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Evolution of weak shock waves in non-ideal 

magnetogasdynamics

  

4.1 Introduction 

A large number of physical phenomena taking place in the nature are described by 

means of mathematical models represented by hyperbolic system of partial differential 

equations see (Whitham (1974), Anile et al. (1993), Sharma and Venkatraman (2012)). 

In non-linear systems, study of discontinuity waves i.e. shock waves, acceleration 

waves, weekly non-linear waves are of great importance due to its applications in 

Gasdynamics. As discontinuities in the form of shock waves are natural phenomenon in 

various astrophysical situations e.g. supernova explosions, stellar winds, photo ionized 

gas, collision between high velocity clumps of interstellar gas, collision of two or more 

galaxies etc. and non-idealness of the gas with Magnetohydrodynamics applies to many 

conducting fluids and plasma flows encountered in nature as well as in industrial 

applications. In past, several approaches have been used to investigate the asymptotic 

properties of weakly non-linear waves and propagation of waves in different material 

media, governed by quasilinear hyperbolic system of equations (Sharma (2010), Hunter 

(1995)). A remarkable attention on small amplitude non linear progressive waves has 

been drawn by Choquet-Bruhat (1969) in which they have considered a shockless 

solution of system of hyperbolic partial differential equations that depends on a single 

phase function. Authors such as Germain (1971), Fusco (1982), Fusco and Engelbrecht 
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(1984) and Sharma et al. (1987) used the perturbation technique to analyze the non 

linear wave propagation in various material media. Hunter and Keller (1983) presented 

the Ray method, to determine a small amplitude high frequency wave solution of 

system of quasilinear hyperbolic partial differential equations.  

If temperature of the gas is very high and density is too low, the assumption that the gas 

is ideal is no longer valid; therefore the alternative to the ideal gas is a simplified van 

der Waals model. The study of shock related phenomena through a non-ideal gas is of 

great technical interest in many industrial applications such as chemical processes, 

nuclear reactions and aerospace engineering and science etc. In recent years several 

studies have been performed related to the problem of strong shock by using the 

modified van der Waals gas (Wu and Robert (1996), Pandey and Sharma (2007)). The 

study of shock related phenomena in van der Waals fluids is more complex than the 

ideal gas fluid. For physical meaning of van der Waals gas and its influence on motion 

of waves, see (Thompson (1971), Cramer and Sen (1987)). Zhao et al. (2011) has 

studied a complete classification of shock waves and shock splitting phenomena 

together with their admissibility in van der Waals fluids. Further, the theory of 

progressive wave is used to study the finite and moderately small amplitude 

disturbances in non ideal gas modelled by van der Waals equation of state (Ambika et 

al. (2014)). Singh et al. (2011) studied the problem of propagation of acceleration waves 

along characteristics by using the characteristics front under the assumption that the 

intermolecular force between the particles of the gas is absent. 

 The motion of inviscid, infinite electrically conducting, van der Waals fluids in the 

presence of a magnetic field is responsible for a number of outstanding phenomena such 

as in astrophysics, high speed flow and plasma physics (Robert (1967), Pai (1992)). A 

number of studies have been done by considering simplified models such as covolume 
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magnetogasdynamics (Singh et al. (2015, 2011, 2014)). A symmetric perturbation 

scheme is used to study the propagation of weak shock waves in non-uniform radiative 

magnetogasdynamics by Singh et al. (2010). Further evolution of weak discontinuities 

in radiative magnetogasdynamics has been studied by Singh et al. (2011). Also Jena et 

al. (2013) have studied the existence and interaction of acceleration wave with a 

characteristic shock in transient pinched plasma. 

 In this chapter an asymptotic approach is used to study the propagation of weakly non 

linear waves in a non-ideal gas with infinite electrical conductivity modelled by van der 

Waals equation of state permeated by a transverse magnetic field. An evolution 

equation, characterizing the wave process in a high frequency domain is derived. Also 

the growth and decay behaviour of disturbances in the form of sawtooth profile in 

planar and cylindrically symmetric flows are discussed. Further the influence of the van 

der Waals gas parameters and magnetic field on the wave profiles is evolved. Also a 

remarkable difference in length of sawtooth profile and velocity profile of sawtooth 

wave in planar and nonplanar flows have been studied.    

4.2 Governing equations 

We consider a general class of real gases whose equation of state is given by 

  2p a V V b RT   ,                                                                                          (4.2.1) 

where p  is the pressure, V  is the volume, R  is the universal gas constant, T  is the 

absolute temperature. Here the constant a  denotes the amount of intermolecular force 

of attraction between the particles, and b denotes the neglected volume which is 

associated with the volume of the gas. It is well known that the gases behave like real 

gases at low temperature and high pressure. For given equation of state (4.2.1), the 
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internal energy E , in view of  1 VR C   where 
VC  is the specific heat at constant 

volume, can be written as  

    

 

2 21 1

1

p a b a
E

   

 

   



,                                                                       (4.2.2) 

where   is the density of the gas and   is the adiabatic index. Note that, if we put the 

constant a  and b  equals zero, then the equation of state (4.2.1) for real gases turns to 

the equation of state for ideal gas equation. 

The governing equations for one dimensional unsteady motion of a non-ideal gas with 

infinite electrical conductivity modelled by van der Waals equation of state in presence 

of transverse magnetic field may be written as (Wu and Robert (1996), Korobeinikov 

(1976)) 

0t x xu u mu x       ,                                                                                    (4.2.3) 

  0t x x xu uu p h     ,                                                                                        (4.2.4) 

 2 0t x xp up c u mu x    ,                                                                                 (4.2.5) 

 2 0t x xh uh h u mu x    ,                                                                                    (4.2.6) 

where u is the fluid velocity, 2 2h H  is the magnetic pressure with H as the 

magnetic field strength,   is the magnetic permeability, t  is the time , x  is the spatial 

coordinate and c  is the speed of sound in real gases modelled by van der Waals 

equation of state and is given as  

     
1/2

2 2 2 1c p a b b          .                                                           (4.2.7) 

In system of equations (4.2.3)-(4.2.6) the letter subscript denotes partial differentiation 

unless stated otherwise. Also m  takes value 0  for planar flow and 1 for cylindrically 

symmetric flow. 
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Equations (4.2.3)-(4.2.6) may be written in a matrix form as 

0t xU AU B   ,                                                                                                     (4.2.8) 

where  

u
U

p

h

 
 
 
 
 
 

, 

1 1

2

0 0

0

0 0

0 2 0

u

u
A

c u

h u



 



 

 
 
 
 
 
  

  and
2

0

2

m u x

B
c mu x

hmu x





 
 
 
 
 
  

.                                     (4.2.9) 

The system of equations (4.2.8) is hyperbolic in nature and the coefficient matrix A   

have eigenvalues u w , ,u u  and u w . Here   
1/2

2 2w c e   is the magneto sonic 

speed, where  
1/2

2e h  is the Alfvén speed and 

    
1/2

2 2 2 1c p a b b          
 

 is the speed of sound in real gases 

modelled by van der Waals gas. The left and right eigenvectors of A  corresponding to 

the eigenvalue u w  are 

 0, , 1, 1l w  ,    2 21, , ,Tr w c e  ,                                                             (4.2.10) 

where superscript represents transposition 

 4.3 Progressive wave solution 

Equation (4.2.8) can be written as  

0i i j i i

t xU A U B    ,      , 1,2,3,4i j                                                                       (4.3.1) 

where iU , 
i jA  and 

iB  are the components of the column vector of U , A , B  

respectively. 

Here we are looking for asymptotic solutions of equation (4.3.1), exhibiting the features 

of progressive waves. Let us consider the following asymptotic expansion 

       2 3

0 1 2, , , , ,i i i iU x t U U x t U x t O        ,                                                (4.3.2) 
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where 
0

iU  is known uniform solution of equation (4.3.1) such that  0 0iB U  , while all 

the terms associated with equation (4.3.2) are of progressive wave nature. The value of 

  depends on the physical problem to be studied here.  Suppose 
chr  is the 

characteristics time scale of the medium and 
at  is the attenuation time, then we define 

parameter 1chr at    . Here the variable   is a “fast variable” and defined as 

 ,f x t  , where  ,f x t  is a phase function which is to be determined latter. Note 

that the case 1  , which corresponds to the condition in which the characteristics 

frequency of the medium is much greater than the attenuation frequency of the signal, 

characterizing a high frequency propagation condition (Seymour and Varley (1970)). 

Introducing the Taylor’s series expansion of 
i jA  and 

iB  in the neighborhood of the 

known uniform solution 0

iU  and using equation (4.3.2), we have 

   2

0 1
0

i j i j i j k kA A A U U O      ,                                                                    (4.3.3) 

   2

0 1
0

i i i k kB B B U U O      .                                                                        (4.3.4) 

Now using equations (4.3.2)-(4.3.4) in equation (4.3.1) and collecting the coefficients of 

0  and 1 , we have the following equations 

 0 1 0i j i j

jA U     ,                                                                                           (4.3.5) 

        

     

1

0 2 1 0 1

1

1 1 1
0 0

0

i j i j i i j j

j

k i j k j k i k

A U U t A U x f x

U A U U f x U B U

 







        

        
,                                       (4.3.6) 

where t xf f   , 
i

j  is the Krӧnecker delta and the subscript 0 means the quantity 

involved is evaluated at uniform state 
0U . Equation (4.3.5) gives the characteristics 

polynomial  2 2 2

0 0w    , providing nonzero eigenvalues 
0w  of

0A . Considering 
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the velocity 
0w   the corresponding left and right eigenvectors of 

0A
 
are given by 

equation (4.2.10) with subscript 0. In view of equation (4.3.5) we observe that 1U    

is collinear to 
0r  and therefore 

1U  may be written as  

     1 0, , , , ,U x t x t r x t    .                                                                            (4.3.7) 

Equation (4.3.7) represents the solution of equation (4.3.5). Here  , ,x t   is the 

amplitude factor which is to be determined latter and the 
i  (the components of the 

column vector ) are integration constants which are not of progressive wave nature 

and therefore can be omitted. The phase function  ,f x t  may be found as 

0 0t xf w f  .                                                                                                            (4.3.8) 

If   0,0f x x x  ,  then equation (4.3.8) gives 

  0 0,f x t x x w t   .                                                                                               (4.3.9) 

Further multiplying equation (4.3.6) by 0

il , and using equation (4.3.9) in the resulting 

equation we get, the following evolution equation for   

0 0 0
 

   
 

 
  

 
,                                                                                         (4.3.10) 

where 
0t w x         is the ray derivative taken along the ray direction and the 

value of 
0 , 

0  is given as 

  
     

 

2 2

0 0 0 0 0

0 0
0

0 0 0

1 3 1 2 2 3
0

2 1

k k
c e b a b

u w U r
w b

    


 

     
     


,    (4.3.11) 

 0 0 0
0

0
0 0 2

j k
i k

i i

l r mw
B U

l r x
     .                                                                                (4.3.12) 
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Here the dimension of 1

0   is time and may be taken as having attenuation time 
at  

characterizing the medium. Equation (4.3.10) is the first order hyperbolic partial 

differential equation so one can find its characteristics curve as  

 

       
0 0 0 0

1/2

0 0 0 0 0 0 0 0

, , for 0

2 , 1 1 , for 1

x m

x w x w x m

   


    

  


 
   

 ,                       (4.3.13) 

where  0 0 0, |x     ,  0 0|f    and 
0 0|x x   .   

The existence of an envelope of the characteristic curves which is given by equation 

(4.3.13) gives us the evidence of the formation of a shock. It is evident that the shock is 

formed for 0   only by those characteristics for which 
0 0    . Also the shock 

formation time  shf  for planar    ( 0m  ), and cylindrical ( 1m  ) compressive waves 

turns out to be 

 

   

1

0 0

2

0 0 0 0 0

min , for 0

min 1 2 1 , for 1
shf

m

x w w x m

  


  

   


   
       

,                        (4.3.14) 

where the minimum is evaluated over an appropriate range of the quantity 
0x , 

0 . 

4.4 Acceleration waves 

The above analysis may be used to study the acceleration waves for the system of 

equations (4.2.3)-(4.2.6). Let us assume that, the curve  , 0f x t   represents the 

acceleration front and across such a front the velocity is continuous but its first order 

and higher order derivatives undergo finite jump discontinuities. In the neighborhood of 

the front, the velocity u  may be represented by the following expansion  

   2

1 , ,u u x t O    ,                                                                                           (4.4.1) 
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where 
1 0u   for 0   and  1u O   for 0  . Since 

1u  is an element of the column 

vector 
1U  given by equation (4.3.7), therefore we have (Germain (1971))  

 
   2

0, if 0
, ,

, , if 0
x t

x t O


 

  


 

 

,                                                               (4.4.2) 

with  0 0w   , where  u x     denotes the jump in velocity gradient across 

the acceleration front. 

Using equation (4.4.2) in equation (4.3.10) and then evaluating the resulting equation at 

the front 0  , we get a Bernoulli type equation  

2

0 0 0
d

dt


     ,                                                                                              (4.4.3) 

where  

       
10

0 0 0 02

0

21
1 1 3 2 3 1 1

2

a
b b b

c


    

 
          

 
,                 (4.4.4) 

with 2 2

0 0e c   as the Alfvén number , 
0 0 2mw x  , and the derivative d dt  of any 

quantity, which is assumed to be expressed on the front  , 0f x t  , is same as the 

ordinary time derivative of the quantity. On solving equation (4.4.3), we get  

 

    

0

0 0

1/2

0 0 0

1/2

0 0 0 0 0 0

, for 0
1

1
, for 1

1 2 1 1

m
t

w t x
m

x w w t x













  


  
 
    


,                                       (4.4.5) 

where 
0  is the value of   evaluated at 0t  . 

4.5 Weak shock waves

 
From the previous analysis it is evident that a compressive pulse, however weak 

initially, always culminates into a shock wave after a finite time. The flow and field 
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variables ahead and behind the shock denoted by the subscript 0 and 1 respectively and 

satisfy the following jump relations for the non-ideal magnetogasdynamics modelled by 

van der Waals gas equation (Korobeinikov (1976)) 

 1 0 1    ,  1 1u G   ,  
2

1 0 1h h   ,  

   
22

1 0 0 01 2p p G h         ,                                                                     (4.5.1) 

where   is the shock strength parameter and is defined as  1 0 0     , and G  is 

the shock speed. The parameter   and G  are related by the following expression  

 
  

        
    

2

0 0 0 0

2

0 0 0
2

0 0

2
2 1

1 1 2 1 2 1

2 1 1 1

c a b

e b b
G

b b

    


     

    

      
 
     
 

   
                             (4.5.2) 

For a weak shock 1  , from equation (4.5.1) and (4.5.2), we have the first 

approximation as 

 1 0 1    , 
1 0u w  ,      2

1 0 0 0 01 1 1 2p p b a b           ,          (4.5.3) 

and  

  0 01 2G w   .                                                                                                 (4.5.4) 

The conditions derived in equation (4.5.3) are used in further analysis.  

4.6 Decay of sawtooth profile 

The shock wave, after travelling a long distance becomes sufficiently weak so that one 

can apply the relations of weak shock waves obtained in equation (4.5.3) and (4.5.4). 

Here, we assume a weak shock wave at the beginning and study the propagation of 

disturbances given in the form of sawtooth profile. The left end of the shock profile 

located initially at 
0x  travels with the speed 

0w  of the undisturbed fluid, while the shock 

at the right located initially at 
0sx  moves faster. Let 

0L  is the initial length of the 
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sawtooth profile. Suppressing the subscript 1 notation, let us denote by u  and w  the 

state at the rear side of the shock, which at any time t  is located at 

   0s ox t x w t L t   , where  L t  is the length of the sawtooth profile at any time t . 

Then  

0
sdx dL

G w
dt dt

   .                                                                                                   (4.6.1)  

Further, from second part of the equation (4.5.3) and equation (4.5.4) we get 

0
0

2

u
G w


  .                                                                                                          (4.6.2) 

The velocity of fluid in the sawtooth profile with constant u x   may be described as 

 u L t ,                                                                                                                (4.6.3) 

where  
0 0x x w t

u x
 

    is the slope of the sawtooth profile at any time t , and is given 

by equation (4.4.5). 

Using equation (4.6.3) in (4.6.2) and on comparing to equation (4.6.1), we get 

  0

2

L tdL

dt

 
 .                                                                                                        (4.6.4) 

Let
0 , 

0L  and 
0G  are the values of  , L  and G  at time 0t   respectively. Then 

equation (4.6.2) and (4.6.3) evaluated at 0t   , gives the following relation connecting 

the values 0 , 
0L  and 0G . 

 0 0

0

0 0

2 G w

L






.                                                                                                      (4.6.5) 

Using equation (4.4.5) in equation (4.6.4), we get the length of sawtooth profile as 

 

     

1/2

0 0

1/2
1/2

0
0 0 0 0 0 0

1 , for 0

1 2 1 1 , for 1

t m
L

L x w w t x m





   


 
    



.                             (4.6.6) 
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In view of equation (4.4.5) and (4.6.6), equation (4.6.3) gives the velocity of sawtooth 

profile as 

 

       

1/2

0

1/2
1/2 1/2

0
0 0 0 0 0 0 0 0

1 , for 0

1 1 2 1 1 , for 1

t m
u

u w t x x w w t x m






  


 
     



,        (4.6.7) 

where 
0u  is the value of u  evaluated at time 0t  .   

4.7 Results and discussion  

In case of 0.0a  , 0.0b   and vanishing magnetic field the results obtained in 

equations (4.6.6) and (4.6.7) reduces to the ordinary gasdynamics results given in (Ziȑep 

(1978)). The length and velocity profiles of sawtooth wave are plotted in figs. (1)-(8) 

for planar and cylindrically symmetric flows. The three sets of values of van der Waals 

parameter appearing in numerical computations are taken as (i) 0.0a  , 0.4 , 0.8  (ii) 

0.0b  , 0.3 , 0.6 . Figs. (1) and (2) represent the variation of length of sawtooth profile 

in a non-ideal gas without magnetic field for planar and nonplanar flows respectively. 

From the figures we observe that if we increase the value of b  (keeping a  fixed) the 

length of sawtooth profile increases which results in an early decay of shock while an 

increasing value of a  (keeping b fixed) causes to decrease the length of sawtooth 

profile as a result the decay of shock will be delayed. Also the length of sawtooth 

profile increases faster in case of planar flows as compared to the nonplanar flows. Figs. 

(3) and (4) represents the variation of length of sawtooth profile in planar and nonplanar 

flows in presence of magnetic field. From these figures we observe that the behaviour of 

the profiles remains same as in the absence of magnetic field. Figs. (5) and (6) 

represents the velocity profile of sawtooth waves in absence of magnetic field for planar 

and nonplanar flows. From these figures we observe that an increase in the value of b  

(keeping a  fixed) causes to decrease the velocity of wave, while an opposite trend is 
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noted in case of increasing the value of van der Waals parameter a (keeping b  fixed). 

Similar results are obtained in presence of magnetic field with non-idealness effect 

which is evident from figs. (7) and (8).  
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Fig.4.1 Variation of length of sawtooth profile in absence of magnetic field in planar 

case. 

 

 

 
 

Fig.4.2 Variation of length of sawtooth profile in absence of magnetic field in 

cylindrical case. 
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Fig.4.3 Variation of length of sawtooth profile in presence of magnetic field in planar 

flows. 

 

 

 
 

Fig.4.4 Variation of length of sawtooth profile in presence of magnetic field in 

cylindrical flows. 
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Fig.4.5 Variation of velocity of sawtooth profile in absence of magnetic field in planar 

flows. 

 

 

 
 

Fig.4.6 Variation of velocity of sawtooth profile in absence of magnetic field in 

cylindrical flows. 
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Fig.4.7 Variation of velocity of sawtooth profile in presence of magnetic field in planar 

flows. 

 

 

 
 

Fig.4.8 Variation of velocity of sawtooth profile in presence of magnetic field in 

cylindrical flows. 
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4.8 Conclusions 

In the present chapter an asymptotic approach is used to analyze the main features of 

weakly non-linear waves in a compressible, inviscid, non-ideal gas with infinite 

electrical conductivity modelled by van der Waals equation of state permeated by 

transverse magnetic field. The analysis leads to an evolution equation, which 

characterizes the wave process in a high frequency domain. The growth equation of an 

acceleration wave is recovered as a special case. Further, we consider a sufficiently 

weak shock at the front and study the propagation of disturbances in the form of a 

sawtooth profile. It is observed that, an increase in the value of van der Waals parameter 

b  at constant a  causes an early decay of sawtooth wave, while an opposite trend is 

observed for an increasing value of van der Waals parameter a  at constant b . However 

the presence of magnetic field causes to slow down the decay process as compared to 

nonmagnetic case.  

  


