Table of Contents

	Page Nos.
Certificates	ii-iv
Acknowledgments	v-vi
List of Figures	xiv-xix
List of Tables	xx-xxi
List of Abbreviations	xxii-xxiv
Preface	xxv-xxvi
Chapter 1: Introduction	1-13
1.1 Energy	
1.2 Global energy crises	
1.3 Greenhouse Gas emission statistics	
1.4 Introducing biofuel resources	
1.5 Biofuel policies and production in various countries	
1.6 India's biodiesel policy and its features	
1.7 Biodiesel production in India	
1.8 Problem statement	
1.9 Objectives	
Chapter 2: Literature review	14-26
2.1 Biodiesel	
2.2 Distant feedstock for biodiesel production	
2.2.1 First generation feedstock	
2.2.2 Second generation feedstock	

- 2.2.3 Third generation feedstock
- 2.3 Selection of feedstock
 - 2.3.1 Waste vegetable oil (WVO)
 - 2.3.2 Pongamia pinnata (Karanja) oil
- 2.4 Catalyst selection
 - 2.4.1 Homogenous and heterogeneous catalyst
- 2.5 Production of biodiesel
 - 2.5.1 Transesterification reaction

Chapter 3: Methodology

27-44

- 3.1 Epitome of methodology
- 3.2 Synthesis of catalyst
 - 3.2.1 Synthesis via solid state method
 - 3.2.2 Synthesis by co-precipitation method

3.3 Characterization of catalyst

- 3.3.1 Themogravimetric analysis (TGA)
- 3.3.2 Powder X-ray diffraction (XRD)
- 3.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra
- 3.3.4 Brunauer-Emmett-Teller (BET) surface area and BJH analysis
- 3.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
- 3.3.6 Particle size analysis
- 3.3.7 Basicity
- 3.4 Biodiesel production via transesterification reaction and optimization

of several reaction parameters

- 3.4.1 Effect of catalyst concentration
- 3.4.2 Effect of molar ratio
- 3.4.3 Effect of reaction temperature

- 3.4.4 Effect of reaction time
- 3.4.5 Effect of stirring speed
- 3.4.6 Catalytic activity and reusability
- 3.5 Gas chromatography-mass spectrometry (GCMS) analysis of feedstock
 - 3.5.1 Waste vegetable oil (WVO)
 - 3.5.2 *Pongamia pinnata* (Karanja) oil
- 3.6 Fourier transform-nuclear magnetic resonance (FT-NMR) of product (biodiesel)
- 3.7 American Society for Testing and Materials (ASTM) specifications
 - 3.7.1 Acid value
 - 3.7.2 Density
 - 3.7.3 Kinematic viscosity
 - 3.7.4 Cetane number
 - 3.7.5 Calorific value
 - 3.7.6 Flash point and fire point
 - 3.7.7 Cloud point and pour point
 - 3.7.8 Ash content

Chapter 4: Synthesis and characterization of beta-potassium dizirconate 45-67

$(\beta$ -K₂Zr₂O₅) and its application in biodiesel production from waste

vegetable oil (WVO) and Pongamia pinnata (Karanja) oil

- 4.1 Introduction
- 4.2 Synthesis of beta-potassium dizirconate (β -K₂Zr₂O₅)
- 4.3 Characterization of beta-potassium dizirconate (β -K₂Zr₂O₅)
 - 4.3.1 Thermogravimetric analysis (TGA)
 - 4.3.2 X ray diffraction (XRD)
 - 4.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra

- 4.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume
- 4.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
- 4.3.6 Particle size analysis
- 4.3.7 Basicity
- 4.4 Biodiesel production via transesterification and its analysis
- 4.5 Effect of various reaction parameters on transesterification
- 4.6 Characteristics of FAME synthesized from WVO and Karanja oil
- 4.7 Conclusion

Chapter 5: Synthesis and characterization of barium zirconate (BaZrO₃) 68-90

and its application in biodiesel production from waste vegetable oil (WVO)

and Pongamia pinnata (Karanja) oil

5.1 Introduction

- 5.2 Synthesis of barium zirconate (BaZrO₃)
- 5.3 Characterization of barium zirconate (BaZrO₃)
 - 5.3.1 Thermogravimetric analysis (TGA)
 - 5.3.2 X ray diffraction (XRD)
 - 5.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra
 - 5.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume
 - 5.3.5 Scanning electron microscopy (SEM) and energy dispersive
 - X-ray spectroscopy (EDS)
 - 5.3.6 Particle size analysis
 - 5.3.7 Basicity
- 5.4 Biodiesel production via transesterification and its analysis

5.5 Effect of various reaction parameters on transesterification5.6 Characteristics of FAME synthesized from WVO and Karanja oil5.7 Conclusion

Chapter 6: Synthesis and characterization of calcium aluminate91-113(Ca2Al2O5) and its application in biodiesel production from waste91-113vegetable oil (WVO) and *Pongamia pinnata* (Karanja) oil91-113

- 6.1 Introduction
- 6.2 Synthesis of calcium aluminate (Ca₂Al₂O₅)
- 6.3 Characterization of calcium aluminate (Ca₂Al₂O₅)
 - 6.3.1 Thermogravimetric analysis (TGA)
 - 6.3.2 X ray diffraction (XRD)
 - 6.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra
 - 6.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume
 - 6.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray

spectroscopy (EDS)

- 6.3.6 Particle size analysis
- 6.37 Basicity
- 6.3 Biodiesel production via transesterification and its analysis
- 6.4 Effect of various reaction parameters on transesterification
- 6.5 Characteristics of FAME synthesized from WVO and Karanja oil
- 6.6 Conclusion

Chapter 7: Synthesis and characterization of beta-tricalcium phosphate114-137derived from waste guinea fowl bone and its application in biodieselproduction from waste vegetable oil (WVO) and *Pongamia pinnata* (Karanja) oil

7.1 Introduction

7.2 Synthesis of waste guinea fowl bone derived catalyst

7.3 Characterization of waste guinea fowl bone derived catalyst

7.3.1 Thermogravimetric analysis (TGA)

7.3.2 X ray diffraction (XRD)

7.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra

7.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume

7.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)

7.3.6 Particle size analysis

7.3.7 Basicity

- 7.4 Biodiesel production via transesterification and its analysis
- 7.5 Effect of various reaction parameters on transesterification
- 7.6 Active component in waste guinea fowl bone synthesized catalyst
- 7.7 Characteristics of FAME synthesized from WVO and Karanja oil
- 7.8 Conclusion

Chapter 8: Summary of the work and Future scope	138-148
8.1 Summary of the work	
8.2 Future scope	
8.3 Future of Biodiesel in India	
References	149-164
List of publications and conferences	165-168