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The Progressive wave approach analyzing the evolution of 

shock waves in dusty gas 

  

2.1 Introduction 

The ideal gas model has played an important role to study the shock wave phenomena. 

Many important and interesting results have been worked out using the ideal gas model 

while real gases are not exactly described by ideal gas model; there is always certain 

deviation, from the ideal gas model, in the behaviour of real fluids. The shock wave 

phenomena in real fluid exhibits richer behaviour than that of ideal gas model. In the 

last few decades, in non linear waves the theory of progressive wave has received a 

great attention from mathematical as well as physical points of view as it is associated 

with sonic boom problem in the field of aerodynamics. Several approaches have been 

developed to investigate the asymptotic properties of weakly non-linear waves and for 

the derivation of transport equation describing the wave phenomena governed by a 

hyperbolic system see (Cramer and Sen (1992), Kluwick and Cox (1998), Sharma 

(2010) and Hunter (1995)). The theory of relatively undistorted waves was first 

presented by Varley and Cumberbatch (1966) in which they have studied the non-linear 

wave phenomenon governed by non-linear system of equations. The theory of relatively 

undistorted waves depends on a scheme of successive approximations to the system of 

hyperbolic equations, which makes no assumption on the magnitude of the disturbance; 

it also gives an asymptotic expansion of the flow variable for outward going wave. This 
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method was further discussed in detail by Seymour and Mortell (1975) in which they 

have proposed an expansion scheme which generalizes the earlier study and was used in 

linear geometrical acoustics to account for the amplitude dispersion and shock 

formation. Again Seymour and Mortell (1975) have proved that the representation of 

high frequency waves in terms of modulated simple wave with slowly changing 

Riemann invariants, the parameter expansion technique of geometrical optics can be 

modified to finite amplitude waves. Further, the theory of simple modulated waves has 

been used by few authors such as Varley and Cumberbatch (1966), Varley and Rogers 

(1967) and Gupta et al. (1992) to discuss high frequency waves in different material 

media. The necessary idea underlying the theory of progressive waves may be found in 

(Whitham (1974), Germain (1971), Sharma et al. (1987), Courant and Hilbert (1962)). 

Also a parallel attempt, in the field of perturbation method has been done by Asano, T. 

Taniuti and some other associated authors see (Asano et al. (1970), Asano (1970), 

Taniuti et al. (1968)). N. Zhao et al. (2011) has presented a complete classification of 

shock waves in van der Waals fluids in which a theoretical understanding of shock 

related phenomena is developed in real fluids which cannot be accounted by the ideal 

gas model. A remarkable attention on evolution and propagation of weak shock waves 

in different material media has been drawn see (Nath et al. (2017), Singh et al. (2010, 

2011)). Radha et al. (1993) have studied the interaction of shock waves with weak 

discontinuities. Ambika et al. (2014) have used the theory of progressive waves to study 

the finite and moderately small amplitude waves in non-ideal gas.  

The dusty gas is a mixture of gas and small solid particles where solid particles do not 

occupy more than 5% volume of the total volume of the mixture. The study of shock 

waves in dusty gas is of great importance due to its wide application in industry, lunar 

ash flow, nozzle flow, bomb blast, propellant rocket, supersonic flight in polluted air 
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and many other engineering problems see (Miura and Glass (1983), Pai.et.al (1980), Pai 

(1977)). Anand (2014) have derived the Shock jump relations for the dusty gas 

atmosphere. When a shock wave is propagated through a gas which contains an 

appropriate amount of dust particles, the thickness of the wave, the pressure changes 

across the shock and the other features of the flow differ greatly from those which arise 

when the shock passes through dust free gas. Further Carrier (1958) has studied the 

feature of shock waves in dusty gases in which the plane steady decelerated flow of a 

dusty gas mixture is analyzed in an appropriate manner. The main motivation of the 

present work is to study the planar and radially symmetric flow of finite amplitude 

disturbances, small amplitude disturbances and evolution of shock waves in a dusty gas 

by using the theory of progressive waves. Further some specific cases, in which the 

initial disturbance is either a pulse or periodic wave, are considered to trace out the 

complete history of shock decay after its formation in a dusty gas.  

2.2 Governing equations 

The governing equations describing a one dimensional planar ( 0)m  , cylindrically 

symmetric ( 1)m  or spherically symmetric ( 2)m   flow of an ideal compressible fluid 

with dust particles may be written in the following form (Miura and Glass (1983), Pai et 

al. (1980), Pai (1977) and Jena et al. (1999)) 

0t x xu u m u x       ,                                                                                    (2.2.1) 

0t x xu uu p    ,                                                                                                  (2.2.2) 

 2 0t x t xE uE p u       ,                                                                               (2.2.3)      

where   is the density, u  is the velocity, p is the pressure, t  is the time and x  is the 

spatial coordinate. The subscripts denote partial differentiation unless stated otherwise. 

The internal energy E  per unit mass of the mixture is given as  
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 

 

1

1

Z p
E







 ,                                                                                                          (2.2.4) 

where sp gZ V V  is the volume fraction and p sp gk m m  is the mass fraction of the 

solid particles in the mixture while spm  and spV  are the total mass and volumetric 

extension of the solid particles respectively, gV  and gm  are the total volume and total 

mass of the mixture respectively,   is called Grüneisen coefficient and is defined as 

   1 1      ,  1p pk k    , sp pc c   and p vc c  , where spc  is the 

specific heat of the solid particles, pc is the specific heat of the gas at constant pressure 

and vc  is the specific heat of the gas at constant volume. The entities Z  and pk  are 

related via the expression Z  , where p spk   with sp  is the specific density of 

the solid particles. If we set 0Z  in equation (2.2.4) (i.e. the gas is free from dust 

particles) then equation (2.2.4) turns to the equation of state for an ideal gas. 

Using equation (2.2.4) in equation (2.2.3) we get 

 2 0t x xp up C u mu x    ,                                                                                (2.2.5) 

where C  is the sound velocity and is given by   1C p Z    .        

Now equations (2.2.1), (2.2.2) and (2.2.5) can be written in matrix form as  

0t xV MV N   ,                                                                                                      (2.2.6)    

where  V u

p

 
 


 
  

 ,  

2

0

0 1

0

u

M u

C u







 
 

  
 
 

  and   

2

0

m u x

N

C mu x





 
 

  
 
 

.   . 

The eigenvalues of the matrix M areu C , u  andu C . Since all the eigenvalues of 

the coefficient matrix M  are real and distinct therefore the system of equations (2.6) is 

strictly hyperbolic in nature. 
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2.3 Progressive wave approximation  

The solution vector V  of equation (2.2.6)  is said to define a progressive wave if there 

exist a family of propagating surfaces  , x t  , called wavelets, such that the 

magnitude of rate of change of fluid flow parameters  , u  and p with respect to x  for  

fixed wavelet  ,  x t  is very small as compared with the magnitude of the 

variation of the flow parameters with respect to x  for a fixed time t   (Germain (1971)). 

Such type of motion is clearly an extension of the theory of simple wave, where we can 

find a variables  , x t  such that the flow variables  , u  and p  can be expressed only 

in terms of  . This shows that the progressive waves, which we consider here, treated 

as slowly modulated simple waves. In order to determine a progressive wave solution, 

let us suppose a transformation from  ,x t to  ,x  through  , t T x . Then 

equations (2.2.1), (2.2.2) and (2.2.5) may be transformed in terms of  , u  and p  

through    , ,  x t x ,    , , u x t u x  and    , , p x t p x  respectively. 

 1 0         x t t x x xuT u T u u m u x ,                                                        (2.3.1) 

 1 0     x t x t x xuT u T p u u p  ,                                                                   (2.3.2) 

   2 21 0      x t x t x xuT p C T u u p C u mu x ,                                                (2.3.3)    

where   2 1C p Z    .         

Since the solution is supposed to be a progressive wave therefore, we 

have x x      .    

But in a progressive wave  x t xT , therefore above equation becomes    

x t      .                                                                                                    (2.3.4) 

Similarly as above, we can write  
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u x u t      ,                                                                                                    (2.3.5)       

p x p t     .                                                                                                     (2.3.6)   

Further if  /x O x  ,  /xu O u x  and  /xp O p x  then equations (2.3.1) - 

(2.3.3) can be written in a more convenient form as 

 1 0   x t t xuT u T  ,                                                                                            (2.3.7) 

 1 0  x t x tuT u T p  ,                                                                                          (2.3.8) 

  21 0  x t x tuT p C T u  ,                                                                                       (2.3.9) 

which, on simplification gives us 

 
1

 xT u C .                                                                                                         (2.3.10) 

From equation (2.3.10) we observe that the wavelets are nothing but the characteristic 

curves of system of partial differential equations (2.2.6). Using equation (2.3.10) in 

(2.3.7)-(2.3.9) we have  

2    C p C u .                                                                                              (2.3.11) 

Now in order to find the compatibility condition of system of equations (2.3.1)-(2.3.3), 

multiplying equation (2.3.2) by C  and then adding to equation (2.3.3), which gives 

the compatibility condition containing  , u , p  and their derivatives as  

   2 0x xC u p u C m u C x      .                                                                 (2.3.12) 

Let us suppose the region, in which the disturbance is propagating, is uniform and at 

rest characterizing as 0  , 0u  and 0p p . It is possible to choose the label of each 

wavelet   so that  t  at 0x x ; consequently assuming the boundary condition for 

 and T  to be  

    g , T ,  at  0x x ,                                                                               (2.3.13) 
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where g is a smooth bounded function i.e.  1g O . In the progressive wave 

approximation, in view of equation (2.3.11) we have  

    , ,  u x U x ,        , ,  p x P x .                                                (2.3.14) 

Using equation (2.3.14), equation (2.3.10) can be solved for  , t T x as  

   0

1

 
 


x

x
T dx

U F
.                                                                                  (2.3.15) 

Also, in view of equation (2.3.14), equation (2.3.12) can be solved for   as a function 

of x  and    

       
/2

0 


  
m

U g U g x x ,                                                                    (2.3.16) 

where   
 

0

F s
U ds

s





    ,     0
0

0

1

1

Z
P p

Z






 
   

    
  

 and  
 

 

1/2

1

P s
F s

s s

 
    

.  

where 
0 0Z  . From equation (2.3.15) it follows immediately that a shock first forms 

at a point sx x  on the waveletss , where sx  can be found from the solution of  

   

      0

222

1
1 0

2 1

 

    

   
  

    

s

s

x

x

P
dx

F Z U F
 .                                 (2.3.17) 

Equations (2.3.14)-(2.3.17) construct the desired modulated simple wave solution. 

Indeed the disturbance that propagates into a uniform region 0  , 0u  , 0p p  and 

is expressed by equations (2.3.14)-(2.3.17), can be obtained from equation (2.3.15), 

(2.3.16) and further density   can be found. With the help of   , velocity u  and 

pressure p can be obtained from equation (2.3.14). It is also evident from the equation 

(2.3.17) that the solution may break after running a finite length sx  depending on the 

dust particles . Now we shall investigate shock wave propagation into an undisturbed 

region with 0u   ahead of the shock. 
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2.4 Small amplitude disturbances  

For studying the flow pattern and its distortions explicitly, let us consider the disturbed 

flow as a perturbation of the uniform state, which is of the form 0 1     where the 

perturbed density 1  
is taken to be very small. Therefore from equation (2.3.14) we 

have   

    2

0 1 0, ,   p x p x F ,       1 0 0, ,   u x x F .                                      (2.4.1) 

With the assumption   0 1  g , the perturbed density 1  is given by  

    
/2

1 0,


  
m

x g x x .                                                                                      (2.4.2) 

Now equation (2.3.15) on integration, yields the perturbed wavelet as  

       0 0 1,       T x x x F g x ,                                                              (2.4.3) 

where    
 

 
0

1 22 3

0 0 0

1

2 1

p

F Z




 



,   

and 

 

0

1/2

0

0

0

0

, if 0,

2 1 , if 1,

log , if 2.

x x m

x
x x m

x

x
x m

x






 


  
     
    


 

 
 

  

From equation (2.4.3) we observe that for 1 0  , a shock forms on a compression 

wavelet   0  dg d  at a distances sx , given by 

 
 

1

at

1 



 
 

 
s

s

dg
x

d
.                                                                                     (2.4.4) 
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Equation (2.4.2) represents that, along the wavelets the perturbed density 1  is constant 

for planar flow ( 0m  ) and decay according to the power law in case of cylindrically 

symmetric ( 1m  ) and spherically symmetric ( 2m  ) flows. 

When a shock wave is formed it will separate the portions of the continuous region. 

Here we can use the following equal area rule to determine the location of the weak 

shock wave, see (Whitham (1974)) 

   
   2

1

1 2

2 1
2

 





   
    

 


g g
g d  ,                                                            (2.4.5) 

where 1  and 2  are the wavelets ahead of the shock and behind of the shock 

respectively. 

2.5 Evolution of shocks

 
To study the early history of shock decay after its formation on the leading wave 

front 0  , consider a special case in which the disturbance at the boundary 0x x  is a 

pulse defined as  

  0 0
0

0 0

0

0

0 , if 0,

sin , if 0 ,

0 , if  > .


 




  

  

      
 






F x
g

x F

x

F

                                                              (2.5.1) 

So with the help of equation (2.5.1), the progressive wave solution for a moderately 

small amplitude disturbance can be obtained from equations (2.4.1) and (2.4.2) as 

 
/2

2 0
0 0 0

0 0

, sin 



  
     

  

m

F x
p x p F

x x
,                                                              (2.5.2) 

 
/2

0
0

0 0

, sin



  
    

  

m

F x
u x F

x x
,                                                                           (2.5.3) 
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and  

 
/2

0
0 0

0 0

, sin   



  
     

  

m

F x
x

x x
.                                                                   (2.5.4) 

Also, from equation (2.4.3) we have 

     0
0

0 11 0 0

1 1
, sin 



 
     

 

F
T x x x x

F F x
.                                                 (2.5.5) 

While, the shock formation distance 0sx x  can be obtained from equation (2.4.4) as 

 

 

 

11

0 0

2

11

0 0 0

11

0 0

1 , if 0,
cos

1 , if 1,
2cos

exp , if 2,
cos








 



 

     


      

s

m
F x

x
m

x F x

m
F x

                                                                   (2.5.6) 

where 11   is a dimensionless constant quantity and is given by 

 

 
0

11

2 1

1

Z








 ,                                                                                                       (2.5.7) 

 with 0 0Z  . In view of equation (2.5.7) we observe that 11  will be positive for 

given   and 0 if  0 1   and will be negative if 0 1  , thus a shock forms (since 

0sx x ) on the leading wave front 0   (respectively on the trailing wave front 

  ). From equation (2.5.7) we have  

 
11

0

2

1Z





 


 
.                                                                                                      (2.5.8) 

Further for a shock of small strength i.e. for weak shock propagating into the disturbed 

region where  1 0 g  for 1 0  , in view of equation (2.5.1) and (2.5.5) we have 

from equation (2.4.5) as  
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 

1/2

2 0 11 0

0

sin 1
2





  
     

   

F x

x x
.                                                                                     (2.5.9) 

On using equation (2.5.9) in equation (2.5.4), the shock strength means i.e. jump in 

density can be obtained as  

 
   

1/2/2

11 0 11 0
0

0

2 1

m

x xx

x x x

 
  

 


   

           

.                                                            (2.5.10) 

From equation (2.5.10) we observe that the shock after its formation on 0   at the 

point 0sx x x   rises to a maximum strength at the point 1 sx x x  , where 1x  can be 

obtained from the solution of the following equation: 

     
1 /2

1

11 11

0 0 0 0

2 0

m
x x xx

m
x x x x

  
 

 
  

     
   

,                                             (2.5.11) 

and then decays ultimately in proportion to /2mx . 

Let us consider a special case in which a small disturbance is taken at the boundary 

0x x  having a periodic wave front which is given as 

   0
ˆsin  g ,                                                                                                (2.5.12) 

where 0   and ̂  is defined as 0 0̂  F x  and suppose the growth over one cycle 

ˆ0 2   so that in this case shock will first form on the wavelet ˆ    at a distance 

sx x close to 0x  which is obtained from the solution of equation (2.4.4). Here equation 

(2.4.3) and (2.4.5) are satisfied on the shock if  1 2
ˆ ˆ 2    and 1 2

ˆ ˆ 2   , where 

  can be obtained from the solution of the following equation: 

 
11 0sin x

x



 
 .                                                                                                         (2.5.13) 

 Therefore the discontinuity in   at the shock is given by  
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   
/2

0 02 sin
m

x x  


 ,                                                                                     (2.5.14) 

where x  and   satisfies the equation (2.5.13). From equation (2.5.14) we observe that 

the shock begins with zero strength corresponding to 0   at sx x . Here 
sx  can be 

obtained from the solution of equation (2.4.4).  The shock strength increases to 

maximum for m   at a point mx x  satisfying by following relation 

       
1 /2

11 0sin 2 sin cos 0
m

m m m m mm x x    
 

   .                                  (2.5.15) 

2.6 Results and discussion  

From equation (2.5.8) it is observed that 11  is a decreasing function of 0Z . Further 

from figure 2.1, which is plotted by using equation (2.5.7), we observe that 

when 11 0  , then for a given value of mass fraction of dust particles in the gas (i.e. 

pk ) an increase in 0Z  causes to decrease in 11 , as a result the shock formation 

distance  decreases i.e. shock forms earlier which is also evident from equation (2.5.6). 

Also from equation (2.5.6) it is observed that in case of nonplanar flow the shock 

formation is delayed as compared to the corresponding planar case.  The distortion of 

the pulse, which is given by equation (2.5.1), is shown in figures 2.2 and 2.3 for three 

sets of values of mass fraction of the dust particles (i) 0.0pk   (ii) 0.3pk   and (iii) 

0.6pk  . The value of the constants involved in the computation are chosen as 1.4  , 

0.8  , 0.04Z   and 0.35  . The effect of variation of mass fraction on the density 

for cylindrically symmetric and spherically symmetric flows is shown in the figures 2.2 

and 2.3 respectively. From the figures 2.2 and 2.3 we infer that an increasing 

(decreasing) value of the mass fraction of the dust particles causes to slow down 

(enhance) the flattening of the wave profiles as a result the shock formation distance 

decreases (increases) i.e. early (delayed) shock formation. Also the shock formation 
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distance increases in the case of nonplanar flows as compared to the corresponding 

planar flows. The evolution of shock waves governed by equation (2.5.12) is shown in 

figures 2.4 and 2.5 for cylindrically symmetric and spherically symmetric flows 

respectively. From these figures we observe that the shock first forms on the wavelet 

ˆ    and then grows up to a maximum strength at a point mx x  and then decays 

according to the power law /2mx  given by equation (2.5.11). Further from figures 2.6 

and 2.7 it is observed that, an increase in the value of mass fraction of the dust particles 

causes to decrease the shock strength and vice versa. Also it may be noted here that an 

increase in the mass fraction of dust particles causes to decrease the shock curvature.  
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Fig. 2.1 Variation of 11  versus pk  for different values of 0Z . 

 

 

 

 

 
Fig.2.2 Variation of the dimensionless density  0 1 0̂      with the dimensionless 

variable  0 0x F t x   on the leading wavelet ˆ 0   in cylindrically symmetric flow. 
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Fig.2.3 Variation of the dimensionless density  0 1 0̂      with the dimensionless 

variable  0 0x F t x  
 
on the leading wavelet ˆ 0   in spherically symmetric flow. 

 

 

 

Fig.2.4 Variation of the dimensionless density  0 1 0̂      with the dimensionless 

variable  0 0x F t x    on the wavelet  ˆ    in cylindrically symmetric flow. 
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Fig2.5 Variation of the dimensionless density  0 1 0̂      with the dimensionless 

variable  0 0x F t x    on the wavelet  ˆ    in spherically symmetric flow. 

 

 

Fig.2.6 Effect of variation of mass fractions on the growth and decay behaviour of 

shock in cylindrically symmetric flow. 
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Fig.2.7 Effect of variation of mass fractions on the growth and decay behaviour of 

shock in spherically symmetric flow. 

 

2.7 Conclusions 

Present paper uses the progressive wave approach to analyze the propagation of finite 

amplitude disturbances and moderately small amplitude disturbances in a dusty gas for 

generalized geometry. The influence of presence of dust particles in the mixture on the 

growth and decay behaviour of shock including weak shock are elucidated. It was 

observed that the amplitude dispersion depends on the amplitude of the wavelets which 

is dependent on the values of the mass fraction of dust particles. Also the shock 

formation distance varies according to variation of mass fraction of dust particles i.e. an 

increase (decrease) in the value of mass fraction of dust particles causes to decrease 

(increase) in the shock formation distance respectively. Further, in case of small 

amplitude disturbances, the condition which leads to shock or no shock depends 

strongly on the mass fraction of the dust particles. In order to trace out the early decay 

of shock after its formation, we have analyzed two different cases in which small 
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amplitude disturbance is either a pulse or a periodic wave. The effect of 

increasing/decreasing value of mass fraction on the profile of shock strength is also 

presented.  

 

 

 

 

 

 

 

 

 

 


