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Introduction 

1.1 Non-linear waves and hyperbolic equations 

Probably the most physical concept of a wave includes the cases of a clearly identifiable 

disturbance, that may either be localized or non-localized, and which propagates in 

space with increasing time, a time dependent disturbance throughout space that may or 

may not be repetitive in nature and which frequently has no persistent geometrical 

feature that can be said to propagate, and even periodic behaviour in space that is 

independent of the time. The most important single feature that characterizes a wave 

when time is involved, and which separates wave-like behaviour from the mere 

dependence of a solution on time, is that some attribute of it can be shown to propagate 

in space at a finite speed. This form of a wave is thus inherently connected with motion 

of some kind involving the space 
nR  and the time t , so that it gives rise naturally to 

problem of an evolutionary behaviour with respect to time. For this reason the time 

variable will always need to be distinguished from the other independent variables. 

Mainly there are two types of fluids one is compressible and other is incompressible. 

Here our main attention is to study the problems arising in the area of compressible 

fluid dynamics. We are familiar with the propagation characteristics of light and sound 

waves. Violent disturbances such as, resulting from detonation of explosives, flow 

through rocket nozzles, supersonic flight of projectiles, or from impact on solids differ 

from the linear phenomena of sound, light or electromagnetic signals. In contrast to the 
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latter, their propagation is governed by non linear differential equations, and as a 

consequence the familiar laws of superposition, reflection, and rarefaction ceases to be 

valid but even more novel features appear, among which the occurance of shock fronts 

is the most significant. Across shock fronts the medium undergoes sudden change in 

velocity, pressure and temperature. Even when the start of the motion is perfectly 

continuous, shock discontinuities may latter arise automatically. Yet, under other 

conditions just the opposite may happen, initial discontinuities may be smoothed out 

immediately. Both these possibilities are essentially connected with the nonlinearity of 

the underlying equation.  

The wave propagation may be described by partial differential equations which may be 

classified either as hyperbolic or parabolic type; here we shall consider only quasilinear 

hyperbolic partial differential equations. Further if the governing system of equations is 

non-linear, it is not possible to apply the principle of superposition of solutions as in 

case of linear partial differential equations. In most physical situations hyperbolic 

partial differential equations provide the basic mathematical tool to describe the wave 

propagation. The mathematical theory of hyperbolic equations is dominated by the 

concept of characteristic hypersurfaces and their geometry. Across these hypersurfaces 

a continuous solution may exhibit Lipschitz discontinuities in its first or higher order 

normal derivatives. These hypersurfaces act as transporters of these discontinuities 

when they exist; they also transport elements of a solution hypersurface when it is 

differentiable. Further in the case of one-dimension space and time these characteristic 

hypersurfaces reduce to the family of characteristic curves in the  ,x t  plane, along 

each of which may be transported a Lipschitz discontinuity in a derivative of the 

solution normal to the characteristics. The solution hypersurface, then reduces to an 
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ordinary smooth surface on which a Lipschitz discontinuity in the first derivative of the 

solution normal to the characteristics curve manifest itself in the form of a crease on the 

surface. This crease in the solution surface nR t  may be interpreted as representing a 

clearly defined propagating wavefront. The solution on the side of the wavefront 

towards which, the propagation of wave takes place is called an undisturbed solution 

ahead of the wavefront while the solution on the other side regarded as a propagating 

disturbance flow which is entering in a region occupied by the undisturbed solution. 

A large number of physical problems arising in gasdynamics, lead to the formulation of 

a quasilinear system of first order partial differential equations and these equations are 

linear in the first derivative of dependent variables, but the coefficients may be 

functions of dependent variables. For studying the mathematical description let us 

consider a general quasilinear system of first order equation in nR t  written as       

     0

1

, , , , , , 0
i

n

t i x

i

A U x t U A U x t U B U x t


   ,                                                   (1.1.1) 

where  ,U x t  is the column vector with the m  elements  1 ,u x t , 

 2 ,u x t ,…….,  ,mu x t ,  1 2, ,.......... nx x x x  is a vector in 
nR ,  , ,iA U x t  are m n  

matrices and  , ,B U x t  is the column vector with m  elements  1 , ,b U x t , 

 2 , ,b U x t ,……,  , ,mb U x t . Here the subscripts t  and 
ix  denote the partial 

differentiation unless stated otherwise. 

The basic idea underlying the hyperbolicity of a system is that the Cauchy problem 

should be well posed for it. For the first order system (1.1.1) the Cauchy problem 

amounts to specifying U  at points on some initial manifold S  in 1nR t  , so that the 

system will be hyperbolic when this data is sufficient to determine a unique solution 
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that depends continuously on the data specified at points on S . In view of this data and 

in keeping with the geometrical approach to wavefronts that has been adopted so far, let 

us now seek to determine when it is possible to so group terms of (1.1.1) that they 

express the derivative of U  normal to S  in terms of derivative of U  in S .  

Further a new coordinate system  , t   is introduced, where  1 2, ,......, n     with 

 ,i i x t   being differentiable functions of their arguments and t t . The manifold 

S  is associated with the coordinates 
k  and to have the equation  ,k x t c  (constant), 

and apart from this restriction, the other 
i  will be chosen arbitrarily. The 

transformation thus becomes 

t t ,    ,i x t  constant, for 1,2,.......,i n .                                                         (1.1.2) 

Also it is assumed that initially the transformation is non-singular in the vicinity of S . 

Using the transformation (1.1.2), Eq. (1.1.1) may be written as  

     0

1 , 1

, , , , , , 0
n n

j j

i

j i jj i j

U U U
A U x t A U x t B U x t

t t x

 

  

    
          
  .               (1.1.3) 

As the derivative of U  is to be expressed normal to S , and S  has been embedded in 

the family of coordinate manifolds  ,k x t  Const., it follows that the required 

derivative is 
kU   , which may be separated from (1.1.3) and may be written in the 

following form: 

0kU R    ,                                                                                                    (1.1.4) 

where  

   0

1

, , , ,
n

k k
i

i i

A U x t A U x t
t x

 



  
   

  
 ,                                                              (1.1.5)  
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and R is the column vector with its m  elements dependent upon , ,U x t  and 

kU   with i k . Consequently, the derivative 
kU    normal to S  is to be 

derivative from (1.1.4) provided 1  exists, which implies the condition 

det 0  .                                                                                                                  (1.1.6) 

Dividing det  by  
1/2

2

1

n

x k k i

i

x 


 
    

 
  and setting  

k

x k

t




 
 


, k i

i

x k

x




 



 for 1,2,..........,i n ,                                                      (1.1.7) 

so that the unit vector  1 2, ,..... n     is then the normalized spatial gradient 
x k  of 

k .  

Using Eq. (1.1.7), the condition (1.1.6) is written as 

 ; , 0F P    ,                                                                                                         (1.1.8) 

where   

     0; ,
n

i i

i

F P A P A P     .                                                                         (1.1.9) 

Here the notation  iA P  represents the value of  , ,iA U x t  at point P  of the 

manifold S . The expression  ; ,F P    is homogeneous polynomial of degree m  in the 

quantities  1 2, , ,..... n    , which is also called characteristics polynomial of the 

system (1.1.1) with respect to S . 

Here it may be noted that the normal derivative 
kU    will be indeterminate at any 

point P  of a manifold S  for which  

 ; , 0F P    .                                                                                                       (1.1.10) 
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The manifold S  on which the condition (1.1.10) is satisfied are called characteristic 

manifold; and the manifolds for which (1.1.8) is satisfied are called non-characteristic.  

The system (1.1.1) is said to be strictly hyperbolic in t -direction at any point P  if the 

roots (1) , (2) ,……… ( )m  of the characteristic equation  ; , 0F P     are real and 

distinct for all choices of the unit vectors  and if the right eigenvectors (1)r , 

(2)r ,……
( )mr  satisfying  

   ( ) ( )

0

1

0
m

j j

i i

i

A P A P r 


    ,                                                                          (1.1.11) 

span the space 
mE  occupied by the m  element eigenvectors. The system (1.1.1) will 

merely be said to be hyperbolic in t -direction if the eigenvectors span the space 
mE  but 

the eigen values, although all real, are not all distinct (Jeffery (1976), Courant and 

Friedrichs (1948)).  

1.2 Simple waves and progressive waves 

Let us consider the following system of quasilinear hyperbolic partial differential 

equations for the one-dimensional flow 

  0t xU A U U  ,                                                                                                     (1.2.1) 

where U  is a vector in n -dimensional Euclidian space and the coefficient matrix A  is a 

function of U .  

The solution vector U  is said to define a simple waves if it can be expressed in terms of 

variables by means of a single function; the corresponding flows are called simple wave 

flow (Germain (1972), Witham (1974)).  

The system of equation (1.2.1) is said to be hyperbolic if the coefficient matrix A  has n  

real eigenvalues ( )i  ( 1,2,3..... )i n  and 
( )ir  the corresponding eigenvectors.  
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The simple wave solutions of the system (1.2.1) are solution of the form 

   ,U x t U X ,                                                                                                       (1.2.2) 

where  ,X X x t .  

Thus the equation (1.2.1) yields  

   
dU dU

A X t X x
dX dX

   
          

   
,                                                                  (1.2.3) 

which implies that dU dX  is an eigenvector of the matrix  A U  associated with the 

eigenvalues  

    ( )i X t X x      .                                                                                        (1.2.4)  

The function  U X  is determined by the integration of the following equation 

( )idU
r

dX
 , 

i.e., of the following system 

1

( ) ( ) ( )

1 2

........... .
i i i

n

dU dU dU
dX

r r r
                                                                                  (1.2.5) 

After determining the value of  U X , we can find  ,X x t  by integration of Eq. 

(1.2.4). Thus we have 

 ( )ix r t f X  ,                                                                                                       (1.2.6) 

where the function  f X  is arbitrary. The curves along which the function X  is 

constant are called simple waves, i.e. the simple waves are the straight lines given by 

the Eq. (1.2.6). The surface X  constant is called wavelets. Therefore, U  remains 

constant if and only if one stays on the wavelet.  
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 ,U x t  is said to describe a progressive wave if there exists a family of propagating 

wavelets X  constant, with  

 ,F x t X ,                                                                                                              (1.2.7) 

such that the magnitude of the rate of change of U  or eventually its derivatives, when 

x  is moving with such a wavelet is small compared with the magnitude of rate of 

change of U  when x  is kept fixed (Germain (1972)). 

In order to determine the progressive wave solution one has to introduce X  either by 

replacing one of the independent variables such as t  or to add an extra one which 

describes the wavelet. Following this definition one may write  

 ,X X F x t  ,                                                                                                   (1.2.8) 

where   is small parameter. Now U  can be written as  

   , , ,U x t U x t X .                                                                                                 (1.2.9) 

In the equation (1.2.9) the right had side U  is a function of three independent scalar 

variables. In order to study the physical description, one may replace X  by its value 

given by the Eq. (1.2.8). Also we can see that the rates of change are given by 

1U U F U

t X t t

    
  

    
,                                                                                       (1.2.10) 

1U U F U

x X X x

    
  

    
,                                                                                       (1.2.11) 

Since   has been taken to be small parameter, so we may assume that the first partial 

derivative of U  and F  are bounded, say  1O . Along any given path  x  ,  t   one 

may write  
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1
.

U U dF U dt U dx

x d t d x d    

             
            

             
 

The left had side of above Equation is of the order of  1O   ; but if  F   is taken to 

be constant it is only of  1O . Also the results which have been used to obtain general 

theorems for linear and non-linear systems were given by Ludwig (1960), Lewis (1965) 

and Courant and Hilbert (1962). 

1.3 Ideal and non-ideal gas 

The ideal gas law is an extension of experimentally discovered gas laws i.e. Charles’s 

law and Boyle’s law. The equation of state of an ideal gas is written as PV nRT , 

where n  is the number of molecules of the gas, R  is the gas constant, T  is the absolute 

temperature, P  is the pressure and V  is the volume of the gas. 

The equation of real gases is lim 1
P

PV RT


  also the compressibility factor Z  defined 

as  

 ,Z P T PV RT .                                                                                                   (1.3.1) 

It may be noted that the deviation from unity in the value of Z  indicates the degree of 

departure from ideal behaviour. 

In theoretical derivations of the ideal gas law it is necessary to make two assumptions 

i.e. the gas molecules are too small to neglect their volume and the molecules are non-

interacting. If the temperature of the gas is very high and density is too low, the 

assumption that the gas is ideal is no longer valid; therefore the alternative to the ideal 

gas is simplified van der Waals model. Dutch Physicist van der Waals derived the 

equation of state without the assumptions of ideal gas, which is known as the van der 

Waals equation of state and is written as 
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 2

a
P V b RT

V

 
   

 
,                                                                                            (1.3.2) 

where a  denotes the amount of intermolecular force of attraction between the gas 

particles and b  denotes the neglected volume which is associated with the volume of 

the gas. 

Wu and Roberts (1996) presented the similarity solutions and determined conditions for 

the stability of strong spherical implosions for both ideal and van der Waals gases. They 

found that when the van der Waals excluded volume is sufficiently large, a new type of 

solution is found and the shock may be linearly stable. Wu and Roberts (1996) 

investigated the problem of structure and stability of strong spherical shock waves 

whereas Somogyi and Roberts (2007) analyzed numerical stability of an imploding 

spherical shock wave in van der Waals gas.  

1.4 Dusty gas 

Dusty gas is a homogenous mixture of solid particles and gas. The solid particles may 

occupy less than or equal to 5% of the total volume and mix well with the fluid in the 

flow field. This is known as the dilute phase of the two-phase flow of a mixture of solid 

particles and fluid. Or we simply call it the two-phase flow of a mixture of solid 

particles and a fluid in a narrow sense. The paper of Marble (1963) is the first attempt to 

apply the modern technique of fluid dynamics to the research of the two phase flow of 

gas and solid particles. He introduced many important concepts of the problem in his 

analysis such as temperature and diameter of the solid particle in the distribution 

function of solid particles. These are very important in the development of the 

fundamental equations of the mixture of gas and solid particles. There are some 

assumptions for the solid particles in the mixture as; the size of the solid particles 
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should be uniform, the shape of the solid particles should be spherical because body of 

different shapes have different drag coefficient and heat transfer rate. Collision between 

particles of different size is not considered in this thesis. It is also assumed that the solid 

particles are uniformly distributed in the gas. The distance between particles are small 

as compared with the cross sectional of the duct. The boundary layer effect and heat 

transfer with the duct walls are not considered here. 

Here we will derive some simple relations for a mixture of gas and small solid particles. 

Let us consider the thermodynamic equilibrium condition such that p gT T T  , where 

pT  and gT  are the temperature of the solid particles and gas respectively. The density of 

the mixture is given as  

 1sp gZ Z     ,                                                                                               (1.4.1) 

where Z  is the volume fraction of the solid particles in the mixture and is defined as 

pZ V V , where pV  is the volume occupied by the solid particles in the mixture and V  

is the total volume of the mixture. sp  is the species density of the solid particles and is 

defined as sp p pM V  , where pM  is the mass of the solid particles in the volume V . 

g  is the species density of the gas. 

The mass concentration of the solid particles is defined as  

sp

p

Z
k




 .                                                                                                                (1.4.2) 

The pressure of the mixture is given as  

p gp p p  ,                                                                                                              (1.4.3) 

where pp  and gp  are the partial pressure of solid particles and gas respectively.  
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Using the perfect gas law, the total pressure of the mixture is given as  

g gp RT .                                                                                                                (1.4.4) 

From equations (1.4.1), (1.4.3) and (1.4.4), we get the following relation between the 

pressure and the density of the mixture as  

1

1

pk
p RT

Z


 
  

 
.                                                                                                    (1.4.5) 

The internal energy of the mixture per unit mass E  is related to the internal energies of 

the two species by the following relation  

 1sp sp p g v gE Z c T Z c T     ,                                                                               (1.4.6) 

where spc  is the specific heat of the species. 

From equation (1.4.6) we have  

 1p sp p p v gE k c T k c T    .                                                                                       (1.4.7) 

For thermodynamic equilibrium condition, we have the specific heat of the mixture at 

constant volume 
vMc  as  

 1vM p sp p vc k c k c   ,                                                                                             (1.4.8) 

where 
vc  is the specific heat of the gas at constant volume. 

Also for thermodynamic equilibrium condition, we have the specific heat of the mixture 

at constant pressure pMc  as  

 1pM p sp p pc k c k c   ,                                                                                            (1.4.9) 

where pc  is the specific heat of the gas at constant pressure.  
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The specific heats of the mixture are independent of the volume fraction Z  but depend 

on the mass fraction pk  of the solid particles. The ratio of the specific heats of the 

mixture is  

pM

vM

c

c
  .                                                                                                                 (1.4.10) 

Using equation (1.4.8) and (1.4.9) in equation (1.4.10) and after simplification, we have  

 1

1

 




 


,                                                                                                        (1.4.11) 

where p vc c  , sp pc c   and  1p pk k   . Note that the value of   is always 

smaller than  . If we put 0pk   in equation (1.4.11) then   turns to  .  

If we consider the mixture as a homogenous medium, the first law of thermodynamics 

for the mixture gives  

2

1
dQ dE pd


  ,                                                                                                (1.4.12) 

where dQ  is the heat addition to the mixture. 

For isentropic change of state of the mixture we have 0dQ  , thus in view of equation 

(1.4.7) equation (1.4.12) gives  

1 1

1 1

dT d

T Z






 
.                                                                                              (1.4.13) 

This on simplification gives  

1
T

Z




 
 

 
constant.                                                                                           (1.4.14) 

If 1Z  , the isentropic change of state of the mixture has a similar relation as that for a 

pure gas with an effective ratio of specific heats  .  
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Similarly from equation (1.4.5) for a given pk  and pT T , we have  

1

1

dp dT d

p T Z




 


,                                                                                              (1.4.15) 

From equation (1.4.13) and (1.4.15), we have 

1

dp d

p Z









.                                                                                                       (1.4.16) 

On simplification (1.4.16) we get  

1
p

Z




 
 

 
constant.                                                                                           (1.4.17) 

Again if 1Z  , equation (1.4.17) is identical in form for the corresponding relation of 

a pure gas but an effective ratio of specific heats. 

Now we can find the equilibrium speed of sound of the mixture a  from equation 

(1.4.17) as follows 

 
 

2

2

1

1

pk RTdp
a

d Z

  
  

 
.                                                                                    (1.4.18) 

If 1Z  , equation (1.4.18) is identical in form as that for a pure gas, but the effective 

ratio of specific heats and effective gas constant R  are used.   

1.5 Magnetogasdynamics 

Magnetogasdynamics is the branch of science in which we study the motion of 

electrically conducting fluids through magnetic field. The interest in magneto 

hydrodynamics particularly in problems associated with the behaviour of high 

temperature plasma, in the presence of magnetic field, was enhanced by the advent of 

studies of thermonuclear fusion reaction (Branover (1978)).  
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The interaction between gasdynamics phenomena and the magnetic field is examined by 

combining the field equation with those of gasdynamics. In most of the electromagnetic 

problems involving conductors the maxwell’s displacement currents are ignored (Pai 

(1962), Kantrowitz and Petschek (1966), Anile and Greco (1978) and Spitzer (1967)). 

The magnetic permeability of the media considered in magnetogasdynamics differ only 

slightly from unity and therefore, is taken here as unity in the application. The field 

equations are then 

1
tE H

c
   ,                                                                                                          (1.5.1) 

4 4 u H
H J E

c c c

 

 

    
 

,                                                                         (1.5.2) 

0H  ,                                                                                                                  (1.5.3) 

where E  is the electric intensity, H  is the magnetic field,   is the electrical 

conductivity, J  is the current density, u  is the velocity of fluid and c  is the velocity of 

light. 

Let us consider   being uniform in the medium. Substituting the Eq. (1.5.3) in (1.5.2) 

we get 

 
2 2

4
t

c H
H u H




   .                                                                                       (1.5.4) 

In the case of infinite electrical conductivity, Eq. (1.5.4) becomes 

      0tH u H H u H u       .                                                                 (1.5.5) 

Using equation (1.5.3) in (1.5.5) we get 

    0tH u H H u     .                                                                                  (1.5.6) 
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The equation (1.5.6) is used in conjunction with gas dynamic flow equations to 

incorporate the effect of magnetic field interaction. 

In order to investigate the hydrodynamic shocks, the electrical conductivity of the 

medium is assumed to have infinite value. This assumption implies that the self-

induction will prevent changes to magnetic field of the medium at rest (Hoffman and 

Teller (1950) and Kulikovski and Liubimov (1961)). Also the governing equations 

degenerate into the non-convex hyperbolic system, for which the characteristics surface 

may have unexpected singularities, making the wave structure much more complex than 

aerodynamic shocks (Courant and Hilbert (1962) and Jeffrey and Taniuti (1964)). Ideal 

magneto-hydrodynamics offers impressive potential applications but also generates 

many unanswered questions and uncertainties (Kantrowitz and Petschek (1966)).  

1.6 Riemann problem 

Riemann problem is a shcok tube problem. Consider a long, thin, cylindrical tube 

containing a gas separated by a thin membrane. We assume that the gas is at rest on 

both sides of the membrane, but that is of different constant pressure and densities on 

each side. At 0t  , the membrane is broken, and the problem is to determine the 

ensuing motion of the gas. This problem was first studied by Riemann and is now 

known by his name.  

Let  , ,l l lu p  and  , ,r r ru p  denote the density, velocity and pressure on both sides 

of the membrane. We consider the case where 0l ru u  , l r  , 
l rp p , and all 

these quantities are constant. 

Furher Riemann problem is an initial value problem for the one dimensional Euler 

equations supplemented by discontinuous initial data and its solution constitutes the 
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basic building block for the construction of a solution to the general initial value 

problem. The solution to the Riemann problem depends on the variables at the left and 

right states and is always similar, namely the values of the quantities are all constant on 

any ray issuing from the initial position of the jump. Moreover, the solution of the 

Riemann problem is composed of three waves, with always a contact discontinuity as 

the middle one while the other two are indifferently rarefaction or shock wave. If both 

external waves are rarefaction then it might occur to the formation of a vacuum region 

between two parts of the gas receeding from each other. 

In mathematical form consider the one dimensional Euler’s equation in conserved form 

as  

( )
0

U F U

t x

 
 

 
,                                                                                                      (1.6.1) 

where   2, , 2
tr

U u u E    ,   2 2( ) , , 2
tr

F U u p u u u E pu      , with E  

as the internal energy of the gas.  

The Riemann problem for the system of Euler’s equation (1.6.1) is an initial value 

problem with data of the form 

0

, 0
( ,0) ( )

, 0

l

r

U x
U x U x

U x


  


  ,                                                                                (1.6.2) 

where 
lU  and 

rU  are the left and right constant states, while 0x   is a point of 

discontinuity.   

1.7 Review of literature  

When there is a relative motion between a body and a fluid, the disturbance (if infinitely 

small) caused by the body is propagated through the fluid with the speed of sound. The 

speed of sound in such cases is the speed with which rarefaction waves or compression 
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waves of very small amplitude propagate. When the compressions in the flow are of 

finite amplitude, there usually occurs a discontinuous rise of pressure leading to a shock 

wave. In addition to discontinuities in pressure, there occur discontinuous increase in 

temperature, density, entropy and other fluid properties. The instant of formation of 

shock wave was largely studied by various authors. Macpherson (1971) studied the 

formation of a shock wave in dense Argon by applying a molecular-dynamic approach. 

Shifrin (1970) studied the formation of a shock wave in a plane flow of a perfect gas. 

Saldatov (1970) studied a symmetric two-way traffic flow and determined the instant of 

formation of a shock wave by using the Riemann method. Sharma et al. (1987) provided 

a non-linear analysis of traffic flow in which a shock wave appears. During the past 

decades many authors have studied the problem of growth and decay of shock waves 

propagating in a variety of media. Ardavan-Rhad (1970) studied the propagation of 

plane shock wave into a non-isentropic, non-viscous and non-heat conducting media. 

Boillatt (1965) presented the general theory of propagation of shock waves. Flack and 

Wittig (1971) presented the general solution for the case of normal shock wave moving 

through a medium in which all flow properties vary arbitrarily. Boillatt and Ruggeri 

(1979) studied the problem of reflection and transmission of discontinuity waves 

through a shock wave. By applying numerical methods Sod (1977) studied the 

propagation of one-dimensional shock wave with cylindrical and spherical symmetry. 

Chen and Gurtin (1970) and Colemann and Gurtin (1967) studied the growth and decay 

of shock waves with internal state variables. Chen (1971) studied the propagation of 

shock waves in elastic non-conductors. Thermodynamic influences on the propagation 

of shock waves have been studied by Chen (1973). Bowen and Chen (1974) studied the 

same problem in the ideal mixture with several temperature layers.  
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One of the interesting properties of the shock waves is the problem of determining the 

differential effects of shock fronts on the rear flow field. To this problem Thomas 

(1947) developed a tensorial approach which was further extended by Kanwal (1958) 

for three dimensional shocks in stationary, pseudo-stationary and unsteady flows of 

non-conducting gases. The problem of vorticity generation by a shock has also been 

solved by several authors like Trusdell (1952), Hayes (1957), Kanwal (1960) and Ram 

(1978). The evolution of weak discontinuities for quasilinear hyperbolic system was 

analyzed by Boillatt and Ruggeri (1979). 

A considerable amount of work has also been done on the shock structure. A lot of work 

on the shock structure was carried out by Kuznetsov (1979), Goldman and Sirovich 

(1969), Boillatt and Ruggeri (1998). Wave fronts which are concave in the direction of 

propagation exhibit different kinds of behaviour depending on the strength of the wave-

front. Generally, wave front propagates normal to itself and therefore has a tendency to 

converge. The shocks of weak strength are called weak shocks. Focusing of weak shock 

is an important problem. This problem of focusing of weak shocks was studied by 

Wanner et al. (1972). Observers of atomic explosions are also known to have seen 

shock waves of strong strength, called blast wave. Ram (1981) provided a closed form 

self similar solution to a MHD flow disturbed by propagating blast waves. Further, in 

the final stages of the collapse, the shock becomes very strong and the pressure ahead is 

neglected in comparison to the pressure behind the shock wave. This leads to similarity 

formulation of the problem. In the problem, the ratio of distance to a particular power of 

time is known as similarity exponent, which is not known a priori. Several numerical 

and analytical methods have been developed for the determination of similarity 

exponent of the problem e.g. Guderley (1942), Taylor (1950), Butler (1954), Sedov 
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(1959), Stanyukovich (1960), Welsh (1967), Zel’dovich & Raiser (1967) and Lazarus 

(1981), Chisnell (1998). Zen’kevich and Stepanov (2007) provided analytical solution 

of self similar equations in Lagrangian mass coordinate, describing the dynamics of the 

explosion and the propagation of a strong shock wave.  

The exact solution of the Riemann problem is very useful as it represents the solution to 

a system of hyperbolic conservation laws subject to the simplest, non–trivial, initial 

conditions; in spite of the simplicity of the initial data the solution of the Riemann 

problem contains the fundamental physical and mathematical character of the relevant 

set of conservation laws. The solution of the general initial value problem may be seen 

as resulting from non–linear superposition of solutions of Riemann problems (Glimm 

(1965)). There is no exact closed–form solution to the Riemann problem for the Euler 

equations, not even for ideal gases; in fact not even for much simpler models such as the 

isentropic and isothermal equations. However, it is possible to derive iterative schemes 

whereby the solution can be computed numerically to any desired, practical, degree of 

accuracy. Godunov (1959) is credited with the first exact Riemann solver for the Euler 

equations. By today’s standards Godunov’s first Riemann solver is computationally 

inefficient. Later, Godunov (1976) proposed a second exact Riemann solver. Distinct 

features of this solver are: the equations used are simpler, the variables selected are 

more convenient from the computational point of view and the iterative procedure is 

rather sophisticated. Much of the work that followed contains the fundamental features 

of Godunov’s second Riemann solver. Chorin (1976) independently, produced 

improvements to Godunov’s first Riemann solver.  

  


