefully acknowledge Ministry of Human Resource Development, Government of India for the financial support in the form of teaching assistantship. I also wish to express my deep sense of gratefulness to Department of Science and Technology, New Delhi for research fund.

Last but not least, I express my gratitude to my beloved parents and family members who stood by me at all times rendering me motivation and more support. I am especially very much grateful to my father Sh. Vipin Kumar Dixit, mother Smt. Madhu Dixit, elder brother Ashish Dixit, sister-in-law Sneh Lata Dixit and my wife Pratibha Dixit for their constant blessings and support that could enable me to achieve this success.

Date: 04/02/2020 Place: IIT (BHU), Varanasi Manish Kumar Dixit

Dedicated

to

My Beloved Parents

TABLE OF CONTENTS

CERTIFICATE	i
DECLARATION BY THE CANDIDATE	ii
COPYRIGHT TRANSFER CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	vii
LIST OF FIGURES	xii
LIST OF TABLES	xvii
LIST OF SCHEMES	xviii
LIST OF ABBREVIATIONS	xix
PREFACE	xxi
CHAPTER 1: Introduction to Metal-organic gel (Metallogels)	1-23
1.1 GENERAL INTRODUCTION TO GELS	2
1.2 GEL CLASSIFICATION BASED ON SOLID AND LIQUID PHASE	3
1.2.1 Based on solid phase	3
1.2.2 Based on liquid phase	3
1.3 GEL CLASSIFICATION BASED ON INVOLVEMENT OF METAL	3
1.3.1 Organic gel	3
1.3.2 Metal-organic gel (Metallogel)	4
1.4 IMPORTANT APPLICATION OF METALLOGELS	4
1.4.1 Electronic devices	4
1.4.2 Electrolytic material	6
1.4.3 Sensor	7
1.4.4 Catalytic material	9
1.5 Recent advancements in gels and metallogels	11
1.5.1 Charge transfer	11
1.5.2 Stimuli responsive material	14
1.5.3 Chiral metallogels	16
1.5.4 Fluorescent metallogels	18
1.5.5 Nanofabrication and nanocatalysis	20

1.6 Findings of literature	22
CHAPTER 2: Li⁺-Induced fluorescent metallogel 2.1 INTRODUCTION	24-57 25
2.2 EXPERIMENTAL METHODS	26
2.2.1 Materials and physical methods	26
2.2.2 X-ray crystallography	27
2.2.3 Rheological study	28
2.2.4 Lifetime measurements	28
2.2.5 Synthetic procedure	29
2.2.5.1 Salicylaldehydeazine or [bis-(2-hydroxybenzylidene)-	29
hydrazine] (H ₂ SA) 1	
2.2.5.2 Bis(4-hydroxybenzylidene)hydrazine (H ₂ PBA)	29
2.2.5.3 Bis(3-hydroxybenzylidene)hydrazine (H ₂ MBA)	30
2.2.5.4 N,N'-Bis(4-methoxybenzylidene)hydrazine (PMO)	30
2.2.5.5 N,N'-Bis(salicylidene)ethylenediamine (H ₂ SEA)	30
2.2.5.6 2,2'-[1,4-Phenylenebis{(E)-nitrilomethylidyne}]bis-	31
phenol (H ₂ SPA)	
2.3 RESULTS AND DISCUSSION	32
2.4 MORPHOLOGICAL CHARACTERIZATION	36
2.5 PXRD ANALYSIS	37
2.6 UV-VIS STUDY	41
2.7 FLUORESCENCE STUDY	44
2.8 ¹ H NMR STUDY	51
2.9 RHEOLOGICAL STUDY	54
2.10 CONCLUSION	56
CHAPTER 3: Nanofabrication and Nanocatalysis in Metallogel	58-98
3.1 INTRODUCTION 3.2 EXPERIMENTAL METHODS	59 62
3.2.1 Materials and physical methods	62
3.2.1.1 Rheological study	64
3.2.2 Synthetic procedure	64

3.2.2.1 Synthesis of H_4T^{-L-tyr}	64
3.2.2.2 Synthesis of H ₄ T ^{-L-Phe}	66
3.2.2.3 Synthesis of gold nanoparticle embedded	66
metallohydrogel (AuCPH)	
3.2.2.4 TEM sample preparation	67
3.3 RESULTS AND DISCUSSION	68
3.3.1 Morphological characterization	72
3.3.2 Aggregation study	75
3.3.3 Complexation analysis	81
3.3.4 Nanofabrication and nanocatalysis	85
3.3.5 Rheological studies	89
3.3.6 Conductance studies	91
3.5 CONCLUSION	95
CHAPTER 4: Intramolecular Charge Transfer based metallogels 4.1 INTRODUCTION 4.2 EXPERIMENTAL METHODS	96-135 97 98
4.2.1 Materials and physical methods	98
4.2.2 Rheological study	99
4.2.3 Theoretical calculation	100
4.2.4 X-ray crystallography	100
4.2.5 Synthetic procedure	101
4.2.5.1 Synthesis of 2,3-dihydroxysuccinohydrazide (A)	101
4.2.5.2 Synthesis of (10E,12E)-N1',N4'-bis(2-nitro-	101
benzylidene)-2,3-dihydroxysuccinohydrazide	
$(\mathrm{H}_2\mathrm{SI}^{\mathrm{L-tart}})$ (1)	
4.2.5.3 Synthesis of (10E,12E)-N1',N4'-bis(3-nitro-	101
benzylidene)-2,3-dihydroxysuccinohydrazide	
$(\mathrm{H}_2\mathrm{SI}^{\mathrm{L-tart}})$ (2)	
4.2.5.3 Synthesis of (10E,12E)-N1',N4'-bis(4-nitro-	102
benzylidene)-2,3-dihydroxysuccinohydrazide	
$(\mathrm{H}_2\mathrm{SI}^{\mathrm{L}\text{-tart}})$ (3)	
4.2.5.4 Synthesis of (10E,12E)-N1',N4'-bis(4-carboxy-	102

benzylidene)-2,3-dihydroxysuccinohydrazide	
(H_4L^{L-tart}) (4)	
4.3 RESULTS AND DISCUSSION	104
4.3.1 Morphological Characterization	107
4.3.2 Circular Dichroism (CD) studies	114
4.3.3 Uv-vis studies	115
4.3.4 Intramolecular/Intermolecular CT	117
4.3.5 Aggregation studies	120
4.3.6 Mechanisms and the role of alkali metal ions in ICT	121
4.3.7 ¹ H NMR titration studies	124
4.3.8 Structural support	126
4.3.9 Rheological properties	128
4.4 CONCLUSIONS	129
CHAPTER 5: Effect of alkyl spacer on Metallogelation	131-172
5.1 INTRODUCTION	132
5.2 EXPERIMENTAL METHODS	133
5.2.1 Genenal information, Materials and physical methods	133
5.2.2 UV-vis study	134
5.2.3 Fluorescence study	135
5.2.4 Rheological study	135
5.2.5 Synthetic and Characterization	135
5.2.5.1 Synthesis of H ₄ AL	135
5.2.5.2 Synthesis of Metallogel	136
5.2.5.2.1 Synthesis of metallogel using H ₄ AL	136
5.2.5.2.2 Synthesis of metallogel using H ₂ SL	137
5.2.5.3 Synthesis of all other ligands	137
5.2.5.3.1 H ₂ XL	137
5.2.5.3.2 H ₂ ML	137
5.2.5.3.3 H ₂ SL	138
5.2.5.3.4 H ₂ GL	138
5.2.5.3.5 H ₂ PL	138

5.2.5.3.6 H ₂ SUL	138
5.2.5.4 TEM sample preparations	139
5.3 A Comparative Result and discussion	142
5.3.1 Complexation analysis	147
5.3.2 Morphological Study	153
5.3.3 Mass spectral analysis	157
5.3.4 Aggregation Study	160
5.3.5 Rheological study	166
5.3.6 Conductance study	171
5.4 Conclusion	172
CHAPTER 6: Conclusion and Future Scope	174-179
6.1 CONCLUSIONS	175
6.2 FUTURE SCOPE OF THE THESIS	178
LIST OF PUBLICATIONS	180-181
LIST OF CONFERENCES	182
REFERENCES	183-199

LIST OF FIGURES

Figure No.	Description	Page No.
1.1	Liu et al. synthesized a stimuli responsive strong organogel.	2
1.2	Metallogel formation and its Schottky barrier diode.	5
1.3	Metallogel formation and its application in solar cell.	6
1.4	Metallogel as an electrolyte utilized in solid-state supercapacitor.	6
1.5	Detailed Nyquist impedance study of metallogel	7
1.6	FE-SEM and TEM images of metallogel along with	8
	reduction of Cr(VI) to Cr(III).	
1.7	Metallogel formation using G_4 and its properties	9
1.8	metallogel formation and its use for Suzuki-Miyaura coupling	10
	reaction.	
1.9	Self-assembly formation from tripodal ligand via coordination of Pd	11
	-metal.	
1.10	Schematic presentation of arrangement of donor (D) and acceptor (A)) 12
1.11	Synthesis of charge transfer gel using urea-based ligand	13
1.12	Various modes of charge transfer D-A stacks	14
1.13	Three different light emitting metallogels and stimuli-responsi-	15
	veness.	
1.14	(A) Self-healing and (B) multi-stimuli responsive property of	16
	metallogel.	
1.15	Various modes of Self-Assembly along with SEM and TEM images	17
1.16	Chiral recognition through metallogel	17
1.17	SEM images after chiral recognition	18
1.18	Al ³⁺ coordinated fluorescent metallogel and its properties	19
1.19	Fluorescence colour tuning of metallogel	19
1.20	Silver nanoparticles embedded metallogel and its TEM image	21
1.21	TEM images of AgNPs loaed metallogel and its catalytic activity	21
1.22	Ligands used for metallogelation and catalytic acitivity of metallogel	22
2.1	Schematic of molecular arrangement of H ₂ SA in gel and sols	33

2.2	Multi-stimuli responsiveness of metallogel	35
2.3	Pictures of metallogel and sols of H ₂ SA under naked eye and UV light	35
2.4	Pictures of metallogel, solid and sols of all ligands under visible light and	36
	under UV light.	
2.5	SEM images of xerogel and dried solutions	37
2.6	SEM images of dried metallogel and solutions	38
2.7	Different Powder X-ray Diffraction pattern and ORTEP diagram	39
2.8	The powder X-ray diffraction pattern of xerogel (H_2SA/Li^+).	40
2.9	UV-vis study of H_2SA with Li^+	42
2.10	UV-vis titration of H_2SA with Na^+ , K^+ and Cs^+	43
2.11	UV-vis titration of H ₂ SA with TBAOH, NH ₃ and Et ₃ N	43
2.12	UV-vis study of all supporting ligand	44
2.13	Fluorescence study of H ₂ SA and H ₂ PBA	46
2.14	Fluorescence study of H_2SA with Na^+ , K^+ and Cs^+	47
2.15	Fluorescence study of H ₂ SA with TBAOH	47
2.16	Fluorescence study of all supporting ligand	48
2.17	A fluorescence titration of H ₂ PBA/Li ⁺ with [12]-crown-4	49
2.18	Fluorescence dilution and variable temperature experiment	51
2.19	Sketch and model diagrams for molecular arregments	52
2.20	¹ H NMR titration spectrum of H ₂ SA with LiOH	53
2.21	Crystal structure of H ₂ SA	53
2.22	Rheological study of metallogel synthesized using H ₂ SA	55
2.23	A diagrammatic presentation of plausible mechanism behind	56
	metallogel formation.	
3.1	NMR study of H ₄ T ^{-L-tyr}	65
3.2	NMR study of H ₄ T ^{-L-Phe}	67
3.3	Mechanistic steps involved in gel formation	69
3.4	Pictures of gel and solution formation under visible light	70
3.5	Pictures of gel and solution formation under UV light	70
3.6	Properties of metallogel	71
3.7	UV vis study of H ₄ T ^{-L-tyr} , CPH and AuCPH	72

3.8	TEM images of metallogels	72
3.9	TEM images of diluted CPH	73
3.10	TEM images of diluted AuCPH	73
3.11	FE-SEM elemental maps	73
3.12	Powder X-Ray Diffraction pattern of ligand and xerogel	74
3.13	Fluorescence study of H ₄ T ^{-L-tyr}	76
3.14	Fluorescence study of H ₄ T ^{-L-tyr}	76.
3.15	Fluorescence study of H ₄ T ^{-L-tyr} , CPH and AuCPH	76
3.16	Fluorescence study of H_4T^{-L-tyr} and H_4T^{-L-Phe}	77
3.17	Fluorescence dilution experimente over CPH	78
3.18	¹ H NMR titration of deprotonated T ^{-L-tyr4-}	80
3.19	Models for molecular arrangements H_4T^{-L-tyr} and H_4T^{-L-Phe}	80
3.20	FTIR spectra of H ₄ T ^{-L-tyr} and CPH	82
3.21	FTIR spectra of CPH and AuCPH	83
3.22	Partial ESI-MS spectra and Job's plot	84
3.23	Full ESI-MS spectrum of diluted metallohydrogel (CPH)	84
3.24	Effect of amount of HAuCl4 solution addition to metallohydrogel	85
3.25	The Thermo Gravimetric Analysis (TGA) of CPH	85
3.26	Schematic presentation of Au nanoparticles formation over nanofibers.	86
3.27	Catalysis activity of AuCPH and its kinetics study	86
3.28	Eyring plot for reduction	87
3.29	Catalytic activity of CPH and dried AuCPH	87
3.30	Rheology of CPH and AuCPH	90
3.31	Rheology of CPH and AuCPH	91
3.32	Conductivity measurments of CPH	92
3.33	Temperature dependence of the ionic conductivity	93
3.34	Plausible mechanism behind metallohydrogel formation.	95
4.1	Properties of 1+Li ⁺ containing gel	105
4.2	Thermal response of $1+Li^+$ gel	106
4.3	Gel and solution pictures obtained from all ligands	107
4.4	SEM images of xerogels or dried solution	109

4.5	SEM images of isomer 3 and acetone containing dried gel/solution	110
4.6	SEM images of isomer 3 and acetonitrile containing dried	111
	gel/solution	
4.7	SEM images of isomer 1 and acetonitrile/acetone	112
	containing dried gel/solution	
4.8	SEM images of isomer 2 and acetonitrile containing dried	113
	solution	
4.9	CD spectral study of 1, 2 and 3	115
4.10	UV-vis spectral study of 1, 2 and 3	116
4.11	UV-vis spectral study of 1, 2 and 3	117
4.12	(A) UV-vis and DFT study over $3+Li^+$	119
4.13	Plausible mechanism of presence and absence of charge	120
	transfer	
4.14	Variable temperature UV-vis experiment on diluted gel	121
4.15	Plausible mechanism of charge transfer in isomer 3	123
4.16	UV-vis study of $[3 + K^+]$ with [18]-crown-6 and Dil. HCl	123
4.17	UV-vis study of 3 and 2	124
4.18	¹ H NMR titration of 3 with LiOH·H ₂ O	126
4.19	Crystal lattice of 3	127
4.20	Powder X-ray diffraction pattern of isomer 3 and $3+Li^+$	128
4.21	Rheological experiment on acetonitrile containing gel $3 + Li^+$.	130
4.22	A pictorial representation of plausible mechanism of gelation.	130
5.1	¹ H NMR spectra of H ₂ SL	140
5.2	¹ H NMR spectra of H ₄ AL	141
5.3	¹³ C NMR spectra of H ₄ AL	142
5.4	Stimuli responsive behavior of metallogel obtained from H4AL	144
5.5	Gelation ability of H ₂ SL and reswelling properties	145
5.6	Gelation ability of H4AL with different metal ions	145
5.7	Gelation ability of H ₄ AL with different metal ions	145

5.8	Gelation ability of all supporting ligands	146
5.9	Stimuli responsive behavior of metallogel obtained from H_2SL	146
5.10	FT IR spectra for ligand H ₄ AL and xerogel	149
5.11	FT IR spectra for ligand H ₂ SL and xerogel	149
5.12	FT IR spectrum of washed xerogel obtained from H_2SL	150
	derived metallogel.	
5.13	UV-vis study of H ₂ SL and H ₄ AL	151
5.14	UV-vis study of all supporting ligands	153
5.15	TEM images of metallogel obtained from H4AL	155
5.16	TEM images of metallogel obtained from H2SL	156
5.17	PXRD study of H ₂ SL, H ₄ AL and their metallogels	156
5.18	TEM images of metallogel obtained from H_2SL and diffraction pattern	157
5.19	Mass spectral analysis and Job's plot for ligand H4AL and	158
	metallogel	
5.20	Mass spectral analysis of metallogel obtained from H2SL	159
	and H ₂ XL	
5.21	Job's plot for supporting ligands	160
5.22	Fluorescence study of H_2SL and its metallogel	161
5.23	Variable temperature experiment and fluorescence study	161
	over supporting ligands	
5.24	Fluorescence study of H ₄ AL	162
5.25	Variable temperature fluorescence experiment on metallogel	165
5.26	Complexation mode adapted by different ligands	166
5.27	Fluorescence lifetime measurement of H4AL	166
5.28	Rheological study of freshly prepared metallogel obtained from H_4AL	169
5.29	Rheological study of freshly prepared metallogel obtained from H_2SL	169
5.30	Rheological study of freshly prepared metallogel obtained from H_2SL	170
5.31	The conductive property of metallogel	170
5.32	Plausible mechanism for metallogelation	170
5.33	Nyquist impedance plot	172

Table No.	Description	Page No.
2.1	Gelation tests with respect to isomers, LiOH	34
	and solvents	
2.2	Gel or sol formation of 1 with different alkali bases	34
3.1	Gelation test of pro-ligand 1 and 2 with $LiOH+Zn(NO_3)_2$	68
	and solvent	
3.2	Gel or sol formation of 1 with different alkali bases and	68
	$Zn(NO_3)_2$.	
4.1	Gelation details of isomer 1 and 2	106
4.2	Gelation details of isomer 3 and ligand 4	106
5.1	Gelation ability of H4AL and H2SL	144
5.2	The solubility and gelation ability of supporting ligands	144
5.3	Gelation ability of H2GL and H2SUL	145
5.4	Job's plot ratio of all ligand	158

LIST OF SCHEMES

Scheme no.	Description	Page No.
1.1	Suzuki-Miyuara coupling reaction using metallogel	10
	complex.	
1.2	Oxidation of benzyl alcohol to benzaldehyde using	11
	fresh metallogel in presence of molecular oxygen.	
1.3	A bis(urea) pyridyl type ligand used for metallogelation.	20
2.1	A schematic presentation of origin of idea towards desi-	26
	gning of H ₂ SA	
2.2	Synthetic routes adopted for the synthesis of compounds	32
	(A) H ₂ SA, H ₂ SEA, H ₂ SPA and (B) H ₂ PBA, H ₂ MBA and	
	PMO.	
3.1	Synthetic route adopted for the synthesis of H_4T^{-L-tyr}	62
	and H ₄ T ^{-L-Phe} .	
4.1	A synthetic strategy adopted for the precursor A, structural	103
	isomers (SI 1-3) and ligand (4)	
4.2	A schematic representation of gelation property of structura	al 105
	isomers 1-3	
5.1	Synthetic procedure adapted for synthesis of all seven ligan	id 137
5.2	Structure of all the synthesized ligands	139
5.3	Schematic presentation of metallogel formation	147
5.4	Structure of metallogelators complex	147

PREFACE

This thesis primarily focuses on the synthesis and applications of novel metallogels. Since the discovery of metal-organic gel (metallogel) in late 1990s, these smart materials have been grabbing an increasing interest due to the wide variety of applications in multidisciplinary areas like biomedical, pharmaceutical, catalysis and batteries. Metallogels were discovered nearly 20 years back but their formation from low molecular weight gelators and library of gelators is still quite inadequate which is discussed in **chapter 1**.

Gels are being synthesized since the nineteenth century, but a pin point definition of gel is still a matter of argument. Gels are generally identified by their physical appearance and behavior like soft solid like character with no flow of trapped liquid. Generally very less amount is sufficient to immobilize the large amount of solvent. A gelator can be utilized to characterize its macromolecular structure *i.e.* gel which could be helpful in correlating the characteristic properties of material in micro and its macro level organization. The fact may be useful in unveiling the direct relation between small changes in gelator and outcome in macroscopic state. the most striking aspects of LMWGs is that they usually possess better multi-stimuli responsive behaviors towards external stimuli and simple synthetic modifications in the gelator structure may lead to drastic change in synthesized gel. These factors are well elaborated in the present thesis.

In chapter 2, a fluorescent metallogel (1% w/v) has been synthesized from nonfluorescent ingredients *viz*. the smallest possible low molecular weight aromatic symmetrical ligand H₂SA and LiOH in a chloroform and methanol mixture. The chelation of Li⁺ is not only responsible for the inhibition of excited state intramolecular proton transfer (ESIPT) or the origin of fluorescence through chelation enhanced fluorescence (CHEF) in H₂SA, but also for aggregation leading to gelation. The metallogel obtained from H₂SA/Li⁺ reveals a fibrous morphology while H₂SA with other, bigger size, alkali metal ions like Na⁺/K⁺/Cs⁺ demonstrates the growth of crystals with different shapes. The effect of the size of the alkali metal ion over gel formation is well explored by FTIR, UV-vis, fluorescence, average lifetime measurements, SEM and PXRD. The metallogel shows multi-stimuli responsive behavior towards thermal and mechanical stress as well as reswelling properties. The regioisomer H₂PBA (**2**) also shows emission upon treatment with LiOH due to the presence of intramolecular charge transfer (ICT), this is well established by various experiments. The mechanism of gel formation is well established by FTIR, ¹H NMR, UV-vis, fluorescence, lifetime measurements, SEM and single crystal and powder XRD instrumental techniques. The involvement of various phenomena in gel formation has been further supported by other synthesized model compounds *viz*. H₂MBA, PMO, H₂SEA and H₂SPA. True gel phase material is proved by detailed rheological experiments.

In chapter 3, a multi-stimuli responsive conductive co-ordination polymeric fluorescent metallohydrogel (1% w/v, CPH) has been synthesized employing non-fluorescent components *viz*, L-tyrosine derived low molecular weight (LMW) H_4T^{-L-tyr} , LiOH and Zn(NO₃)₂ in 1:3:1 proportions at pH 11-12. CPH shows multi-stimuli response reversible gel-sol transition towards thermal, mechanical and ultrasound stimuli. CPH also possesses shape persistent property and partial reswelling property. Mechanism of nanofiber formation followed by gelation was well explained using suitable models and supported by fluorescence, TEM, PXRD, NMR, TGA and Mass spectrometry. Fluorescence is originated in CPH due to Zn²⁺ coordination which reduces the non-radiative decay. True gel phase material was proved

by detailed rheological experiments. Excellent high ionic conductivity of 5.05x10⁻³ S cm⁻¹ and 4.18x10⁻³ S cm⁻¹ at 295 K are observed for metallohydrogel with and without Au Nps. Further, uniform sized ultra-fine Gold nanoparticles (~3 nm) (Au Nps) were deposited only over nanofiber template without using any external reducing agent. Freshly prepared Au Nps were utilized as catalyst in reduction of Nitrophenol using NaBH₄. Respective rate constants and Activation energies of the reaction with and without Au Nps are 0.221 min⁻¹, 58.94 KJmol⁻¹ and 0.014 min⁻¹, 595.14 KJmol⁻¹, respectively.

In chapter 4, three L-tartaric acid based symmetrical A– π –D-chiral-D– π –A type structural isomeric nitrobenzylidenes (1–3) and carboxybenzylidenes (4) have been synthesized with intent to achieve isomer specific metallogels with intramolecular charge transfer properties. Alkali metal ions in 1-3 systems not only trigger charge transfer but also play a vital role in gelation while this phenomenon was completely absent in 4. The presence of intramolecular rather than intermolecular charge transfer as well as aggregation has been well established by various kinds of experiments using UV-vis, CD, ¹H NMR, DFT and crystallography techniques. The role of alkali metal ions in triggering ICT was proved by titration with their respective crown ethers. Notably, Na⁺ afforded twisted fiber morphology whilst Li⁺ gave merely long range fibers. The true gel phase material was proved by detailed rheological studies.

In chapter 5, synthesis of chain length selective gelation (1% w/v) from succinic (n=2, H₂SL) and adipic acid (n=4, H₄AL) derived ligands out of seven different bis acylhydrazones based saturated homologous dicarboxlylate derived bolaamphiphiles have been demonstrated. The LiOH deprotonated H₂SL and H₄AL both led to the formation of a fluorescent metalloorganogel upon addition of Cd(OAc)₂. The coordination complexes responsible for

metalloorganogel or solution formation have been well scrutinized with the help of UV-vis, Job's plot, ESI-MS and fluorescence studies. Transmission electron microscopy (TEM) of the diluted metalloorganogel revealed the unusual nano-ball aggregates (~50 nm diameter) aligned together to create fibrous morphology, which was further supported by scanning electron microscopy (SEM). Nyquist impedance plot suggested that the metalloorganogel has a much lower value of resistance (R1= 3.6 kW) than its counter non-gelling combination (R2= 5.6 kW) suggestive from well-organized fibres.

Finally, **chapter 6** will conclude overall work presented in the thesis which also include the future scope of the presented thesis.