		Page No
	List of Table	vii
	List of Figures	viii-x
	List of Abbreviations	xi
	Preface	xii-xiv
	Abstract	xv-xviii
Chapte	er 1 : Introduction	1-20
1.1	Introduction	1-2
1.2	Rocket and Missile Propellant	3
1.3	Explosives	3
1.4	Ammunition and Projectiles	3
1.5	Solid Composite Propellant	4
1.5.1	Hydroxyl Terminated Polybutadiene (HTPB)	4-5
1.5.2	Aluminium Powder (AlP)	5
1.5.3	Ammonium Perchlorate (AP)	6-7
1.6	Structure of Ammonium Perchlorate	8
1.7	Thermal Decomposition of Ammonium Perchlorate	9-12

Charles and Charles

CONTENTS

1.7.1	Electron Transfer Theory			
1.7.2	Proton Transfer Theory			
1.8	Specific Impulse of Solid Composite Propellant (SCP)	12-13		
1.9	Burn Rate of SCP	13-14		
1.9.1	Temperature Sensitivity of Burn Rate	14		
1.9.2	Pressure Index (n)	14		
1.10	10 Factors Affecting the Burn Rate of SCP			
1.10.1	Effect of Particle Size of Ammonium Perchlorate on Burn Rate of SCP	15-16		
1.10.2	Effect of AP Solid Loading on Flame Temperature	16-17		
1.11	Additives	17-20		
Chapter	r 2: Literature Review	21-55		
2.1	Burn Rate Modifiers	21		
2.2	The role of Additives on Thermal Decomposition of	21-22		
	Ammonium Perchlorate			
2.2.1	Homo-phase Additives in Thermal Decomposition of	22-23		
	Ammonium Perchlorate			
2.2.2	Hetero-phase Additives in Thermal Decomposition of AP	23		
2.3	Transition Metals and Metal oxides	24-28		
2.4	Ferrites	28-29		

CONTENTS

2.5	Chromites	20.20
2.6	Graphene Based Transition Metal Oxides	30-32
2.7	Methods of Catalyst Preparation	32-36
2.7.1	Co-Precipitation Method	32-30
2.7.2	Sol- Gel Method	32-33
2.7.3	Impregnation Method	34
2.7.4	Reactive Grinding Method	34-35
2.7.5	Hydrothermal Method	35-36
2.7.6	Pyrolysis Method	36
2.8	Burn Rate Modifiers and Their Role	37-55
2.9	Objective	55
Chapte	r 3 : Material and Methods	56-75
3.1	Experimental	56-75
3.1.1	Materials	56-57
3.1.2	Methods	57-65
3.1.2.1	Synthesis of Cu-Cr-O-nTiO ₂ ($n=0.5, 0.7 \& 0.9$)	57-59
3.1.2.2	Synthesis of Reduced Graphene Oxide (rGO)	59-60
3.1.2.3	Synthesis of Cu-Cr-O-0.7TiO ₂ -rGO	61-62
3.1.2.4	Synthesis of Propellant	63-65
3.1.3	Characterization	65-73

CONTENTS

3.1.3.1	X-Ray Diffraction (XRD) 6			
3.1.3.2	Raman Spectroscopy			
3.1.3.3	Fourier Transform Infrared Spectroscopy Analysis	68		
3.1.3.4	Scanning Electron Microscopy Analysis	68-69		
3.1.3.5	.5 Transmission Electron Microscopy (TEM)			
3.1.3.6	X-ray Photoelectron Spectroscopy (XPS) Analysis	71-72		
3.1.3.7	3.7 Thermogravimetric Analysis and Differential			
	Thermogravimetric Analysis			
3.1.4	.4 Catalytic Activity Measurement			
3.1.5	.5 Crawford Bomb Burn Rate Evaluation of Strand Burner			
Chapter 4: Results and Discussion				
4.1.	Synthesis and Catalytic Activity of Cu-Cr-O-TiO ₂ Composites on Thermal Decomposition of Ammonium Per-chlorate:	76-96		
4.1.1	Thermogravimmetric Analysis	77-78		
4.1.2	X-Ray Diffraction Analysis	78-80		
4.1.3	.3 Fourier Transform Infrared Spectroscopic Analysis			
4.1.4	1.4 Scanning Electron Microscopic Analysis			
4.1.5	.1.5 Transmission Electron Microscopic (TEM) Analysis			
4.1.6	Energy Dispersive X-ray (EDX) Analysis	85-86		

4.1.7	7 Catalytic Activity of Catalyst on Thermal Decomposition	
	of AP	
4.2	Effect of Reduced Graphene Oxide on Catalytic Activity of Cu-Cr-O-TiO ₂ to Enhance the Thermal Decomposition Rate of Ammonium Perchlorate	97-117
4.2.1	X-Ray Diffraction (XRD) Pattern of Synthesized Catalyst	97-99
4.2.2	Infrared Spectroscopy of Synthesized Catalyst	99-100
4.2.3	Raman Spectroscopy of Synthesized Catalyst	100-102
4.2.4	Scanning Electron Microscopy (SEM) and Associated Energy Dispersive X-ray (EDX) Analysis of the Catalyst	102-103
4.2.5	Transmission Electron Microscopy (TEM) of Synthesized	103-104
	Catalyst	
4.2.6	X-ray Photoelectron Spectroscopy (XPS)	104-108
4.2.7	Catalytic Efficiency	108-116
4.2.7.1	Effect of Synthesized Catalyst on Thermal Decomposition	108-116
	of AP	
4.2.8	Effect of Synthesized Catalyst (modified AP) on Burn Rate	116-117
	of Solid Composite Propellant (SCP)	
4.3	Kinetic Studies of Thermal Decomposition of Ammonium Perchlorate	118-127
4.3.1	Kissinger Method	118-119
4.3.2	Ozawa – Flynn – Wall Method	120

CONTENTS

4.3.3	Kissinger-Akahira-Sunose Method		
4.3.4	1.3.4 Friedman Method		
4.3.5	4.3.5 Kinetic Study		
4.3.5.1	Calculation of Activation Energy of Thermal Decomposition of AP	124	
4.3.5.2	Calculation of Pre-Exponential Factor	125	
4.3.5.3	Calculation of Reaction Rate Constant	125	
Chapter 4: Conclusion and Recommendations		129-131	
5.1	Conclusion	129-131	
5.2	Recommendations for Further Studies	131	
References 132-14		132-145	
List of Publications			

Curriculum Vitae

List of Tables

		Page No
1.1	Physical properties of Ammonium Perchlorate	7
2.1	Summary of Reported Work on Burn Rate Modifiers	40-54
3.1	List of Chemical Along-With Their Respective Manufacture/Suppliers	56-57
3.2	Chemical Compositions of Solid Composite Propellant	63-64
4.1	Elemental composition (Weight %) of Different Cu-Cr-O-TiO ₂ Composites	85
	Calcined at 300 and 1050°C	
4.2	Decomposition Temperature of Pure AP, AP Modified with ACR and AP	93
	Modified with Different Compositions of Cu-Cr-O-TiO ₂ Calcined at 300 and	
	1050°C	
4.3	Calibrated ΔH Values for all the Endothermic and Exothermic Peaks Appeared	94
	in DTA of Pure AP, AP Modified with ACR and AP Modified with Different	
	Compositions of Cu-Cr-O-TiO ₂ Calcined at 300 and 1050°C	
4.4	. Elemental Composition of Synthesized Catalyst	103
4.5	Kinetic Data of Thermal Decomposition of AP in Presence of 5 wt% of	124
	Synthesized Catalyst	
4.0	5 Summery of Kinetic Parameters	125
4.'	7 The Comparison of Kinetic Parameters for Different Compositions in Presence	126 -127
	of Different Catalyst as Reported in Available Literature	

-

List of Figures

		Page No.
1.1	Oligomer of Butadiene	5
1.2	Theoretical Energy Release of Thermite, Intermetallic and Combustible Metals	6
1.3	Diagram of Ammonium Perchlorate	8
1.4	Chemical Formula of Ammonium Perchlorate	9
1.5	Combustion Regime and Effect of AP Particle Size on the Burning Rate	16
	of Monopropellant	
1.6	Flame Temperature of AP Based Solid Composite Propellant with Varying Loading of AP	17
3.1	Schemetic Diagram for Synthesis of Cu-Cr-O-nTiO ₂	58
3.2	Flow Diagram for Synthesis Of Cu-Cr-O-nTiO ₂	59
3.3	Schemetic Diagram for Synthesis of Graphene Oxide	60
3.4	Schemetic Diagram for Synthesis of Cu-Cr-O.0.7TiO ₂	61
3.5	Schemetic Diagram for Synthesis of rGO/Cu-Cr-O.0.7TiO ₂	62
3.6	Samples of AP Based Solid Composite Propellant	65
3.7	Characterization Techniques for Synthesized Catalyst	67
3.8	Diagram of Crawford bomb	75
3.9	Photograph of Crawford bomb for Burn Rate Measurement	75
4.1	TGA curve of catalyst precursor (Cu-Cr-O-citric acid). The curve consists of three regions of weight loss within the temperature range of 30 -1000 °C	77
4.	2 XRD patterns of (a) Cu-Cr-O.0.5TiO ₂ , (b) Cu-Cr-O.0.7TiO ₂ and (c) Cu-Cr-O.0.9TiO ₂ catalysts calcined at 300°C	78

4.3	XRD patterns of (a) Cu-Cr-O.0.5TiO ₂ , (b) Cu-Cr-O.0.7TiO ₂ and (c) Cu- 75		
	Cr-O.0.9TiO ₂ catalysts calcined at 1050°C		
4.4	FT- IR spectrum of synthesized catalysts calcined 300°C		
4.5	FT- IR Spectrum of Synthesized Catalysts Calcined 1050°C		
4.6	SEM Images of Synthesized Catalysts Calcined at 300°C	83	
4.7	SEM Images of Synthesized Catalysts Calcined at 1050°C	83	
4.8	TEM Image of Cu-Cr-O.0.7TiO ₂ Calcined at 300 °C with SAED Pattern		
4.9	EDAX Spectrum of (a) Cu-Cr-O.0.5TiO ₂ , (b) Cu-Cr-O.0.7TiO ₂ and (c) Cu-Cr-O.0.9TiO ₂ Calcined at 300 $^{\circ}$ C	86	
4.10	EDAX Spectrum of (a) Cu-Cr-O.0.5TiO ₂ , (b) Cu-Cr-O.0.7TiO ₂ and (c) Cu-Cr-O.0.9TiO ₂ Calcined at 1050°C	86	
4.11	DTA Curves of (a) AP3 _{00μ} & (b) AP _{45μ}	87	
4.12	TGA curves of (a) $AP_{45\mu}$ & (b) $AP_{300\mu}$	88	
4.13	B DTA Curve of AP _{45µ} Modified with Industrial ACR (Cu–Cr–O)	89	
4.14	4 TGA Curve of $AP_{45\mu}$ Modified with Industrial ACR (Cu–Cr–O)	89	
4.1	5 DTA Curves of $AP_{45\mu}$ Modified with (a) Cu–Cr–O–0.5TiO ₂ and (b) Cu–	90	
	Cr-O-0.7TiO ₂ Calcined at 300°C		
4.1	6 TGA Curves of $AP_{45\mu}$ Modified with (a) Cu–Cr–O.0.5TiO ₂ and (b) Cu–Cr–O.0.7TiO ₂ Calcined at 300°C.	91	
4.1	7 DTA Curves of $AP_{45\mu}$ Modified with (a) Cu–Cr–O.0.5TiO ₂ , (b) Cu–Cr–	91	
	O.0.7TiO ₂ and (c) Cu–Cr–O.0.9TiO ₂ Calcined at 1050°C		
4.1	8 TGA Curves of $AP_{45\mu}$ Modified with (a) Cu–Cr–O.0.5TiO ₂ , (b) Cu–Cr–	92	
4	O.0.7TiO ₂ and (c) Cu–Cr–O.0.9TiO ₂ Calcined at 1050°C	09	
4.	19 ARD Fattern of Synthesized Catalyst	70	
4.	20 FT-IR Pattern of Synthesized Catalyst	100	

List of Figures

4.21	Raman spectrum of Synthesized Catalyst 101		
4.22	SEM images of Synthesized Catalyst at (a) 1 μm and (b) 2 μm	102	
	Magnifications		
4.23	EDAX Spectrum of the Catalyst	103	
4.24	TEM Images of Synthesized Catalyst at Two Different Magnifications (a)	104	
	200 nm and (b) 20 nm and (c) SAED Pattern as Inset Image.		
4.25	XPS Pattern of Copper with Fitted Curves	105	
4.26	XPS Pattern of Chromium with Fitted Curves	106	
4.27	XPS Pattern of Titanium Dioxide with Fitted Curves	106	
4.28	XPS Pattern of Oxygen with Fitted Curves	107	
4.29	XPS Pattern of Carbon with Fitted Curves	108	
4.30	DTA Curve of Pure Ammonium Perchlorate (AP)	109	
4.31	DTA Curve of AP Modified with 2.5 Wt % of Catalyst	112	
4.32	DTA Curve of AP Modified with 5.0 Wt% of Catalyst	112	
4.33	DTA Curve of AP Modified with 7.5 Wt % of Catalyst	113	
4.34	DTA Curve of AP Modified with 10 Wt % of Catalyst	113	
4.3	5 TGA Curves of the (a) Pure AP and AP with (b) 2.5, (c) 5, (d) 7 and (e)	115	
4.3	10 wt% of Catalyst(a) Images of Strand burner (b) Burn rate of (i) SCP having AP modified	117	
	with synthesized catalyst and (ii) SCP having AP Modified with Industrial		
	Catalyst		
4.3	7 DTA Curves of AP with 5wt% of Catalyst (a) at a Heating Rate of	123	
	10°C/Min (b) Heating Rate of 20°C (c) Heating Rate of 30°C and (d)		
	Heating Rate of 40°C		
4.3	8 Kissinger graph between $\frac{1000}{T_p}$ and $\ln \frac{\beta}{T_p^2}$	124	

х

Α	÷	Anatase
AL (P)	:	Aluminum Powder
AP	:	Ammonium Perchlorate
CNT	:	Carbon Nanotube
DTA	:	Differential Thermogravimetric Analysis
EDAX	:	Energy dispersive X-ray Analysis
FTIR	:	Fourier Transformation Infrared
GR	:	Graphene Sheet
HTD	: '	High Temperature Decomposition
НТРВ	:	Hydroxyl Terminated Polybutadiene
LTD	:	Low Temperature Decomposition
R	:	Rutile
rGO	:	Reduced Graphene Oxide
rGO	:	Reduced Graphene Oxide
SAED	;	Selected Area Electron Diffraction
SCP	:	Solid Composite Propellant
SEM	:	Scanning Electron Microscopy
SRMs	:	Solid Rocket Motors
SVs	:	Space Vehicles
TDI	:	Toluene Diisocynate
TEM	:	Transmission Electron Microscopy
TGA	:	Thermogravimetric Analysis
XPS	:	X-ray Photoelectron Spectroscopy
XRD	:	X-ray Diffraction

xi