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Solution of Riemann problem for ideal polytropic dusty gas

  

6.1 Introduction 

In recent years the solution of Riemann problem is widely used for the theoretical and 

numerical study of the system of conservation laws in ideal gasdynamics, non-ideal 

gasdynamics, magnetogasdynamics, reacting flows, shallow water theory etc. Riemann 

problem is an initial value problem for the one dimensional Euler equations 

supplemented by discontinuous initial data and its solution constitutes the basic building 

block for the construction of a solution to the general initial value problem (Glimm 

(1965)). The solution of the Riemann problem is composed of three waves, with always 

a contact discontinuity as the middle one while the other two are indifferently 

rarefaction or shock wave. If both external waves are rarefaction then it might occur to 

the formation of a vacuum region between two parts of the gas receding from each 

other. The Riemann problem for the ideal gas does not admit a solution in closed form. 

This has led several authors such as Godunov (1959, 1976), Chorin (1976), Smoller 

(1969), Gottlieb and Groth (1988), Quartapelle (2003) and Toro (1997) to develop 

iterative solution schemes to determine the different waves issuing from an initial 

discontinuity in the flow field variables. Two methods were first proposed by Godunov 

(1959, 1976), one based on a fixed point scheme and the other based on a higher order 

Newton’s iterative scheme, with a tangent parabola instead of a straight line. An 

experimental and numerical investigation of shock wave attenuation was studied by 
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Berger et al. (2015) in which they have focused on the dependency of the shock wave 

attenuation on a wide span of barrier geometries. In the case of Euler equations, the 

Riemann problem corresponds to the shock tube problem and for a detailed discussion 

of this, the reader is suggested to the book by Courant and Friedrich (1948). Lax (1963) 

solved the Riemann problem for the case when the initial data consisting of constant 

initial states 
*

l
U and 

*

r
U  are such that 

* *

l r
U U  is sufficiently small; here 

*U  is the 

vector of conserved variable with 
*

l
U  to the left of 0x  and 

*

r
U  to the right of 

0x separated by a discontinuity at 0x . Exact solution of the Riemann problem 

has been studied by Godunov (1959), Chorin (1976) and Giacomazzo and Rezzolla 

(2000). The special solution of Euler equations in which one of the Riemann invariants 

remains constant throughout the flow field is called a simple wave. In simple wave 

solution, wave breaks and the solution has to be complemented by the introduction of 

shock wave. When the shock strength is small (i.e. weak shock) and even moderate, 

jumps in entropy and the Riemann invariants are surprisingly small, see Whitham 

(1974). Exact solution of weak shock waves in gasdynamics was studied by Singh et al. 

(2011) for planar and nonplanar flows. The Riemann problem and elementary wave 

interactions of isentropic system in magnetogasdynamics were studied by Raja Shekhar 

and Sharma (2010, 2012) and Liu et al. (2013). Mentrelli et al. (2008) studied 

thoroughly the problem of interaction of waves originated from Riemann problem in an 

Euler fluid. The solution of Riemann problem in ideal and non-ideal isentropic 

magnetogasdynamics was studied by Sahadeb Kuila et al. see (2014, 2016). Further 

solution of Riemann problem in magnetogasdynamics was studied by Singh and Singh 

(2014) in which they solved the Riemann problem analytically without any restriction 

on initial states.  



 

 

                            Chapter 6: Solution of Riemann problem for ideal polytropic dusty gas 

91 

 

Dusty gas is a mixture of gas and small solid particles, where the volume of solid 

particles should not be more than 5% of the total volume of the gas. The study of 

Riemann problem in dusty gas is of great interest due to its wide application in gas 

dynamics (G. Rudinger (1980)). Miura and Glass (1983) studied theoretically the 

problem of propagation of shock wave through a dusty-air layer. Pai et al. (1980) 

studied the similarity solution of strong shock wave propagation in a mixture of a gas 

and dust particles. Further Chadha et al. (2014) studied the self similar solutions and 

converging shocks in a non-ideal gas with dust particles using Lie group transformation. 

Gupta et al. (2016) have used a direct approach to analyze the solution of the Riemann 

problem for a dusty gas flow. The main motivation of the present chapter is to study the 

Riemann problem for the unsteady one-dimensional motion of ideal polytropic gas with 

dust particles without any restriction on the initial states. Here we have derived the 

explicit expression for shock waves, rarefaction waves and contact discontinuities in 

terms of fluid flow parameters (density, velocity, and pressure). The existence and 

uniqueness of the solution of Riemann problem in a dusty gas is discussed. And also 

those cases are discussed which gives information about the existence of shock waves 

or simple waves for a 1-family and for a 3-family of curves in a dusty gas. Also the 

effect of dust particles on the density and velocity profiles, for the case of shock wave 

and rarefaction wave, is also discussed.  

6.2 Governing equations 

Here we assume that the particles are spherical, of uniform size, incompressible and 

occupy less than 5% of the total volume, their specific heat is constant and the 

temperature is uniform within each particle, collisions between particles of different 

sizes are not considered. It is also assumed that the particles are uniformly distributed 

over the cross section of the duct, the size and distance between particles are small as 
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compared with the cross sectional dimensions of the duct. The boundary layer effects 

and heat transfer with the duct walls are not considered, the particles are permanent i.e. 

no mass transfer takes place between the two phases. With the above assumptions, the 

governing equations describing a one dimensional planar flow of an ideal polytropic gas 

with dust particles may be written in the following form (Rudinger (1980), Miura and 

Glass (1983), Chadha (2014), Pai (1977)) 

0,t x xu u                                                                                                        (6.2.1) 

( ) 0,t x xu uu p   
 
                                                                                                (6.2.2) 

2
( ) 0,t x t x

p
E uE u 


                                                                                        (6.2.3) 

where u is the velocity,  is the density, p is the pressure, t  is the time and x  is the 

spatial coordinate. The subscripts denote partial differentiation unless stated otherwise. 

The internal energy E  per unit mass of the mixture is given by  

(1 )

( 1)

Z p
E







.                                                                                                            (6.2.4) 

Here, /sp gZ V V  is the volume fraction and /p sp gk m m  is the mass fraction of the 

solid particles in the mixture where spm and spV are the total mass and volumetric 

extension of the solid particles respectively, gV and gm are the total volume and total 

mass of the mixture respectively, the Grüneisen coefficient  

(1 ) / (1 )      ,with / (1 )p pk k   , /sp pc c  , /p vc c  , where spc  is the 

specific heat of the solid particles, pc the specific heat of the gas at constant pressure and 

vc  the specific heat of the gas at constant volume. The entities Z  and pk are related via 

the expression Z  , where /p spk  with sp is the specific density of the solid 

particles. 
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For a polytropic dusty gas, the equation of state is 

/

(1 )
vS c

p ke






 
  

 
,                                                                                                         (6.2.5) 

where k ,
vc and   are positive constants.  

Using equation (6.2.4) in equation (6.2.3) we get  

0
(1 )

t x x

p
p up u

 


  


.                                                                                    (6.2.6) 

Thus equations (6.2.1), (6.2.2) and (6.2.6) can be written as 

0t x xu u      ,                                                                                                 (6.2.7)               

1
0t x xu uu p


   ,                                                                                                   (6.2.8) 

0
(1 )

t x x

p
p up u

 


  


.                                                                                    (6.2.9)  

Equations (6.2.7)-(6.2.9) can be written in matrix form as 

0t xU AU  ,                                                                                                         (6.2.10) 

where 

2

0

and 0 1/

0

u

U u A u

p C u

 





  
  

    
     

, with 2 .
(1 )

p
C

 





 

The eigenvalues of the matrix Aare 

1 u C   ,
2 u     and

3 u C   ,                                                                         (6.2.11) 

where C  is the velocity of sound and is given as   
1/2

(1 )C p      and the 

corresponding eigenvectors are 

1 1

C

K

C





 
 


 
  

,   
2

1

0

0

K

 
 


 
  

   and   
3 1

C

K

C





 
 


 
  

.                                                    (6.2.12) 
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Since all the eigenvalues of the matrix A  are real and distinct, hence the system of 

equations (6.2.10) is strictly hyperbolic. 

 6.3 Riemann problem and the generalized Riemann invariants  

Equation (6.2.10) can be written in conserved form as 

* *( )
0

U F U

t x

 
 

 
,                                                                                            (6.3.1)  

where   * 2, , 2
tr

U u u E    ,   * 2 2( ) , , 2
tr

F U u p u u u E pu       

with  (1 ) ( 1)E Z p     . 

Since, in a hyperbolic system each characteristic field is either linearly degenerate or 

genuinely non-linear according as 0i

iK   and 0i

iK   respectively. Clearly, from 

equation (6.2.10) first and third characteristic fields are genuinely non-linear and hence 

will be either a shock or rarefaction, while second characteristic field is linearly 

degenerate and hence will be contact discontinuity. Here we consider only the case 

when wave is associated with the characteristic field which is either a shock or 

rarefaction. 

The Riemann problem for the system of equation (6.3.1) is an initial-value problem with 

data of the form  

*

* *

0 *

, 0
( ,0) ( )

, 0

l

r

U x
U x U x

U x

 
  



,                                                                                (6.3.2) 

where *

lU and *

rU  are left and right constant state as defined in equation (6.3.1) and 

0x  is point of discontinuity. The exact solution of the Riemann problem (6.3.1) and 

(6.3.2) has three waves, which is associated with the eigenvalues 
1 u C   , 

2 u   and 

3 u C    as shown in fig. (1).We shall solve this problem for the class of functions 

consisting of constant states, separated by either shock or rarefaction waves. 
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Also, the pressure ( p ) is a function of density (  ) and entropy ( S ) i.e., 

( , )p p S .                                                                                                              (6.3.3) 

Now for the system of equation (6.3.1) the pair of Riemann invariants  1 2,j j  1,3j   

can be defined as follows: 

Across 
1 ( )u C   characteristic field we have 

/ 1

d du dp

C C



 
 

 
.                                                                                                (6.3.4) 

From equation (6.3.3) and (6.3.4) we have  

1

1 S    ,        
 

 1

2

2
1

1

C
u    


.                                                                   (6.3.5) 

Also across  3 u C   characteristic field we have  

/ 1

d du dp

C C



 
  .                                                                                                     (6.3.6) 

From equation (6.3.3) and (6.3.6) we have  

3

1 S   ,        
 

 3

2

2
1

1

C
u    


.                                                                    (6.3.7) 

The first and third Riemann invariants are given by equation (6.3.5) and (6.3.7). 

Now the one parameter families of shock, simple waves, and contact discontinuities will 

be computed. Since the expressions which we shall obtain are explicit, therefore 

normalization condition is not required to make the analysis easier.   
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Fig.6.1 Structure of the solution of the Riemann problem in the x-t plane for 1-  

             dimensonal Euler equations.  

 

6.4 Shock waves 

Shock waves are piecewise constant discontinuous solutions, satisfying Lax entropy 

condition, that propagate at a velocity dependent on the states existing on the two 

sides of the jump. The conservation variables must satisfy the Rankine-Hugoniot jump 

conditions. Let *

1U and *

2U denote the left and right states of either shock wave or 

rarefaction wave or contact discontinuity, i.e.  

     * * * *

2 1 2 1F U F U U U   . 

Thus we have the jump conditions for the system (6.3.1) as 

   u     ,                                                                                                           (6.4.1) 

  2u p u      ,                                                                                                  (6.4.2) 

   2 22 2u E pu u u E        
     ,                                                               (6.4.3) 

where   is the shock velocity. 

Now we shall rewrite above equations in a more convenient form by introducing the 

variables v u   and m v , we have  

  0m   ,                                                                                                                    (6.4.4) 
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  0p mv   ,                                                                                                            (6.4.5) 

 
  2 22
1 0

1
m C Z Z v
 

    
  

.                                                                  (6.4.6)   

The Lax entropy condition is given as  

   * *

1 1 1k kU U        ,      * *

2 1 2k kU U       ,  1,3k   .                             (6.4.7) 

We now see what further implication comes from the shock inequalities, knowing that 

they hold all along the shock curve. 

From equation (6.4.7) for 1-shock waves we have 
1 1u C   and

2 2 2u C u   , 

which implies that 
1 1C v  and  

2 2 20 v C v      respectively. Therefore for 1-shock 

wave we have  
1 1C v  and 

2 20 v C   which implies that 
1u 

 
and 

2u  . Thus the 

gas speed on both sides of the shock is greater than the shock speed, so for 1-shock, 

particles cross the shock from left to right. Similarly in the case of 3-shock waves we 

have 
1 1 1u u C    and 

2 2u C   , therefore for 3-shock we have 
1u  and

2u  . 

Thus for 3-shock waves the shock speed is greater than the gas speed on both sides of 

the shock, therefore particles cross a 3-shock from right to left. 

Note that for both the shock families (i.e. 1-shock and 3-shock) 
1 0v   and 

2 0v 
 
so 

1 1 2 2 0m v v    . Since for 1-shock, we have 
1 1 0v C   and  

2 2 0C v   which 

implies that 2 2

1 1v C  and 2 2

2 2C v . While for 3-shock, we have  
1 1 0v C    and  

2 2 0C v    which implies that 2 2

1 1v C  and 2 2

2 2C v  respectively. Thus in both the 

shock families we have 2 2

1 1v C and 2 2

2 2C v . Since 0m   so from equation (6.4.6) we 

obtain  

 
  

 
  2 2 2 2

1 1 1 1 2 2 2 2

2 2
1 1

1 1
C Z Z v C Z Z v      

   
.                     (6.4.8) 
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Using   2 2

1 1v C and 2 2

2 2C v , above equation yields 

 
  

 
  2 2 2 2

1 1 1 1 2 2 2 2

2 2
1 1

1 1
C Z Z C C Z Z C      

   
.                    (6.4.9) 

Hence from the above equation we have 2 2

2 1C C  and thus 2 2

1 2v v  which implies that 

2 1C C  and 1 2v v  respectively. 

Since  m v  is constant i.e.  
1 1 2 2v v 

 
implies that 

2 1  . Also from equation 

(6.4.5) we get 
2 1p p .Thus for 1-shock wave we have 

2 1   and 
2 1p p . Similarly 

we can easily prove that for 3-shock wave 
2 1  and 

2 1p p .Therefore both the 

shock waves are compressive waves in nature. 

We now explicitly calculate the one parameter family of shock waves. We begin with 1-

shock and define the constants 

2 1p p  ,     
2 1   ,         1 1      ,     1 2     .                    (6.4.10) 

Clearly here  1   and 1  . 

 Since    2 1C p Z      where Z   therefore we have 

 
 

2

12

1 2

1

1

ZC

C Z





 
 

 
 ,        where  

1 1Z   and  
2 2Z  .                                     (6.4.11) 

Now for ideal gas equation we have   
1 1 2 2v v   which gives  

2 1 1v v  .                                                                                                             (6.4.12) 

Using equation (6.4.11) and (6.4.12) in equation (6.4.6) we get  

 
 

   

 

2

1 21
1 2

1

2
1

1 1

Z Zv
Z

C

 




        
   

.                                           (6.4.13) 

Also from equation (6.4.5) we have  

1 1 1 2 2 2p mv p m v   .                                                                                              (6.4.14) 



 

 

                            Chapter 6: Solution of Riemann problem for ideal polytropic dusty gas 

99 

 

Since  m v  and   2 1 /p C Z    therefore equation (6.4.14) yields 

  
 

2

11

1

1 1

1

Zv

C

 



  
 

  
.                                                                                      (6.4.15) 

Thus comparing equation (6.4.13) and (6.4.15) we get  

 

 
2

1

1 2 1

2 1

Z

Z

 


 

  


  
.                                                                                     (6.4.16) 

Note that this implies    and since 1   , we find  
1 2 1     .This gives a 

bound on the density 
2 in terms of 

1 . 

If we use equation (6.4.16) in equation (6.4.15) we get  

     

 

2

1 11

11
2

1 1 2 1

2
1 2 1

1

Z Zv

ZC
Z

   

   

     
 

          
  

.                                               (6.4.17) 

Let  12 1Z      ,  22 1Z      and using v u    the above equation yields 

       

  

1/2

2 1

1/2

1

2 1 1 1 1

2 1

u u

C

     

  

           
    

.                              (6.4.18) 

Equation (6.4.18) represents the change in velocity across a shock transition. Here 

positive sign represents for 1-shock and negative sign for 3-shocks. 

To make these somewhat more explicit, we introduce a new parameter  (Smoller 

(1994)) where  

log    ,                                                                                                            (6.4.19) 

Note that 2 1/ 1e p p     so that 0  . In terms of this parameterization, we have 

following formulas for 1-shock (recall that    1 / 1      ) 

2

1

p
e

p

   ,                                                                                                               (6.4.20) 
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 
2

1

1 e

e





 

  





 


 
   ,                                                                                            (6.4.21) 

       

  

1/2

2 1

1/2

1

2 1 1 1 1

2 1

e e eu u

C e

  



   

 

  



          
   
 

  .                      (6.4.22) 

Similarly we have the following formulas for 3-shock 

1

2

p
e

p

   ,                                                                                                                (6.4.23) 

 
1

2

1 e

e





 

  

 


 
  ,                                                                                              (6.4.24) 

       

  

1/2

1 2

1/2

2

2 1 1 1 1

2 1

e e eu u

C e

  



   

 

          
   
 

.                            (6.4.25) 

6.5 Simple waves

 
For a system of hyperbolic partial differential equations in 1-dimensional space, a 

centered rarefaction wave is a simple wave in which one family of characteristics are 

straight lines and the dependent variables are constant along characteristics. For a 

rarefaction wave the two constant states *

1U  and *

2U  are connected through a smooth 

transition in a thk  genuinely non-linear characteristic field and satisfy following 

conditions (i) the Riemann invariants are constant across the wave and (ii) the 

characteristics on the left and the right of the wave diverge i.e. 

   * *

1 2 , 1,3k kU U k   . We now calculate the simple wave curves. Here we 

consider only 1-simple waves; the details for 3-simple waves are analogous. 

Since the 1-Riemann invariant is constant on a 1-simple wave, we have  

2 1S S ,                                                                                                                     (6.5.1) 

and  
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 
 

 
 2 1

2 2 1 1

2 2
1 1

1 1

C C
u Z u Z    

 
  .                                                               (6.5.2) 

Since the gas is polytropic ideal with dust particle so we have equation of state as 

  /
1vS c

p ke  


  .                                                                                           (6.5.3) 

So from equation (6.5.1) and (6.5.3) we get  

2 2

1 1
2 2 2 2 1

1 1 1 1 2

1 1

1 1

p C Z Z

p C Z Z





 
 

         
        

        
 .                                                         (6.5.4) 

Also, from equation (6.5.2) we have  

   2 1 2
1 2

1 1

2
1 1

1

u u C
Z Z

C C

 
    
   

.                                                                     (6.5.5) 

But  
1 u C    must increase in a 1-rarefaction wave so (2) (1)

1 1  gives 

2 1 2 1u u C C   . Thus from equation (6.5.5) we have  

   2 1 2
1 2

1 1

2
1 1

1

C C C
Z Z

C C

 
    
   

, 

which gives  

2 2
2 1

1 1

2 2
0 1 1

1 1

C C
Z Z

C C

    
        

       
  .                                                          (6.5.6) 

From equation (6.5.6) we observe that
2 10 / 1C C  . Using this in equation (6.5.4) we 

get  

2

1

0 1
p

p
   .                                                                                                                (6.5.7) 

From equation (6.4.19), we have  

log    .                                                                                                              (6.5.8) 
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Note that, 
2 1/ 1e p p     .  So that 0  . Therefore we can write the formula for 

1-simple waves using equation (6.5.4) and (6.5.5) as 

2

1

p
e

p

   ,                                                                                                                 (6.5.9) 

2 2

1 1

1

1

Z
e

Z







 

  
 

 ,                                                                                                 (6.5.10) 

 2 1
1

1

2
1 1

1

u u
Z e

C


     

 .                                                                           (6.5.11) 

Similarly, for 3-simple waves we have the following formula 

1

2

p
e

p

 ,                                                                                                                  (6.5.12) 

1 1

2 2

1

1

Z
e

Z






 

  
 

 ,                                                                                                   (6.5.13) 

 1 2
1

2

2
1 1

1

u u
Z e

C


     

 .                                                                             (6.5.14) 

6.6 Contact discontinuities 

Contact discontinuities are the surfaces which separate two zones of different density 

and temperature. This type of wave comes from the linear degeneracy of the second 

characteristics family. There are no shocks or rarefaction waves in this family, but 

instead a one parameter family of contact discontinuities. In other words we can say that 

for a contact discontinuity the two constant states *

1U  and *

2U  are connected through a 

single jump discontinuity with speed 
2  in the second characteristic field, which is 

linearly degenerate and the following condition holds (i) the R-H jump condition 

     * * * *

2 1 2 1F U F U U U    and (ii) the parallel characteristic conditions 
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   * *

2 2 2 1 2U U    . Thus we have the following formulas for the one parameter 

family of contact discontinuities 

2

1

1
p

p
 ,                                                                                                                      (6.6.1) 

2

1

e



   ,            ,                                                                                   (6.6.2) 

2 1 0u u   .                                                                                                               (6.6.3) 

Now we can put together above formulas (i.e. of shocks, contact discontinuities and 

simple waves) for the one parameter families of curves as follows 

For the 1- family (either 1-shock or 1-rarefaction waves depending on the sign of ), 

R   

2

1

p
e

p

 ,                                                                                                                   (6.6.4) 

 
 

2

12
1

1

1
, 0

1

1
, 0

Z
e

Z
g

e

e











  


 








  
  

  
  

 
  

    ,                                                                (6.6.5) 
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  

       

  

1

1/22 1
1

1

1/2

2
1 1 , 0

1

2 1 1 1 1
, 0

2 1

Z e

u u
h e e eC

e



  





    


 



  




   

 
           

  
      

.(6.6.6) 

For the 2-family, R   

2 2
2 1

1 1

1, , 0.
p

e u u
p




                                                                                           (6.6.7)  
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For the 3-family (either 3-shock or 3-rarefaction waves depending on the sign of  ), 

R   

1

2

,
p

e
p

                                                                                                                     (6.6.8) 

 
 
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21
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









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
 


  

  
  

  
 

  

  ,                                                               (6.6.9) 
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h e e eC
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
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



    


 


   

 
           

  
      

. (6.6.10)  

Lemma (i):  '

1 0h    and    1 1

2
, 1

1
h R Z

 
     

. 

(ii)      /2 1
3 1 1

2

1

1

Z
h e h g

Z

  





. Where R  , while  
1h , 

3h  and 
1g  are defined 

by equations (6.6.6), (6.6.10) and (6.6.5) respectively. 

Proof: The proof of Lemma (i) and (ii) are completely straightforward and can be 

omitted.  

It is useful to write the above one parameter families of curves in a general notation and 

for this let us consider transformations 
( ) , 1, 2,3iT i   as  

       (1)

1 1, , , ,T p u g e p u C h

      , 

   (2) , , , , ,T p u e p u

    

      (3)

3 3, , , ,T p u g e p u C h

      , 
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where the 's

ig  and 's

ih are defined as above. Note that in this notation, we really mean 

that the state  , ,p u  can be connected to the state 
( )iT , by an i -shock or i -rarefaction 

wave if 1i   or 3 and 0   or 0  , respectively, and if 2i  , it can be connected to 

the  state 
(2)T  by a contact discontinuity . 

Theorem 1: Consider the system of equations (6.2.10) for an ideal polytropic dusty gas 

whose equation of state is given by (6.2.5). Let  1 , ,U p u  and  2 , ,U p u  be any two 

states which is not necessarily closed, then there is a unique solution (in the case of 

shocks, centered rarefaction waves and contact discontinuities separating constant 

states) to the Riemann problem with these initial states, if and only if  

  2 1 1 2 1

2
1

1
u u Z C C   


.                                                                             (6.6.11) 

And if equation (6.6.11) is violated, then a vacuum is present in the solution. 

Proof: let us consider two states
1U  and 

2U  which is defined as  1 1 1 1, ,U p u ,  

 2 2 2 2, ,U p u . To solve the Riemann problem with this data means we have to find 

the real numbers
1 , 

2  and 
3  for which  

 
3 2 1

(3) (2) (1)

2 1U T T T U   .                                                                                             (6.6.12) 

So from equation (6.6.12) clearly we get 

   

 
 
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 

2

3 1

1 2

1 1 3 3 12

2 1

1/2
2

1 1 1 1 3 3

1 1

g e g

p e p

u
e

u C h h
g



 

 

  

 




 

 
 
 

   
       

     
           

.                                                   (6.6.13) 

Let us define  
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2

1

M



 ,     2

1

p
N

p
 ,    and   2 1

1

u u
Q

C


 .                                                             (6.6.14) 

From the second component of equation (6.6.13) we have  

3 1 log N   .                                                                                                      (6.6.15) 

The first component of equation (6.6.13) gives 

   2

1 1 3 3g e g M   ,                                                                                           (6.6.16) 

and from the third component of equation (6.6.13), we have  
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 
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1 1 3 3
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e
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 


  
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 
.                                                                          (6.6.17) 

Using the fact 
1 3 1g g   and equation (6.6.16) in equation (6.6.17), we have 

 
 

 
1

1/2

1 1 3 3

1 3

e
Q h h

M g



 


 
    

 
.  

Now using Lemma (ii) in above equation we get 

 
 

 
3 1

1/22

1
1 1 1 3

2

1

1

Ze
Q h h

ZM

 

 
  

   
 

.                                                                (6.6.18) 

In view of equation (6.6.15) equation (6.6.18) can be written as 

   1
1 1 1 1

2

1
log

1

ZN
Q h h N

M Z
 

 
   

 
.                                                            (6.6.19) 

Now Lemma (i) shows that this equation (6.6.19) has a unique solution if and only if  

 

1/2

1
1

2

12
1 1

1 1

ZN
Z Q

M Z

   
           

.                                                                 (6.6.20) 

This on simplification gives us 

  2 1 1 2 1

2
1

1
u u Z C C   


.                                                                             (6.6.21) 
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Now we can find 
1  from equation (6.6.19), then 

3  from equation (6.6.15), and finally 

equation (6.6.16) gives us 
2 . Further if equation (6.6.11) is violated, then the relative 

velocities on both sides of states are so large that a vacuum is formed. Thus we place a 

vacuum  0   between the two parts of the gas, and the other variables are left 

undefined. This completes the proof of the theorem. 

Now we will prove how these methods provide simple criteria for knowing which of the 

two possibilities, shock or simple wave, occur in 1-family and 3-family of curves. 

Corollary: Consider the solution of the Riemann problem obtained in theorem1. Then 

the following condition holds: 

(a) The first component of the solution will be a simple wave if and only if  

   1 1
1 1

2 2

1 12
log 1 1

1 1 1

Z ZN N
h N Q Z

M Z M Z

     
       
       

, 

and will be a shock otherwise.  

(b) The third component of the solution will be a simple wave if and only if  

     1
1 1

2

12
log 1 1

1 1

ZN
h N Q Z

M Z

  
       
    

. 

and will be a shock otherwise. Where M , N  and Q  are defined as in equation 

(6.6.14). 

Proof: The right hand side inequalities in both (a) and (b) have already been proved in 

theorem1 so there is no need to prove once again. Now our main aim is to prove the left 

hand inequalities of (a) and (b). We consider first the 1-family. 

Let      1
1 1

2

1
log

1

ZN
h h N

M Z
   

 
   

 
,  then    1

1

2

1
0 log

1

ZN
h N

M Z


 
  

 
 

and 0    . Thus equation (6.6.19) shows that the 1-wave is a simple wave if and 
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only if  0Q   i.e.  1
1

2

1
log

1

ZN
Q h N

M Z

 
  

 
, Thus this proves (a). Now for (b) 

we use equation (6.6.15) in equation (6.6.19) to get 

   1
1 3 3 3

2

1
log

1

ZN
h N h Q

M Z
 

 
   

 
.                                                           (6.6.22) 

Equation (6.6.22) shows that 3-wave is a simple wave if and only if  1 logQ h N  . 

This completes the proof of the corollary.  

6.7 Results and discussion 

The analytical solution of the Riemann problem for the quasilinear hyperbolic system of 

equations of an ideal polytropic dusty gas, that is, shock waves, rarefaction waves and 

contact discontinuities are obtained. It is observed that in the absence of dust particles 

(i.e., 0  ) the results obtained are identical with the earlier results derived for an ideal 

gas and non-magnetic case (Singh and Singh (2014a), Smoller (1994)). The density and 

velocity profiles for compressive waves (1-shock and 3-shock) and rarefaction waves 

(1-shock and 3-shock) versus  (psi) (where   is defined earlier as log    ) are 

plotted in Figs. (2)-(9) using MATLAB for different values of mass fraction of dust 

particles pk  in the gas.  

The values of the constants appearing in the computations are taken as  

1.4  , 0.8  ,
1 0.03Z  , 

2 0.04Z  ,
 pk = 0.0, 0.2, 0.4, 0.6.  

It may be noted here that the velocity profiles for 1-shock of compressive wave is 

concave upward while for 3-shock wave it is convex upward. Also the velocity profile 

for 1-shock of rarefaction wave is convex upward and for 3-shock it is concave upward. 

Further the density profiles for both the compressive waves as well as rarefaction waves 

are concave upward in nature. From the figures it is clear that the lines corresponding to 
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increasing values of 
pk  move away from the line of exact solution of the Riemann 

problem for ideal case ( 0pk  ). Further the effect of increasing values of  
pk  is to 

increase the density and velocity for compressive 1-shock wave whereas the same effect 

of pk produces opposite trend in density and velocity profiles in case of compressive 3-

shock wave. It is also observed that the effect of increasing values of  
pk  on the density 

and velocity profiles for rarefaction wave (1-shock and 3-shock) produces opposite 

trend. The reason for the effects obtained in the solution profiles is due to that the 

increasing values of pk  causes the Grüneisen coefficient  to decrease which results in 

the  obtained behaviour of density and velocity profiles of 1-shock wave , 3-shock wave 

and 1-rarefaction wave and 3-rarefaction wave. Therefore, from the figs. (2)-(9) it may 

be concluded that the solution of the Riemann problem depends significantly on the 

presence of dust particles in the gas.    
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Fig.6.2 Density profile for compressive waves: 1-shock 

 
 
 

 
Fig.6.3 Density profile for compressive waves: 3-shock 
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Fig.6.4 Velocity profile for compressive waves: 1-shock 

 
 

 

 
Fig.6.5 Velocity profile for compressive waves: 3-shock 
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Fig.6.6 Density profile for rarefaction waves: 1-shock 

 
 

 

 
Fig.6.7 Density profile for rarefaction waves: 3-shock 
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Fig.6.8 Velocity profile for rarefaction waves: 1-shock 

 
 
 

 
Fig.6.9 Velocity profile for rarefaction waves: 3-shock 
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6.8 Conclusions 

In the present chapter the analytical solution of the Riemann problem for the quasilinear 

hyperbolic system of equations of an ideal polytropic dusty gas i.e., 1-shock waves (1-

simple waves) and 3-shock waves (3-simple waves) is presented without any restriction 

on magnitude of the initial states. A necessary and sufficient condition for the existence 

of a unique solution to the Riemann problem in dusty gases is derived. Also those cases 

are discussed which gives information about the existence of shock waves or simple 

waves for a 1-family and for 3-family of curves. It is observed that the presence of dust 

particles in an ideal polytropic gas exhibits more complex expression as compared to 

the corresponding ideal case, however all the parallel results remain same. It is also 

shown that the results obtained are identical for the case of an ideal polytropic gas 

without dust particles.  

 


