Chapter 6

Multimodal Classification

Classification can be defined as a decision-making problem which decides whether
a new object belongs to a certain class or not. This decision making procedure is
purely based on the previous observations on a sample, called training data. Such a
sample consists of data points along with the class or category to which the points
belong. When this decision making is confined to two classes or categories, it is
known as binary classification and the corresponding classifier is known as a bi-
nary classifier. But, object classification, on the other hand, involves a number of
different categories. Here, the problem transforms to a multi-class classification.
The complexity of the problem is compounded if the decisive factors are of varied
nature. Often under such circumstances, multimodal classification offers the best
solution. If the object under consideration has, say, only two modalities— image and

text, then image features and text features are treated as two different sources of
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information. Both the sources can aid in classification if used judiciously. In that
case, post-feature-extraction stage, the features need to be combined appropriately.
In the paper by Guillaumin et al. [38], an image classifier is learned by using image
features as well as the associated keywords. A Multiple Kernel Learning (MKL)
classifier serves this purpose by accumulating the information from the image con-
tent and keywords. Here, the MKL is contrived on two basic classifiers, support
vector machine (SVM) and least-squares regression (LSR). These classifiers have
been shown to perform well in most cases and hence we have chosen SVM as the
core building block of our multi-modal object classification.

From the existing literature, it is evident that the combination of multiple com-
plementary features always strengthens the classification accuracy than any single
feature. Eventually, text and image features can be considered to be complementary
to each other as the textual descriptions are easier to process but they provide very
little information about image content while the visual content of images can hardly
be described in the text. Under such circumstances where both text and image
features arec used for object classification, MKL is a popular approach for feature
combination. Like any other technique, MKL has its pitfalls as argued by Hou et
al. [43]. In this work, the authors investigate two fundamental feature combination
methods— average combination and weighted average combination for multimodal-
classification. The experimental results of this work prove that the weighted average
combination method outperforms MKL in both accuracy and efficiency. Feature

combination entails computing features weights. Apart from feature combination,
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feature weighting also plays a vital role in multimodal object classification. A ju-
dicious feature selection followed by an insightful feature weighting, 7.e. weighting

features according to their informativeness, can increase the classification efficiency.

6.1 Methodology

Before we proceed to explain our approach for optimal weight assignment to features,
let us take a look at the baseline methods for weight assignment as described by Hou

et al. [43].

6.1.1 Average combination

In this method of combining features all participating features are assigned equal
weights. The combined kernel function for the SVM framework can be stated math-

ematically in the form of the Equation 6.1.

ker*(i i) = (i) Zkerj(z’,i') (6.1)
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where z is the number of participating features in the task. Finally, this kernel

function, ker*(4,i ), is used as a binary classifier with linear SVM.

6.1.2 Weighted average combination

Instead of assigning equal weights to each feature, in this method weights are as-
signed based on their discriminative power, stemming from the fact that feature
with higher discriminative power should be assigned with higher weight for accurate
classification [43]. So, discriminative power of each kernel has to be determined first.

The steps to determine the weights for kernels, in brief, are as follows:

i. A binary classifier is trained individually for each kernel.

ii. Let us say, a. is the discriminative power obtained after training for each kernel

iii. Finally, each kernel will be assigned with the weight, W, = E+Zla’” where

b=0,0.5,1,2,3,...,40

6.1.3 Hill Climbing for Weight Assignment

As stated in previous sections, average combination strategy disregards the relative
importance of features. Weighted average combination tries to rectify this issue by
assigning a discriminative power to individual kernels and then assign them weights

accordingly. We posit that instead of an empirical analysis to determine optimal
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weights, a learning based approach can provide better results. Of all the existing
optimization algorithms, gradient descent based approaches are quite popular as
they tend to be simpler to implement and understand. Gradient-based optimizers
are Hill Climbing algorithms and therefore local optimization techniques. Although
many sophisticated algorithms exist, they all depend on a suitable starting point.
In actual practice, finding this starting point or seed point has been perceived to be
a major hurdle when trying to do unsupervised, automatic optimizations. Typically
finding such a point and shortening the parameter intervals so that the goal function
can actually be evaluated requires several tries. Our intuition behind considering
Hill Climbing as an optimization procedure stems from the fact that when fewer
variables are involved the kernel functions are easier to design and evaluate and

performs decently.

To assign weights through optimization, we keep sum of all the weights assigned
to the features constant. The sum of the weights is a whole number such that all
feature weight add up to. Our objective is to find the best possible combination of
weights that can maximize our classification accuracy. So in this case, an initial seed
point for Hill Climbing, also called weight tuple ¢, is computed by assigning each
feature equal (or nearly equal) weights, w;, such that >, w; = sum. Let us consider
that total number of features present is N. So, initially, the seed weight for each

feature will be given w, = . Some random sum%N kernels will be given weight

1+ 5, to adhere to the constraint of constant sum.
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Once the initial seed has been determined, by the logic of Hill Climbing, we aim
to optimize the first weight w; in the tuple. To do so, we increase (or decrease)
wy by 6 units (since there are total seven features in our dataset, as explained
later), while we correspondingly decrease (or increase) the weights ws, ws, ..., w7 by
1 unit. In case, the feature weight w; needs to be increased, it is done through
a procedure steal increase(), while other feature weights are adjusted using
donate_decrease() and vice-versa (indicated as Steps 2 and 3 in Algorithm 5).
Now, with this seed or weights, we feed the features into the SVM classifier and find
out the precision of the classification. If the result is not satisfactory, we continue
updating w; until we reach its optimal value. This whole process is repeated for
cach of the weights wq, ws, ..., w7 to finally produce final seed tuple ¢. This whole

procedure is presented as Algorithm 5.

6.1.4 Extended Hill Climbing for Weight Assignment

We are aware of the fact that constrained Hill Climbing frequently gets stuck on
the local maxima. To overcome this issue, we propose an FExtended Hill Climbing
method for weight assignment. In this extended Hill Climbing method, we choose
multiple seed points along each direction instead of a single seed point. If we plot
the precision values of classifier against each feature, we get seven 2D plots, whose
values denote the classifier accuracy of corresponding feature weights. When Hill
Climbing is performed over these plots, we assume a default step size. Now, such a

blind choice of intervals can be detrimental to our cause since it is easy to miss a
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Algorithm 5: Constrained Hill Climbing

Data: Seed tuple t
Result: Final tuple ¢
for 1 <d < N do
tine < steal_increase(t,d);
tgec < donate decrease(t,d);
" < classifier accuracy(t);
tr . < classifier_accuracy(tin.);
th.. « classifier_accuracy(tse);
if ¢7 . >t then
dir + 1 > Select direction to move in;
tcurr — tinc;
tzu?"”’ <_ t:TLC;
end
else
dir < 0;
tcu'rr — tdec;
tZw'r — tgec;
end
while ¢, > t" do
E <_ tCU/I”T;
tT@S A t:”:m"r;
if dir =1 then
tcurr — tz‘nc;
tzu’l“'l‘ A t;'nnc;
end
else
tcurr — tdec;
tewrr ¥ iees
end
end
return ¢;

end

particular weight (peak) lying in between two interval points for which the classifier
produces better accuracy than the current one. So, we assert that decreasing the
size of interval or step size can lead to better classifier accuracy. Hence, instead of
starting with a fixed seed tuple, we choose various seed tuples and repeatedly perform

Hill Climbing over each of the seed points until the best results are obtained. For
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Algorithm 6: Extended Hill Climbing
Data: Seed tuple t, Kernel weight sum sum, Interval &k
Result: Final tuple ¢
0 [55"1;
t < ¢
" <+ 0;
w <+ 0;
for 1 <d< N do
for 1 <p<kdo
Wq < 0 *p;
t < dist_-rem(S — wy, d);
t - Constrained Hill Climbing();
1" <— classifier_accuracy(t);
if ¢" > t" then
t <« t;
< t";
end

end
end
return ¢;

determining convergence, we executed the experiment multiple times by varying
these seed points. Let say & number of intervals are considered in each direction.
Then the step size can be defined as 6 = [*{™]. Extended Hill Climbing is described
as Algorithm 6. We perform Hill Climbing with chosen seed points simultaneously

over all the features (indicated as Step 8 in Algorithm 6).

6.2 Experimental Setup

Our experiment is executed on 20 classes of PASCAL VOC’07 dataset! which was

collected for the PASCAL visual object classes challenge task. In this dataset, a total

1http://lear.imriadpes.fr/data/
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‘ Class ‘ Trainval Images ‘ Trainval Objects ‘ Test Images ‘ Test Objects ‘
Aeroplane 238 306 204 285
Bicycle 243 353 239 337
Bird 330 486 282 459
Boat 181 290 172 263
Bottle 244 505 212 469
Bus 186 229 174 213
Car 713 1250 721 201
Cat 337 376 322 358
Chair 445 798 417 756
Cow 141 259 127 244
Dining Table 200 215 190 206
Dog 421 510 418 489
Horse 278 362 274 348
Motor Bike 245 339 222 325
Person 2008 4690 2007 4528
Potted Plant 245 514 224 480
Sheep 96 257 97 242
Sofa 229 298 223 239
Train 261 297 259 282
TV Monitor 256 324 229 308

| Total | 5,011 | 12,608 4,952 | 12,032 |

TABLE 6.1: Statistics of PASCAL VOC’07 dataset

of 9,963 annotated images are present. The data is divided into two main subsets:
training/validation data (trainval), and test data (test), with the trainval data
further divided into suggested training (train) and validation (val) sets. For each
subset and class, the number of images (containing at least one object of the corre-
sponding class) and number of object instances are shown in Table 6.1. Each class
contains different numbers of training-test samples as depicted in Table 6.1. There
are a total of 5011 images in training set and the rest 4592 are test set images.
Available per class ground truth aids to judge class-wise classification efficiency.

MATLAB codes for different image feature extraction are also provided with the
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development kit. In our task we consider six image features (i.e. DenseHue, Gist,
hvecs32,Rgb, Harrisshift V3H1, LabV3H1) and one text feature which have been ex-
tracted by using above mentioned codes. The SVM classifier was borrowed from

Vedaldi and Fulkerson [89]. For experimental purposes, we fixed the sum = 100.

All of our experiments were carried out on a 64-bit Intel(R) Core(TM) i7-3770 3.40
GHz processor equipped machine having 6GB RAM and running 64-bit Windows 8.1
Pro. We used MATLAB R2011a (Version 7.120.635) to run the codes. For evaluation

we have considered average precision and Mean Average Precision (MAP) as metrics.

6.3 Results and Analysis

The experimental results are presented in Table 6.2. This table reflects the average
precision computed over each class corresponding to the test set of images. MAP
values are presented in the last row of the table. From, the figures depicted, it is clear
that Extended Hill Climbing is the best performing approach among all. When per
class performance is considered, except four classes (Bus, Car, Dining table, Horse),
extended version of Hill Climbing method outperforms all other methods. Even
among those four classes, Hill Climbing performs the best for “Dining table”. For
“Car” and “Horse”, the difference between precision of weighted combination and
extended Hill Climbing is at best minuscule. “Bus” class is an exception where

weighted average supersedes all other methods by a significant margin. For best
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Class Avg. combi- | Weighted Hill Climb- | Extended
nation avg. combi- | ing Hill Climb-
nation ing

Aeroplane 0.6050 0.8376 0.7840 0.8442
Bicycle 0.3090 0.5109 0.4830 0.5034
Bird 0.5120 0.6379 0.6600 0.7124
Boat 0.4180 0.3899 0.4420 0.5499
Bottle 0.0600 0.1264 0.1470 0.1763
Bus 0.3460 0.6113 0.4930 0.3947
Car 0.4960 0.6266 0.5430 0.6072
Cat 0.5970 0.3376 0.2420 0.6926
Chair 0.2790 0.3468 0.2910 0.3541
Cow 0.1850 0.3376 0.2420 0.4987
Dining Table | 0.2330 0.2854 0.2909 0.2904
Dog 0.5660 0.6135 0.5980 0.6324
Horse 0.5770 0.7586 0.6520 0.7524
Motor Bike | 0.3700 0.4868 0.4230 0.5937
Person 0.7390 0.7670 0.7530 0.7678
Potted Plant | 0.0590 0.2096 0.2310 0.2897
Sheep 0.2310 0.3679 0.3370 0.5623
Sofa 0.197 0.2096 0.2310 0.2427
Train 0.6700 0.7694 0.7420 0.7810
TV Monitor | 0.2200 0.2175 0.2870 0.3098

| MAP | 0.3835 | 0.4960 | 0.4586 | 0.5275

TABLE 6.2: Per class comparison of various combination approaches

performing classes such as “Sheep”, extended Hill Climbing exceeds weighted average

combination by 52.84% and average combination method by 143.41%.

The inability to exceed other approaches in those four classes could be attributed

to the fact that the step sizes that we considered for extended Hill Climbing were

whole numbers and hence coarse. We plan to carry out a detailed investigation with

finer step values as part of our future work.
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6.4 Discussion

Multimodal object classification involves identifying relevant features and then find-
ing an appropriate combination of them to achieve the best result. Often the features
have to be weighted based on their importance or discriminatory power towards
classification. Existing state-of-the-art proposes average combination and weighted
average combination of kernels to achieve this. We argue that an intelligent opti-
mization method such as Hill Climbing can fetch us better results. Since gradient
descent approaches like Hill Climbing have an inherent shortfall, we propose a mod-
ified version of the same named Extended Hill Climbing to ameliorate the same.
Using SVM as a classifier, we show through our experiments on a publicly available
standard dataset that our proposed approach significantly outperforms the other

existing combination methods in image classification task.



