Dedicated to my loving parents...

CERTIFICATE

It is certified that the work contained in the thesis titled "**Synthesis of biodiesel from non-edible oil feedstocks using mixed metal oxides**" by **Miss Singh Veena Awadhesh** has been carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Prof. Yogesh Chandra Sharma (Supervisor) Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Prof. Ram Sharan Singh (Co-supervisor) Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005

DECLARATION BY THE CANDIDATE

I, Singh Veena Awadhesh, certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of **Prof. Yogesh Chandra Sharma** from July-2013 to July-2017, at the **Department of Chemistry**, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi.

(Singh Veena Awadhesh)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Prof. Y. C. Sharma (Supervisor) Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005

The Head

Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Synthesis of biodiesel from non-edible oil feedstocks using mixed metal oxides.

Name of the Student: Miss Singh Veena Awadhesh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*" degree.

Date:

Place: Varanasi.

(Singh Veena Awadhesh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

I would like to express my truthful appreciation and heartfelt thanks to all the persons around me intended for their valuable advices, critics, commitment and encouragement that made my journey conceivable.

Initially, I would like to express my deep sense of gratitude to my supervisor Prof. Yogesh Chandra Sharma, Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, for his valuable guidance, constant support, critical and motivating comments throughout the completion of this research work. It is my pleasure to express my deepest admiration and heartiest thanks to him for helping me to learn the subject and to develop an interest for further research in this area. Special thanks to my cosupervisor Prof. Ram Sharan Singh, Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, who continuously advised and inspired me throughout the research.

I would like to thank the Head, Department of Chemistry, IIT (BHU), Varanasi, Prof. (Mrs.) Rashmi Bala Rastogi as well as all the faculty members of Department of Chemistry IIT (BHU) for their kind support and for extending all required facilities to carry out my research work smoothly.

I would like to thank my RPEC members, Prof. M. A. Qureshi, Department of Chemistry, IIT (BHU), Varanasi and Prof. B. N. Rai, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi for their valuable suggestions, constant guidance and kind encouragement during my research work. I gratefully acknowledge the facilities provided by CIFC, IIT (BHU), Varanasi for doing characterization of samples.

I am thankful to all lab members Dr. Uma, Dr. Bhaskar Singh, Dr. Varsha Srivastava, Ms. Shweta Agrawal, Dr. Arun Srivastava, Dr. Deepak Gusain, Dr. Shikha Dubey, Mr. Devarapaga Madhu, Mr. Ashutosh Kumar, Dr. Sushmita Banerjee, Ms. Reena Singh, Ms. Meena Yadav, Ms. Shalini Sahani and Ms. Taniya Roy for their support throughout my research work.

I would like to express my deepest affection to my father, Mr. Awadhesh Singh, my mother, Mrs. Asha Singh, elder brother Mr. Digvijay Singh and younger sister Miss Mahima Singh for their love, concern, continuous moral support and encouragement which enabled me to perform my liabilities. I also would like to thank my friends and siblings (Tripti, Atyendra and Utkarsh) for their affection, prayer and support in my research work as well as their willingness to share my research problems.

I am thankful and indebted to MHRD for providing me financial support during my research work.

Date:

Singh Veena Awadhesh

Research Scholar Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.

Table of Contents

	Page Nos.
Certificates	ii-iv
Acknowledgments	v-vi
List of Figures	xiv-xix
List of Tables	xx-xxi
List of Abbreviations	xxii-xxiv
Preface	xxv-xxvi
Chapter 1: Introduction	1-13
1.1 Energy	
1.2 Global energy crises	
1.3 Greenhouse Gas emission statistics	
1.4 Introducing biofuel resources	
1.5 Biofuel policies and production in various countries	
1.6 India's biodiesel policy and its features	
1.7 Biodiesel production in India	
1.8 Problem statement	
1.9 Objectives	
Chapter 2: Literature review	14-26
2.1 Biodiesel	
2.2 Distant feedstock for biodiesel production	
2.2.1 First generation feedstock	
2.2.2 Second generation feedstock	

- 2.2.3 Third generation feedstock
- 2.3 Selection of feedstock
 - 2.3.1 Waste vegetable oil (WVO)
 - 2.3.2 Pongamia pinnata (Karanja) oil
- 2.4 Catalyst selection
 - 2.4.1 Homogenous and heterogeneous catalyst
- 2.5 Production of biodiesel
 - 2.5.1 Transesterification reaction

Chapter 3: Methodology

27-44

- 3.1 Epitome of methodology
- 3.2 Synthesis of catalyst
 - 3.2.1 Synthesis via solid state method
 - 3.2.2 Synthesis by co-precipitation method

3.3 Characterization of catalyst

- 3.3.1 Themogravimetric analysis (TGA)
- 3.3.2 Powder X-ray diffraction (XRD)
- 3.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra
- 3.3.4 Brunauer-Emmett-Teller (BET) surface area and BJH analysis
- 3.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
- 3.3.6 Particle size analysis
- 3.3.7 Basicity
- 3.4 Biodiesel production via transesterification reaction and optimization

of several reaction parameters

- 3.4.1 Effect of catalyst concentration
- 3.4.2 Effect of molar ratio
- 3.4.3 Effect of reaction temperature

- 3.4.4 Effect of reaction time
- 3.4.5 Effect of stirring speed
- 3.4.6 Catalytic activity and reusability
- 3.5 Gas chromatography-mass spectrometry (GCMS) analysis of feedstock
 - 3.5.1 Waste vegetable oil (WVO)
 - 3.5.2 *Pongamia pinnata* (Karanja) oil
- 3.6 Fourier transform-nuclear magnetic resonance (FT-NMR) of product (biodiesel)
- 3.7 American Society for Testing and Materials (ASTM) specifications
 - 3.7.1 Acid value
 - 3.7.2 Density
 - 3.7.3 Kinematic viscosity
 - 3.7.4 Cetane number
 - 3.7.5 Calorific value
 - 3.7.6 Flash point and fire point
 - 3.7.7 Cloud point and pour point
 - 3.7.8 Ash content

Chapter 4: Synthesis and characterization of beta-potassium dizirconate 45-67

$(\beta$ -K₂Zr₂O₅) and its application in biodiesel production from waste

vegetable oil (WVO) and Pongamia pinnata (Karanja) oil

- 4.1 Introduction
- 4.2 Synthesis of beta-potassium dizirconate (β -K₂Zr₂O₅)
- 4.3 Characterization of beta-potassium dizirconate (β -K₂Zr₂O₅)
 - 4.3.1 Thermogravimetric analysis (TGA)
 - 4.3.2 X ray diffraction (XRD)
 - 4.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra

- 4.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume
- 4.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
- 4.3.6 Particle size analysis
- 4.3.7 Basicity
- 4.4 Biodiesel production via transesterification and its analysis
- 4.5 Effect of various reaction parameters on transesterification
- 4.6 Characteristics of FAME synthesized from WVO and Karanja oil
- 4.7 Conclusion

Chapter 5: Synthesis and characterization of barium zirconate (BaZrO₃) 68-90

and its application in biodiesel production from waste vegetable oil (WVO)

and Pongamia pinnata (Karanja) oil

5.1 Introduction

- 5.2 Synthesis of barium zirconate (BaZrO₃)
- 5.3 Characterization of barium zirconate (BaZrO₃)
 - 5.3.1 Thermogravimetric analysis (TGA)
 - 5.3.2 X ray diffraction (XRD)
 - 5.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra
 - 5.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume
 - 5.3.5 Scanning electron microscopy (SEM) and energy dispersive
 - X-ray spectroscopy (EDS)
 - 5.3.6 Particle size analysis
 - 5.3.7 Basicity
- 5.4 Biodiesel production via transesterification and its analysis

5.5 Effect of various reaction parameters on transesterification5.6 Characteristics of FAME synthesized from WVO and Karanja oil5.7 Conclusion

Chapter 6: Synthesis and characterization of calcium aluminate91-113(Ca2Al2O5) and its application in biodiesel production from waste91-113vegetable oil (WVO) and *Pongamia pinnata* (Karanja) oil91-113

- 6.1 Introduction
- 6.2 Synthesis of calcium aluminate (Ca₂Al₂O₅)
- 6.3 Characterization of calcium aluminate (Ca₂Al₂O₅)
 - 6.3.1 Thermogravimetric analysis (TGA)
 - 6.3.2 X ray diffraction (XRD)
 - 6.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra
 - 6.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume
 - 6.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray

spectroscopy (EDS)

- 6.3.6 Particle size analysis
- 6.37 Basicity
- 6.3 Biodiesel production via transesterification and its analysis
- 6.4 Effect of various reaction parameters on transesterification
- 6.5 Characteristics of FAME synthesized from WVO and Karanja oil
- 6.6 Conclusion

Chapter 7: Synthesis and characterization of beta-tricalcium phosphate114-137derived from waste guinea fowl bone and its application in biodieselproduction from waste vegetable oil (WVO) and *Pongamia pinnata* (Karanja) oil

7.1 Introduction

7.2 Synthesis of waste guinea fowl bone derived catalyst

7.3 Characterization of waste guinea fowl bone derived catalyst

7.3.1 Thermogravimetric analysis (TGA)

7.3.2 X ray diffraction (XRD)

7.3.3 Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectra

7.3.4 Brunauer-Emmett-Teller (BET) surface area and pore volume

7.3.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)

7.3.6 Particle size analysis

7.3.7 Basicity

- 7.4 Biodiesel production via transesterification and its analysis
- 7.5 Effect of various reaction parameters on transesterification
- 7.6 Active component in waste guinea fowl bone synthesized catalyst
- 7.7 Characteristics of FAME synthesized from WVO and Karanja oil
- 7.8 Conclusion

Chapter 8: Summary of the work and Future scope	138-148
8.1 Summary of the work	
8.2 Future scope	
8.3 Future of Biodiesel in India	
References	149-164
List of publications and conferences	165-168

List of Figures

Figures	Page Nos.
Chapter 3	
Figure 3.1 GC-MS chromatogram of waste vegetable oil (WVO)	38
Figure 3.2 GC-MS chromatogram of Karanja oil	40
Chapter 4	
Figure 4.1 Synthesis of β -K ₂ Zr ₂ O ₅ by solid state method	46
Figure 4.2 TGA curve of uncalcined β -K ₂ Zr ₂ O ₅ catalyst	47
Figure 4.3 XRD pattern of the β -K ₂ Zr ₂ O ₅ catalyst synthesized via	48
solid-state reaction	
Figure 4.4 ATR-FTIR spectra of β - K ₂ Zr ₂ O ₅ catalyst	48
Figure 4.5 SEM image of the β - K ₂ Zr ₂ O ₅ synthesized catalyst	51
Figure 4.6 EDS image of the β - K ₂ Zr ₂ O ₅ synthesized catalyst	52
Figure 4.7 Particle size distribution	54
Figure 4.8 ¹ H NMR spectrum of WVO FAME obtained at 4.0 wt%	57
β - K ₂ Zr ₂ O ₅ , 1:10 oil: methanol, 120 min reaction time at 65 °C temperature,	
600 rpm stirring speed	

Figure 4.9 ¹ H NMR spectrum of Karanja oil FAME obtained at 3.0 wt%	57
β - K ₂ Zr ₂ O ₅ , 1:8 oil: methanol, 120 min reaction time at 65 °C temperature,	
600 rpm stirring speed	
Figure 4.10 Effect of catalyst concentration on FAME conversion (%)	59
of WVO and Karanja oil	
Figure 4.11 Effect of oil: methanol molar ratio on FAME conversion (%)	60
of WVO and Karanja oil	
Figure 4.12 Effect of reaction temperature on FAME conversion (%) of	60
WVO and Karanja oil	
Figure 4.13 Effect of reaction time on FAME conversion (%) of WVO	63
and Karanja oil	
Figure 4.14 Effect of stirring speed on FAME conversion (%) of WVO	63
and Karanja oil	
Figure 4.15 Beta-potassium dizirconate (β - K ₂ Zr ₂ O ₅) reusability analysis	64
up to seven runs	
Chapter 5	
Figure 5.1 Synthesis of barium zirconate (BaZrO ₃) via co-precipitation	69
method	
Figure 5.2 TGA curve of uncalcined BaZrO ₃ catalyst	70
Figure 5.3 XRD pattern of the BaZrO ₃ catalyst synthesized via	71
co-precipitation method	
Figure 5.4 ATR-FTIR spectra of BaZrO ₃ catalyst	71

Figure 5.5 SEM image of the BaZrO ₃ synthesized catalyst	74
Figure 5.6 EDS image of the BaZrO ₃ synthesized catalyst	74
Figure 5.7 Particle size distribution	76
Figure 5.8 ¹ H NMR spectrum of WVO FAME obtained at 1.2 wt% barium zirconate, 1:27 oil: methanol, 180 min reaction time at 65 °C temperature, 600 rpm stirring speed	79
Figure 5.9 ¹ H NMR spectrum of Karanja oil FAME obtained at wt% barium zirconate, 1:27 oil: methanol, 180 min reaction time at 65 °C temperature, 600 rpm stirring speed	79
Figure 5.10 Effect of catalyst concentration on FAME conversion (%) of WVO and Karanja oil	82
Figure 5.11 Effect of oil: methanol molar ratio on FAME conversion (%) of WVO and Karanja oil	82
Figure 5.12 Effect of reaction temperature on FAME conversion (%) of WVO and Karanja oil	83
Figure 5.13 Effect of reaction time on FAME conversion (%) of WVO and Karanja oil	85
Figure 5.14 Effect of stirring speed on FAME conversion (%) of WVO and Karanja oil	86
Figure 5.15 Barium zirconate (BaZrO ₃) reusability analysis up to nine runs	87

Chapter 6

Figure 6.1 Synthesis of Ca ₂ Al ₂ O ₅ via solid state method	92
Figure 6.2 TGA curve of uncalcined Ca ₂ Al ₂ O ₅ catalyst	93
Figure 6.3 XRD pattern of the Ca ₂ Al ₂ O ₅ catalyst synthesized via	94
solid state method	
Figure 6.4 ATR-FTIR spectra of Ca ₂ Al ₂ O ₅ catalyst	94
Figure 6.5 SEM image of the Ca ₂ Al ₂ O ₅ synthesized catalyst	97
Figure 6.6 EDS image of the Ca ₂ Al ₂ O ₅ synthesized catalyst	97
Figure 6.7 Particle size distribution	99
Figure 6.8 ¹ H NMR spectrum of WVO FAME obtained at 3.0 wt%	102
Ca ₂ Al ₂ O ₅ , 1:21 oil: methanol, 150 min reaction time at 65 °C	
temperature, 700 rpm stirring speed	
Figure 6.9 ¹ H NMR spectrum of Karanja oil FAME obtained at 2.5 wt%	103
Ca ₂ Al ₂ O ₅ , 1:18 oil: methanol, 150 min reaction time at 65 °C	
temperature, 700 rpm stirring speed	
Figure 6.10 Effect of catalyst concentration on FAME conversion (%)	105
of WVO and Karanja oil	
Figure 6.11 Effect of oil: methanol molar ratio on FAME conversion (%)	105
of WVO and Karanja oil	
Figure 6.12 Effect of reaction temperature on FAME conversion (%)	107
of WVO and Karanja oil	

Figure 6.13 Effect of reaction time on FAME conversion (%) of	109
WVO and Karanja oil	
Figure 6.14 Effect of stirring speed on FAME conversion (%) of	109
WVO and Karanja oil	
Figure 6.15 Calcium aluminate (Ca ₂ Al ₂ O ₅) reusability analysis	110
up to seven runs	

Chapter 7

Figure 7.1 Synthesis of waste guinea fowl bone derived catalyst	115
Figure 7.2 TGA curve of raw waste guinea fowl bone	116
Figure 7.3 XRD pattern of the calcined waste guinea fowl bone	117
Figure 7.4 ATR-FTIR spectra of calcined waste guinea fowl bone	118
Figure 7.5 SEM image of calcined guinea fowl bone	120
Figure 7.6 EDS image of calcined guinea fowl bone	121
Figure 7.7 Particle size distribution	122
Figure 7.8 ¹ H NMR spectrum of WVO FAME obtained at 4.0 wt%	125
beta-tricalcium phosphate, 1:21 oil: methanol, 180 min reaction time	
at 65 °C temperature, 700 rpm stirring speed	
Figure 7.9 ¹ H NMR spectrum of Karanja oil FAME obtained at 3.0 wt%	125
beta-tricalcium phosphate, 1:18 oil: methanol, 180 min reaction	
time at 65 °C temperature, 700 rpm stirring speed	

Figure 7.10 Effect of catalyst concentration on FAME conversion (%)	128
of WVO and Karanja oil	
Figure 7.11 Effect of oil: methanol molar ratio on FAME conversion	128
(%) of WVO and Karanja oil	
Figure 7.12 Effect of reaction temperature on FAME conversion	129
(%) of WVO and Karanja oil	
Figure 7.13 Effect of reaction time on FAME conversion (%)	132
of WVO and Karanja oil	
Figure 7.14 Effect of stirring speed on FAME conversion (%) of	132
WVO and Karanja oil	
Figure 7.15 Waste guinea fowl bone derived catalyst reusability	133
analysis up to seven runs	

Scheme

Scheme 7.1 Transesterification reaction mechanism in the presence of 135beta-tricalcium phosphate (β -Ca₃(PO₄)₂)

List of Tables

Tables	Page Nos.
Chapter 2	
Table 2.1 Various feedstocks used for biodiesel production	16
Table 2.2 various homogeneous and heterogeneous catalysts for	20-22
biodiesel production	
Table 2.3 Comparison of different techniques for biodiesel production	25
Chapter 3	
Table 3.1 Free fatty acid composition of WVO from GC-MS analysis	38
Table 3.2 Free fatty acid composition of Karanja oil from GC-MS analysis	39
Table 3.3 ASTM specifications of biodiesel and diesel fuel	42
Chapter 4	
Table 4.1 Element weight % present in β -K ₂ Zr ₂ O ₅ sample	52
Table 4.2 Basicity of β -K ₂ Zr ₂ O ₅	55
Table 4.3 Physicochemical properties of WVO methyl ester and	66
Karanja oil methyl ester	

Chapter 5

Table 5.1 Element weight % present in BaZrO3 sample	75
Table 5.2 Basicity of BaZrO3	77
Table 5.3 Physicochemical properties of WVO methyl ester and Karanja oil methyl ester	88
Chapter 6	
Table 6.1 Element weight % present in Ca ₂ Al ₂ O ₅ sample	98
Table 6.2 Basicity of Ca ₂ Al ₂ O ₅	100
Table 6.3 Physicochemical properties of WVO methyl ester and Karanja oil methyl ester	111
Chapter 7	

Table 7.1 Element weight % present in calcined guinea fowl bone sample	121
Table 7.2 Basicity of calcined guinea fowl bone	123
Table 7.3 Physicochemical properties of WVO methyl ester and Karanja	136
oil methyl ester	

Chapter 8

Table 8.1 Summary of the experimental work	145-146
--	---------

List of Abbreviations

Å	Angstrom
ASTM	American Society for Testing and Materials
ATR	Attenuated total reflectance
a.u.	Arbitrary units
bbl/day	Barrels per day
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
Bnl	Billion litres
BUR	Biennial Update Report
CIA	Central Intelligence Agency
CII	Confederation of Indian Industry
cm ² /sec	Cubic centimeter per second
CO_2	Carbon dioxide
cP	Centipoise
cps	Counts per second
cSt	Centistoke
EDS	Energy dispersive X-ray spectroscopy
EIA	Energy Information Administration
eV	Electronvolt
FAME	Fatty Acid Methyl Ester
FFA	Free fatty acid
FT-IR	Fourier transform infrared
g	Gram
GC-MS	`Gas chromatography-mass spectrometry

GDP	Gross Domestic Product,
GHG	Greenhouse Gases
GOI	Government of India
h	Hour
¹ H-NMR	Proton-1 nuclear magnetic resonance
IEA	International Energy Agency
JCPDS	Joint Committee on Powder Diffraction Standards
Kg	Kilogram
KJ/mol	Kilojoule per mole
kV	Kilovolt
М	Molar
m/z	Mass to charge ratio
m ² /g	Cubic meter per gram
mA	Milliamppere
Mb/d	Million barrels per day
mg	Milligram
min	Minute
MJ	Megajoule
mmol/g	Millimole per gram
Mtoe	Million tonnes of oil equivalent
Ν	Normal
NBM	National Biodiesel Mission
nm	Nanometre
p.a.	Per annum
pH	Potential of hydrogen
рКа	Acid dissociation constant

rpm	Revolution per minute
SEM	Scanning electron microscopy
TGA	Thermogravimetric analysis
v/v	Volume/volume
WRI	World Resources Institute
wt%	Weight percent
WVO	Waste vegetable oil
XRD	X-ray diffraction
°C	Degree Celsius
λ	Lambda
μl	Microliter
μm	Micrometre
%	Percent
θ	Theta