LIST OF FIGURES

Figure 1.1 -	Wear - time curve	8
Figure 1.2 -	Friction - time curve	15
Figure 1.3 -	Different types of reinforcements	.22
Figure 1.4 -	Stir casting technique	.32
Figure 1.5 -	Squeeze casting technique	.33
Figure 1.6 -	Comparison cost	.34
Figure 2.1 -	Schematic diagram of experimental setup used for casting	.47
Figure 2.2 -	Flow chart for synthesizing the composites	48
Figure 2.3 -	DTA/TGA apparatus for DTA analysis	.49
Figure 2.4 -	XRD Machine	.49
Figure 2.5 -	Optical Microscope	.52
Figure 2.6 -	Scanning Electron Microscope	53
Figure 2.7 -	a - Transmission Electron Microscope and b - Twin jet polisher	.54
Figure 2.8 -	Brinell hardness tester	.54
Figure 2.9 -	a - Universal Testing Machine and b - Geometry of tensile test specime	en 55
Figure 2.10 -	Multifunctional Tribometer	.56
Figure 2.11 -	Schematic diagram for pin-on-disc apparatus	.57
Figure 2.12 -	Profilometer attached to Multifunctional Tribometer	.58
Figure 2.13 -	High temperature chamber, disc and sample holder	.58
Figure 3.1 -	DTA curve showing the endothermic and exothermic peak during <i>insit</i> reaction	u . 60
Figure 3.2 -	XRD patterns of (a) AA5052/ZrB $_2$ composites and (b) extracted ZrB_2 particle for 9 vol. % composite	62
Figure 3.3 -	Optical micrographs of (a) AA5052 - 0 vol. % ZrB2 (b) AA5052 - 3 vol. % ZrB ₂ (c) AA5052 - 6 vol. % ZrB ₂ (d) AA5052 - 9 vol. % ZrB ₂ and (e) AA5052 - 10 vol. % ZrB ₂	ol. . 64
Figure 3.4 -	Grain size distribution of (a) AA5052 - 0 vol. % ZrB_2 (b) AA5052 - vol. % ZrB_2 (c) AA5052 - 6 vol. % ZrB_2 (d) AA5052 - 9 vol. % ZrB_2 and (e) AA5052 - 10 vol. % ZrB_2	- 3 B ₂ 65
Figure 3.5 -	SEM micrographs of (a) AA5052 - 3 vol. % ZrB_2 (b) AA5052 - 6 vol. ZrB2 (c) AA5052 - 9 vol. % ZrB2 (d) AA5052 - 10 vol. % ZrB_2 ZrB ₂ at high magnification and (f) EDS pattern of ZrB_2	% (e) 68
Figure 3.6 -	TEM micrographs of (a-b) hexagonal and rectangular morphology ZrB_2 (c) SAD pattern of ZrB_2 (d) SAD pattern of matrix and (e) dislocations present in the matrix	of . 69

Figure 3.7 -	Variation of hardness with vol. % of ZrB_2 particles in the composites 7	2
Figure 3.8 -	Variation of tensile properties with vol. $\%$ ZrB ₂ particles 7	3
Figure 3.9 -	σ vs. ϵ_{ρ} plot on log-log scale for composites 7	4
Figure 3.10 -	Fractographs of (a) base alloy and composites with (b) 3 vol. % ZrB_2 (c) 6 vol. % ZrB_2 (d) 9 vol. % ZrB_2 and (e) 10 vol. % ZrB_2 7	:) '5
Figure 4.1 -	Variation of cumulative wear with sliding distance at (a) 10 N (b) 20 I (c) 30 N and (d) 40 N and 1 m/s sliding velocity 8	N 4
Figure 4.2 -	Variation of COF with sliding distance at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N and 1 m/s sliding velocity	l 5
Figure 4.3 -	Variation of wear rate with sliding velocity at (a) 10 N (b) 20 N (c) 30 I and (d) 40 N load 8	N 6
Figure 4.4 -	Variation of COF with sliding velocity at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N load 8	l 7
Figure 4.5 -	Variation of wear rate with normal load at (a) 0.5 (b) 1 (c) 1.5 and (d) m/s sliding velocity 8	2 8
Figure 4.6 -	Variation of wear rate per unit vol. % ZrB_2 with normal load at (a) 0. (b) 1 (c) 1.5 and (d) 2 m/s sliding velocity 8	5 9
Figure 4.7 -	Variation of COF with normal load at (a) 0.5 (b) 1 (c) 1.5 and (d) 2 m/s sliding velocity $$9$$	0
Figure 4.8 -	Variation of wear rate with vol. $\%~ZrB_2$ at (a) 0.5 (b) 1 (c) 1.5 and (d) m/s sliding velocity $$9$$	2 1
Figure 4.9 -	Variation of specific wear rate with vol. % ZrB_2 at (a) 0.5 (b) 1 (c) 1. and (d) 2 m/s sliding velocity 9	5 2
Figure 4.10 -	Variation of normalised wear rate with vol. % ZrB_2 at (a) 0.5 (b) 1 (c) 1.5 and (d) 2 m/s sliding velocity 9	3
Figure 4.11 -	Variation of COF with vol. $\%$ ZrB_2 at (a) 0.5 (b) 1 (c) 1.5 and (d) 2 m/s sliding velocity $$9$$	4
Figure 4.12 -	Worn surface morphology of 9 vol. % ZrB_2 composite after (a) 1200 r and (b) 6000 m sliding distance 9	n 4
Figure 4.13 -	2D and 3D topography of worn surface of 9 vol. % ZrB ₂ composite after (a) 1200 m and (b) 6000 m sliding distance under profilometer	er 95
Figure 4.14 -	Worn surface morphology of 9 vol. % ZrB_2 composite at (a) 0.5 (b)1 (c) 1.5 and (d) 2 m/s at 20 N load and 6000 m sliding distance9	6
Figure 4.15 -	EDS pattern of 9 vol. % ZrB_2 composite at (a) 0.5 and (b) 2 m/s under 20 N load and 6000 m sliding distance 9	7
Figure 4.16 -	2D and 3D topography of worn surface of 9 vol. % ZrB_2 composite at (a 0.5 and (b) 2 m/s sliding velocity and 20 N load after 6000 m slidin distance under profilometer 9) g 8
Figure 4.17 -	Worn surface morphology of 9 vol. % ZrB_2 composite at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N load at 1.0 m/s sliding velocity and 6000 m sliding distance 9	9

Figure 4.18 -	2D and 3D topography of worn surface of 9 vol. % ZrB ₂ composite at (a) 10 N and (b) 20 N load at 1 m/s sliding velocity and 6000 m sliding distance under profilometer 100
Figure 4.19 -	EDS pattern of 9 vol. % ZrB_2 composite at (a) 10 and (b) 40 N load (c) wear debris under 1 m/s sliding velocity and 6000 m sliding distance .10
Figure 4.20 -	Worn surface morphology of (a) AA5052 alloy (b) 3 vol. % ZrB_2 (c) 6 vol. % ZrB_2 and (d) 9 vol. % ZrB_2 composite at 1 m/s sliding velocity and 6000 m sliding distance .102
Figure 4.21 -	2D and 3D topography of worn surface of (a) AA5052 alloy and (b) 9 vol. $\%$ ZrB ₂ composite at 1 m/s sliding velocity and 20 N load after 6000 m sliding distance under profilometer .103
Figure 5.1 -	Variation of (a) UTS (b) YS and (c) percentage elongation with temperature .100
Figure 5.2 -	Fractographs of composite with 9 vol. % ZrB_2 at different temperatures (a) RT (b) 100°C (c) 150°C and (d) 200°C .108
Figure 5.3 -	Variation of wear rate with ZrB_2 vol. % at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N load for different temperatures 110
Figure 5.4 -	Variation of COF with ZrB2 vol. % at (a) 10 N (b) 20 N(c) 30 N and (d) 40 N load for different temperatures111
Figure 5.5 -	Worn surface morphology of (a) base alloy (b) 3 vol. % ZrB_2 (c) 6 vol. % ZrB_2 and (d) 9 vol. % ZrB_2 composite at room temperature, 20 N load and 0.5 m/s sliding velocity 112
Figure 5.6 -	Worn surface morphology of (a) base alloy (b) 3 vol. $\%$ ZrB ₂ (c) 6 vol. $\%$ ZrB ₂ and (d) 9 vol. $\%$ ZrB ₂ composite at 200°C temperature, 20 N load and 0.5 m/s sliding velocity .113
Figure 5.7 -	2D and 3D topography of worn surface of (a) base alloy, and (b) 9 vol. % ZrB_2 composite at 200°C temperature, 20 N load and 0.5 m/s sliding velocity under profilometer 114
Figure 5.8 -	Variation of wear rate with different temperatures at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N load for different composites 115
Figure 5.9 -	Variation of COF with temperature at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N load for different composites 116
Figure 5.10 -	EDS spectrum of worn surface of alloy tested at 50°C showing oxidative wear mode 117
Figure 5.11 -	Worn surface morphology of AA5052 - 6 vol. % ZrB_2 composite at (a) RT (b) 50°C (c) 100°C (d) 150°C, and (e) 200°C, at 20 N load and 0.5 m/s sliding velocity 118
Figure 5.12 - Figure 5.13 -	Debris of composite with 6 vol. % ZrB ₂ at (a) RT and (b) 200°C 118 2D and 3D topography of worn surface of AA5052 - 6 vol. % ZrB ₂ composite at (a) RT and (b) 200°C, at 20 N load and 0.5 m/s sliding velocity under profilometer 110
Figure 5.14 -	Variation of wear rate with different loads at (a) RT (b) 50°C (c) 100°C
	(d) 150°C and (e) 200°C for different composites 120

Figure 5.15 -	Variation of wear rate per unit vol. % ZrB_2 with different loads at (a) R ⁴ (b) 50°C (c) 100°C (d) 150°C and (e) 200°C for different composites 1	T 21
Figure 5.16 -	Variation of COF with different loads at (a) RT (b) 50°C (c) 100°C (d) 150 °C and (e) 200°C for different composites	22
Figure 5.17 -	Worn surface morphology of AA5052 - 9 vol. % ZrB_2 composite at (a) 10 N (b) 20 N (c) 30 N and (d) 40 N load, at 150°C and 0.5 m/s sliding velocity 1	24
Figure 5.18 -	2D and 3D topography of worn surface of AA5052 - 9 vol. % ZrB_2 composite at (a) 10 N and (b) 40 N load, at 150°C and 0.5 m/s sliding velocity under profilometer 1	25