Líst of Fígures

Figure No.	Description	Page No.
2.1	Graphical representation of main properties of gold nanoparticles	14
2.2	Graphical illustration of the distinction between GNPs and P-GNPs upon storage	19
2.3	Advantages of P-GNPs to enhance the efficacy of chemotherapeutic agent for the treatment of cancer	20
2.4	Schematic illustration of bioreduction and stabilization of gold into GNPs	22
4.1	Preparation of DSB loaded PVP stabilized chitosan capped gold nanoparticles	53
4.2	Preparation of DSB loaded PLGA stabilized chitosan capped gold nanoparticles	65
4.3	Ishikawa fish bone diagram showing the cause-effect relationship between variables for the critical quality attributes of DSB-PLGA- Ch-GNPs	66
5.1	FTIR spectrum of dasatinib	72
5.2	UV spectrum of Dasatinib	73
5.3	Standard calibration curve of DSB in pH 7.4 PBS at 325 nm	74
5.4	HPLC chromatogram of dasatinib spiked with rat plasma	75
5.5	Calibration curve of dasatinib by HPLC in rat plasma	76
5.6	Pareto charts showing the influence of significant factors on responses	80
5.7	3-D Response surface plots showing effect of polymer concentration, stirring time and sonication time on particle size, zeta potential and % entrapment efficiency	85
5.8	Fourier transform infrared overlay spectrum (A) and x-ray diffraction overlay spectrum (B)	88
5.9	Transmission electron microscopy micrograph of DSB-PVP-Ch-GNPs	89

- 5.10 *In vitro* drug release profile of the optimized DSB-PVP-Ch-GNPs 90 nanoformulation in pH 7.4 phosphate buffer
- 5.11 Pareto chart showing the influence of factors on responses; (a) 92 influence of input factors on PS, (b) influence of input factors on %EE and (c) influence of input factors on ZP
- 5.12 Graphical illustration representing the effect of factors on 97 responses. (A & C) represents 3-D response surface plots of PS, (B & D) are its contour plots; (E & G) represents 3-D response surface plots of % EE, (F & H) are its contour plots; (I & K) represents 3-D response surface plots of ZP, (J & L) are its contour plots
- 5.13 Optimization plot to prepare the formulation with desired PS, % 98 EE and ZP
- 5.14 Fourier transform infrared overlay spectrum (A) and x-ray 100 diffraction overlay spectrum (B)
- 5.15 High resolution scanning electron microscopy micrographs 101 showing the morphology of optimized DSB-PEG-Ch-GNPs
- 5.16 Energy dispersive x-ray spectroscopy spectrum of the optimized 102 DSB-PEG-Ch-GNPs (A) and color mapping report of the relative distribution of Au in the optimized DSB-PEG-Ch-GNPs (B)
- 5.17 Transmission electron microscopy micrographs illustrating the 103 shape and morphology of optimized DSB-PEG-Ch-GNPs
- 5.18 Selected area electron diffraction pattern of optimized DSB-PEG- 104 Ch-GNPs
- 5.19 2D atomic force microscopy micrograph of optimized DSB-PEG-Ch-GNPs (A) and 3D atomic force microscopy micrograph of optimized DSB-PEG-Ch-GNPs (B)
- 5.20 Stability study profiles of particle size (A), % entrapment 106 efficiency (B) and zeta potential (C) of optimized DSB-PEG-Ch-GNPs at different storage conditions and different time intervals
- 5.21 *In vitro* drug release profile of the optimized DSB-PEG-Ch-GNPs 107 nanoformulation in pH 7.4 phosphate buffer
- 5.22 Pareto charts showing the influence of significant factors on 111 responses (particle size, % entrapment efficiency and zeta potential) of DSB-GNPs
- 5.23 The 3D response surface plots showing the effect of PLGA 115 concentration, stirring time and sonication time on particle size (A & B), % entrapment efficiency (C) and zeta potential (D)

- 5.24 Graphs of (A) intensity distribution (particle size) and (B) 117 mobility distribution (zeta potential) of optimized DSB-PLGA-Ch-GNPs nanoformulation
- 5.25 FTIR overlay spectrum of DSB-PLGA-Ch-GNPs 119
- 5.26 FTIR overlay spectrum of DSB-PLGA-Ch-GNPs 120
- 5.27 HR-SEM micrographs (A & B), EDS spectrum (C), and Colour 121 mapping report of the spatial distribution of gold in the optimized DSB-PLGA-Ch-GNPs nanoformulation (D)
- 5.28 TEM micrographs (A, B) and SAED pattern (C) of the optimized 122 DSB-PLGA-Ch-GNPs nanoformulation
- 5.29 2D AFM micrograph (A) and 3D AFM micrograph (B) of the 123 optimized DSB-PLGA-Ch-GNPs nanoformulation
- 5.30 Stability study profiles of optimized DSB-PLGA-Ch-GNPs 125 nanoformulation for particle size, % entrapment efficiency and zeta potential at different storage conditions and different time intervals
- 5.31 *In vitro* drug release profile of the optimized DSB-PLGA-Ch-GNPs nanoformulation in pH 7.4 phosphate buffer
- 5.32 Comparative *in vitro* drug release profiles of all the three 127 nanoformulations
- 5.33 Confocal fluorescence micrographs of DSB (A, B) and optimized 129 DSB-PLGA-Ch-GNPs nanoformulation (C, D) in K562 cell line
- 5.34 Quantitative fluorescence intensity curves of DSB and optimized 129 DSB-PLGA-Ch-GNPs nanoformulation for 4 hours (A) and 6 hours (B)
- 5.35 Percentage control growth versus drug concentration (μg/mL) 130 profiles
- 5.36 Dot plot of apoptosis in K562 cell line detected by flow cytometry 131
- 5.37 Bar graph displaying the percentage of apoptotic cells at different 132 concentrations of optimized DSB-PLGA-Ch-GNPs nanoformulation and exposure times
- 5.38 Plasma drug concentration Vs. time profile of pure DSB and 133 optimized DSB-PLGA-Ch-GNPs nanoformulation in rats

List of Tables

Table No.	Description	Page No.
2.1	Tyrosine kinase inhibitors (TKI) in the CML treatment	10
2.2	Polymers used in the synthesis of polymeric gold nanoparticles	18
2.3	Green synthesis of GNPs using different bioreducing agents	23
2.4	Summary of GNPs imaging applications	28
2.5	Shapes of various GNPs and their applications in the field of medicine	34
4.1	List of chemicals used in the study	45
4.2	List of major equipments used in the study	46
4.3	List of animals and cell lines used in the study	47
4.4	List of softwares used in the study	47
4.5	Prioritization of critical quality attributes based on failure modes and effects analysis	58
5.1	FTIR spectra obtained in the spectral region of 4000 to 500 cm ⁻¹	72
5.2	Recovery of dasatinib from the rat plasma sample $(n = 6)$	76
5.3	Intra-day reproducibility of dasatinib standard plasma calibration curve obtained by HPLC	77
5.4	Inter-day reproducibility of dasatinib standard plasma calibration curve obtained by HPLC	78
5.5	Plackett-Burman screening design of experiment and their results	79
5.6	Factors and responses with their levels in BBD	81
5.7	Compositions of the 3-factor 3-level BBD for the formulation of DSB-PVP-Ch-GNPs	82
5.8	Statistical ANOVA results of the quadratic model	86
5.9	Results of optimization of DSB-PVP-Ch-GNPs utilizing BBD	86

5.10	Plackett-Burman screening design of experiment and their results	91
5.11	Factors and responses with their levels in BBD	93
5.12	Compositions of the 3-factor 3-level BBD for the formulation of DSB-PEG-Ch-GNPs	93
5.13	Statistical ANOVA results of the quadratic model	98
5.14	Results of optimization of DSB-PEG-Ch-GNPs utilizing BBD	99
5.15	Stability study results of optimized DSB-PEG-Ch-GNPs nanoformulation	105
5.16	Composition of nanoformulation showing the levels of various factors and the results of observed mean values of various responses by Plackett-Burman Design	110
5.17	List of the three factors, their levels in the 2^3 full factorial design along with the responses	112
5.18	2^3 full factorial design matrix and results of observed mean values of various responses	113
5.19	The predicted and experimental values for all the responses observed for optimized DSB-PLGA-Ch-GNPs nanoformulation	116
5.20	Stability study results of optimized DSB-PLGA-Ch-GNPs nanoformulation	124
5.21	Pharmacokinetic parameters calculated for pure DSB Vs optimized DSB-PLGA-Ch-GNPs nanoformulation	133

List of Abbreviations and Symbols

ABL	Abelson murine leukemia
AFM	atomic force microscopy
ALL	acute lymphocytic leukemia
AML	acute myeloid leukemia
AUC	area under the curve
BCR	breakpoint cluster region
Ch	chitosan
CI	confidence interval
Cmax	maximum plasma concentration
CML	chronic myeloid leukemia
CV	coefficient of variation
DIC	differential interference contrast
DLS	dynamic light scattering
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DOE	design of experiments
DSB	dasatinib
DSC	differential scanning calorimetry
EDXS	energy dispersive x spectroscopy
EPR	enhanced permeability and retention
EXAFS	extended x-ray absorption fine structure
FISH	fluorescence in situ hybridization
FTIR	Fourier transform infrared spectroscopy
GNP	gold nanoparticle
HR- SEM	high resolution scanning electron microscopy
IFN- α	interferon-alfa
MDR	multi drug resistance
mRNA	messenger ribonucleic acid
NIR	near infrared
NMR	nuclear magnetic resonance

NNI	National Nanotechnology Initiative
PAT	photoablation therapy
PBS	phosphate buffer saline
PDT	photodynamic therapy
PEG	polyethylene glycol
Ph	Philadelphia chromosome
PLGA	poly lactic-co-glycolic acid
PTT	photothermal therapy
PVP	poly vinyl pyrrolidone
QbD	quality by design
RPMI	Roswell park memorial institute
RT- qPCR	reverse transcriptase quantitative polymerase chain reaction
SAED	selected area electron diffraction
SAXS	small-angle x-ray scattering
SERS	surface-enhanced Raman scattering
SPR	surface plasmon resonance
Src	sarcoma
STM	scanning tunneling microscopy
TEM	transmission electron microscopy
TGA	thermo gravimetric analysis
TKI	tyrosine kinase inhibitors
Tmax	time to reach maximum plasma concentration
US FDA	United States food and drug administration
UV	ultraviolet
UV- Vis	ultraviolet-visible
WBC	white blood cells
XPS	x-ray photoelectron spectroscopy

Preface

In recent years, the development of various nanoparticulate drug delivery systems has gained significant interests for cancer theranostics. These nanocarriers are targeted specifically to the tumor cells either actively or passively based upon their mode of action. In this targeted drug delivery system, the drug gets confine and delivers to the targeted site in a greater amount without affecting the surrounding healthy cells. The idea to work for the present thesis was conceived from drug and dose-related problems associated with the available antineoplastic drugs. Dasatinib (DSB) is an antineoplastic drug approved as a first-line drug for the treatment of chronic myeloid leukaemia (CML). During chemotherapy, large doses are recommended for treatment, which may induce adverse effects to normal cells and the surrounding healthy organs. Thus, the objective of this study was to design and develop a new targeted delivery system comprising of polymer stabilized chitosan capped gold nanoparticles (Ch-GNPs) loaded with DSB with the aim of restricting high dose administration and reducing the dose related adverse side effects and also the frequency of dosing. For a drug to be clinically effective, it needs to be suitably protected in the biodegradable and biocompatible polymeric vesicles till its delivery to the targeted site. The novelty of the present research work lies in the synthesis and stabilization of potent, non-toxic, costeffective, eco-friendly, selectively targeted, sustained release drug loaded gold nanocarriers by green reduction method utilizing minimum raw materials and time, and preserving its stability and bioactivity during fabrication and release.

The design, development, and optimization of nanoformulations were done by employing systematic design of experiments (DOE), which has attracted attention in the pharmaceutical sector to simultaneously attain multiple objectives with minimal consumption of time and resources. DOE involves stepwise assessment of critical quality attributes, factor screening, experimental design and optimization. BBD (Box-Behnken design) was employed to evaluate the effect of independent factors on the dependent responses. The effect of independent variables on the responses was illustrated by 3D response surface methodology. A graphical and numerical optimization procedure was carried out to obtain the predicted value of various factors and responses. The final optimized batch of the nanoformulation was evaluated and validated.

Further, the nanoformulations were subjected to detailed evaluations for solid state characterization, physicochemical characterization, stability studies, *in vitro* drug release, drug release kinetic studies, hemocompatibility study, cellular uptake study by confocal fluorescence microscopy, *in vitro* cytotoxicity assay in K562 cell lines, cell apoptosis assay and *in vivo* pharmacokinetic study in Sprague Dawley rats and the results have been discussed in detail. These results indicate that the newly developed nanoparticulate system could prove to be a promising drug delivery system for prolonging the drug release and achieving the desired drug concentration at the tumor site for longer duration resulting in improved therapeutic efficacy of the drug in the treatment of CML.

৫∞⊙৵