
Chapter 2

The Continuous Wavelet Transform in

n-dimensions

2.1 Introduction

Wavelets are a simple mathematical tool having exciting applications in signal and nu-

merical analysis. The signal processing of two dimensional video images and the dig-

ital three dimensional scans of solid objects are done using multidimensional wavelets.

Daubechies (1992) gave several methods to obtain wavelets in higher dimensions. There

are n dimensional wavelets that are of separable types in the sense that they can be writ-

ten as a product of n one dimensional wavelets. From one dimensional Haar wavelet

ψ(x), one can easily construct a n-dimensional wavelet of separable type by

ψ(x) = ψ(x1)ψ(x2)...ψ(xn)

where x = (x1, x2, ..., xn) ∈ Rn. But there are multidimensional wavelets which can not

be separated. The wavelet

ψ(x) =

 x1x2 · · ·xn e
− 1

(1−‖x‖2) , ‖x‖ < 1

0 , ‖x‖ ≥ 1

This chapter is based on the following accepted paper: Pandey, J. N., Jha, N. K., and Singh, O. P., The

Continuous Wavelet Transform in n-dimensions, International Journal of Wavelets, Multiresolution and

Information Processing, 2016.
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where ‖x‖2 = x2
1 + x2

2 + · · · + x2
n , is a n-dimensional wavelet of non-separable type

belonging to the Schwartz testing function space D(Rn).

The wavelet transform is used to break data, functions or operators into different fre-

quency components, and then analyse each of these components with resolution matched

to its scale. During the last two decades several authors [Antoine et al (2006); Chui

(1992); Daubechies (1992); Meyer (1992); Pandey et al. (2015); Pathak (2009); Walter

and Shen (2009); Walter (1995)] have worked on multidimensional wavelet transform

and its inversion formulae. A function ψ ∈ L2(Rn) is a basic wavelet if it satisfies the

admissibility condition ∫
Rn

|ψ̂(ω)|2

|ω|
dω <∞, (2.1.1)

where ψ̂(ω) = (Fψ)(ω) is the Fourier transform of ψ. The Fourier transform of f ∈

L2(Rn) is defined by

(Ff)(ω) = l.i.m.
N→∞

(
1

(2π)

)n/2∫ N

−N
f(t)e−iω.t dt1 dt2 · · · dtn

=

(
1

2π

)n/2 ∫
Rn
f(t)e−iω.t dt. (Akhiezer and Glazman , 1966, p. 75)(2.1.2)

Here, N = (N1, N2, · · · , Nn), N → ∞ implies that each of the components of N tends

to∞ independently of each other. The limit in mean (l.i.m.) describes the convergence

in L2(Rn). It is known that if f ∈ L2(Rn) then (Ff)(ω) also belongs to L2(Rn) [see

Akhiezer and Glazman (1966); Bogess and Narcowich (2001); Halmos (1967); Keinert

(2003); Treves (1967); Walter and Shen (2009)]. The Fourier transform operator is an

isometric homeomorphism from L2(Rn) to itself with the inverse operator defined as

F−1f̂ =
1

(2π)n/2
l.i.m.
N→∞

∫ N

−N
f̂(ω)e+i(ω1t1+ω2t2+···+ωntn)dω1dω2 . . . dωn = f(t).

From the function ψ ∈ L2(Rn) satisfying the admissibility condition (2.1.1), a doubly-

indexed family of wavelets from ψ is generated by dilating and translating as

ψa,b(x) = |a|−
1
2ψ

(
x− b
a

)
,

where a, b ∈ Rn, a 6= 0 (i.e. ai 6= 0 for i = 1, 2, . . . , n), |a| = |a1a2 . . . an|, and

ψ

(
x− b
a

)
≡ ψ

(
x1 − b1

a1

,
x2 − b2

a2

, . . . ,
xn − an
an

)
.
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The normalization has been chosen so that ‖ψa,b‖ = 1, for all a, b. We also assume

‖ψ‖ = 1. The continuous wavelet transform with respect to this family of wavelets is

defined as

(Wψf)(a, b) = |a|−1/2

∫
Rn
f(x)ψ

(
x− b
a

)
dx. (2.1.3)

For one dimensional case the inversion formula for (2.1.3) is given as [see Halmos

(1967); Meyer (1992)]

f = C−1
ψ

∫
R

∫
R
(Wψf)(a, b)ψa,b

dbda

a2
, a 6= 0, (2.1.4)

where Cψ = 2π
∫∞
−∞

|ψ̂(y)|2
|y| dy.

There are several possible extensions of the above inversion formula (2.1.4) with

n > 1. (Daubechies , 1992, see p. 33) choose the wavelet ψ ∈ L2(Rn) so that it is

spherically symmetric and obtained the inversion formula as

f = C−1
ψ

∫ ∞
0

da

an+1

∫
Rn
db(Wψf)(a, b)ψa,b, (2.1.5)

with ψa,b(x) = a−n/2ψ
(
x−b
a

)
, a ∈ R+, a > 0, and b ∈ Rn. The convergence in (2.1.5) is

interpreted in the L2(Rn) sense.

In this chapter we prove the following more general inversion formula for (2.1.3)

f(x) = C−1
ψ

∫
Rn

da

|a|2

∫
Rn
db(Wψf)(a, b)ψa,b(x), (2.1.6)

where a, b ∈ Rn, a 6= 0. Though the inversion formula (2.1.6) is similar to (2.1.5) it

is more general in the sense that: (i) in equation (2.1.5), a is restricted to real number

greater than zero but in (2.1.6), a ∈ Rn with none of the components vanishing, (ii)

convergence in (2.1.6) is in the sense of convergence in L2(Rn) like in (2.1.5) but at

points x where both f(x) and ψa,b(x) are continuous, the inversion formula (2.1.6) also

converges pointwise, i.e.,

1

Cψ

∫
Rn

da

|a|2

∫
Rn
db(Wψf)(a, b)ψa,b(x0) = f(x0).

Pointwise convergence to the wavelet series expansion was done by Walter (1995) and

the pointwise convergence for the inversion formula for continuous wavelet transform

in one dimension was done by (Chui , 1992, see pp. 62-63). He however assumes the

continuity of the function f at the point x and the continuity of ψ
(
x−b
a

)
at the point x

which due to the fact that a 6= 0,b are arbitrary real numbers implies the continuity of
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ψ(x),∀x ∈ R. In our proof of the pointwise convergence of the n−dimensional inversion

formula, we have assumed the continuity of f at the point x and ψ ∈ L2(Rn), i.e., ψ need

not be continuous at the point x.

2.2 The Main Result

We begin this section with a definition.

Definition 2.2.1 A function ψ ∈ L2(Rn) is said to be a window function if each of

xiψ(x), xixjψ(x), xixjxkψ(x), · · · , xixjxk · · ·xlψ(x), · · · , x1x2 · · ·xnψ(x) belongs to

L2(Rn) and two or more than two lower suffixes appearing in a term are all different.

Clearly e−(x2
1+x2

2+···x2
n) is a window function. A window function ψ(x1, x2, · · ·xn)

which also satisfies the condition that
∞∫

−∞

ψ(x1, x2, · · ·xi, xi+1, . . . xn) dxi = 0,∀i = 1, 2, · · ·n

is a function satisfying admissibility condition and so is a wavelet. Therefore,

ψ(x1, x2, x3) = x1x2x3e
−(x2

1+x2
2+x2

3) is a wavelet Pandey et al. (2015); Pathak (2009);

Strang and Nguyen (1997).

We now state and prove the main theorem.

Theorem 2.2.2 Let ψ be a wavelet in L2(Rn) satisfying the admissibility condition, then∫
Rn

∫
Rn
Wψf(a, b)Wψg(a, b)

da

|a2|
db = Cψ〈f, g〉 (2.2.1)

for all f, g ∈ L2(Rn) and

f(x) =
1

Cψ

∫
Rn

∫
Rn

(Wψf)(a, b)ψa,b(x)
da

|a2|
db, (2.2.2)

in L2(Rn) sense, where Cψ = (2π)n
∫
Rn
|ψ̂(y)|2
|y| dy. However, if f and ψa,b are continuous

in Rn, then the convergence in (2.2.2) is pointwise for all x ∈ Rn.

The following two lemmas will be used to prove Theorem 2.2.2.

All the variables t, x, ω, a and b are n dimensional with real components. The variable

a 6= 0 means that no component of a assumes zero value.
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Lemma 2.2.3 Let f, ψ ∈ L2(Rn) and assume that ψ is an n-dimensional wavelet. Then∫
Rn
f(t)ψ̄

(
t− b
a

)
dt = |a| F

[
f̂(ω)ψ̂(aω)

]
(2π)n/2. (2.2.3)

Proof. ∫
Rn

f(t)ψ̄

(
t− b
a

)
dt = 〈f(t), ψ(

t− b
a

)〉t

= 〈Ff(t),Fψ(
t− b
a

)〉ω

= 〈f̂(ω), |a|ψ̂(aω)e−iωb〉ω

= |a|
[
F [f̂ ψ̂(aω)](b)

]
(2π)n/2.

In the second equality we used the fact that the Fourier transform is an isometric homeo-

morphism on L2(Rn).

This Fourier transform is a function of b here

= |a|(F F (ω)(b)(2π)n/2,

where

F (ω) = f̂(ω)ψ̂(aω).

Lemma 2.2.4 Let g and ψ both belong to the space L2(Rn) and ψ be a wavelet in Rn as

considered in lemma 2.2.3. Then∫
Rn
g(s)ψ

(
s− b
a

)
ds = |a|F [ĝψ̂(aω)](2π)n/2

= |a|F(G)(2π)n/2

where G = ĝ(ω)ψ̂(aω) is a function of ω. So the parameter for the Fourier transforma-

tion of F and G is b here.

Proof. Our proof is very similar to the proof of lemma 2.2.3.∫
Rn

g(s)ψ

(
s− b
a

)
ds = 〈ψ

(
s− b
a

)
, g(s)〉

= 〈Fψ
(
s− b
a

)
, ĝ(ω)〉

= 〈|a|ψ̂(aω)e−iωb, ĝ(ω)〉

= |a|
∫
Rn

ĝ(ω)ψ̂(aω)e−iωbdw = |a|FG(2π)n/2
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where G = ĝ(ω)ψ̂(aω).

We now proceed to prove our main theorem.

Proof.[Proof of Theorem 2.2.2] Let ψ be a basic wavelet and let Wψ be the cor-

responding integral wavelet transform. Then∫
Rn

∫
Rn

(Wψf)(a, b)(Wψg)(a, b)
dadb

a2
= Cψ〈f, g〉 (2.2.4)

for all f, g ∈ L2(Rn).

Let us define function F and G as follows:

F (x) = f̂(x)ψ̂(ax)

G(x) = ĝ(x)ψ̂(ax). (2.2.5)

Now we proceed to prove the main theorem as follows:∫
Rn

(Wψf)(a, b)(Wψg)(a, b)db

=
1

|a|

∫
Rn

{∫
Rn
f(t)ψ

(
t− b
a

)
dt

∫
Rn
g(s)ψ

(
s− b
a

)
ds

}
db. (2.2.6)

Here

|a| = |a1a2 . . . an|, ψ
(
t− b
a

)
= ψ

(
t1 − b1

a1

,
t2 − b2

a2

· · · tn − bn
an

)
.

So the integral (2.2.6) now is

=
|a|2

|a|
(2π)n

∫
Rn

[
F(F )(b)F(G)(b)

]
db in view of lemma 1 and lemma 2.

=
|a|2

|a|
(2π)n〈F(G)(b),F(F )(b)〉

=
a2

|a|
(2π)n〈G(x), F (x)〉

=
a2

|a|
(2π)n

∫
Rn
G(x)F̄ (x)dx

=
a2

|a|
(2π)n

∫
Rn
ĝ(x)ψ̂(ax)f̂(x)ψ̂(ax)dx

=
a2

|a|
(2π)n

∫
Rn
f̂(x)ĝ(x)|ψ̂(ax)|2dx.
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Therefore,∫
Rn

∫
Rn
Wψf(a, b)Wψg(a, b)

dadb

a2
= (2π)n

∫
Rn
〈f̂(x), ĝ(x)〉 |ψ̂(ax)|2

|a|
da

= (2π)n
∫
Rn

∫
Rn
f̂(x)ĝ(x)

[
|ψ̂(ax)|2

|a|
da

]
dx

= (2π)n〈f, g〉
∫
Rn

|ψ̂(ax)|2

|a|
da

= (2π)n〈f, g〉
∫
Rn

|ψ̂(y)|2

|y|
dy

= 〈f, g〉Cψ where Cψ = (2π)n
∫
Rn

|ψ̂(y)|2

|y|
dy.

Corollary 2.2.5 Let f , g, ψ and Cψ be as defined in Theorem 2.2.2, then

f(x) =
1

Cψ

∫
Rn

∫
Rn

(Wψf)(a, b)ψa,b(x)
dadb

a2
(2.2.7)

ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
, |a| = |a1a2 . . . an|.

The equation (2.2.4) with careful computation can be brought to the form〈
1

Cψ

∫
Rn

∫
Rn

(Wψf)(a, b)
1√
(a)

ψ

(
x− b
a

)
dadb

a2
, g

〉
= 〈f, g〉. (2.2.8)

Hence (2.2.7) follows.

The topology over the space Rn is described by the norm

|x| ≡ ‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n, x = (x1, x2, . . . xn) ∈ Rn.

The same topology can as well be generated by the norm

‖x‖1 = max(|x1|, |x2|, . . . |xn|)

for

‖x‖1 ≤ ‖x‖ ≤ n‖x‖1.

[x : ‖x‖ ≤ 1] is a closed unit sphere in Rn with radius 1 and the centre at the origin and

[x : ‖x‖1 ≤ 1] is a closed unit n-cube with centre at the origin and each of the sides of

length 2 and sides being parallel to the coordinate axes. We will call this also as a closed

unit n-cube (centre at x = 0).

It is easy to figure out that the closed unit n-cube contains the closed unit sphere in

Rn.
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Corollary 2.2.6 Let f and ψ both belong to L2(Rn). Assume that f is continuous at a

point x ∈ Rn and ψ is continuous for all x ∈ Rn. Then,

(i) The convergence in Theorem 2.2.2 takes place in the pointwise sense at the point

x.

(ii) If however f and ψ both belong to L2(Rn) and both are continuous for all x ∈ Rn,

then the convergence in Theorem 2.2.2 takes place in the pointwise sense for all

x ∈ Rn. We will only prove (i) as (ii) is an immediate consequence of (i).

Proof. Let {xm}∞m=1 be a sequence in Rn converging to the point

x0 = (x1
0, x

2
0, . . . x

n
0 ) and xm = (x1

m, x
2
m, . . . x

n
m) i.e. as m → ∞, ‖xm − x0‖1 → 0.

We construct one such sequence {xm}∞m=1 as follows

‖xm − x0‖1 ≤
1

2nm
, m = 1, 2, . . .

xm =

(
x1

0 +
1

2nm
,x2

0 +
1

2nm
, · · ·+ xm0 +

1

2nm

)
.

Since f is continuous at x0, so for ε > 0∃ δ > 0 so that |f(x)−f(x0)| < ε, whenever

‖x− x0‖1 < δ. Consider {gm(x)}∞m=1 is a sequence of functions in L2(Rn) such that

gm(x) =

 mn if ‖xm − x0‖1 ≤ 1
2nmn

0 if ‖xm − x0‖1 >
1

2nmn

.

So, clearly, ∫
Rn
gm(x)dx = 1

〈f(x), gm(x)〉 =

∫
Rn
f(x)ḡm(x)dx =

∫
Rn

(f(x)− f(x0))gm(x)dx+ f(x0),

ḡm(x) = gm(x),

Now choose m > 0 so large that 1
2nmn

< δ.

Therefore,

|〈f(x), gm(x)〉 − f(x0)| ≤ ε

∫
Rn
|gm(x)|dx

≤ ε

∫
Rn
gm(x)dx

≤ ε.

Since ε is arbitrary and f is continuous at x0 it follows that

lim
m→∞

〈f(x), gm(x)〉 = f(x0) (2.2.9)
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Now assume that for fixed a 6= 0 and b ∈ Rn, ψ
(
x−b
a

)
is a continuous function for all

x ∈ Rn. Replace g by gm(x) in (2.2.8). In the region x, b ∈ Rn and ‖a‖ > ε the switch in

the order of integration in (2.2.8) with respect to x and b, a is justified in view of Fubini’s

theorem. So integration with db da dx is put in the form dx db da and then we let ε→ 0.

Thereafter letting m→∞ in the left hand side expression of (2.2.8) we have

1

Cψ
lim
m→∞

∫ ∞
−∞

∫ ∞
−∞

(Wψf)(a, b)

∫ ∞
−∞

gm(x)ψa,b(x)dx
dbda

a2

=
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

(Wψf)(a, b)ψa,b(x0)
dbda

a2
(2.2.10)

Hence, in the sense of pointwise convergence we have, using (2.2.9) and (2.2.10)

1

Cψ

∫ ∞
−∞

∫ ∞
−∞

(Wψf)(a, b)ψa,b(x0)
dbda

a2
= f(x0). (2.2.11)

2.3 Some Stronger Results

Corollaries 2.2.5 and 2.2.6 to Theorem 2.2.2 and their generalisations can be proved very

simply by using a transformation used by Vladimirov in his book (Vladimirov , 1979, p.

8). We state our result as follows.

Theorem 2.3.1 Let f ∈ L2(Rn), n ≥ 1 be continuous at a point x = x0, then

lim
ε→0

∫
Rn
f(x)wε(x) dx = f(x0) (2.3.1)

where the function wε(x) ∈ D(Rn) and is defined as follows

wε(x) =

 Cε e
− ε2

ε2−‖x−x0‖2 , ‖x− x0‖ < ε

0 , ‖x− x0| ≥ ε

the constant Cε is chosen so that ∫
Rn

wε(x) dx = 1.

Proof. The integral of wε(x) over Rn is 1, so

Cε

∫
‖x−x0‖<ε

e
− ε2

ε2−‖x−x0‖2 dx = 1
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Putting x−x0

ε
= ξ, dx = εndξ,

Cεε
n

∫
‖ξ‖<1

e
− 1

1−‖ξ‖2 dξ = 1 (2.3.2)

This determines Cε.

Now, ∫
Rn
f(x)wε(x) dx =

∫
‖x−x0‖<ε

f(x)Cεe
− ε2

ε2−‖x−x0‖2 dx

Using x−x0

ε
= ξ, we have∫

Rn
f(x)wε(x) dx = Cεε

n

∫
‖ξ‖<1

f(x0 + εξ)e
− 1

1−‖ξ‖2 dξ

= Cεε
n

∫
‖ξ‖<1

[f(x0 + εξ)− f(x0)] e
− 1

1−‖ξ‖2 dξ

+f(x0)Cεε
n

∫
‖ξ‖<1

e
− 1

1−‖ξ‖2 dξ

= Cεε
n

∫
‖ξ‖<1

[f(x0 + εξ)− f(x0)] e
− 1

1−‖ξ‖2 dξ + f(x0)(2.3.3)

where (2.3.2) has been used to obtain the last equality.

Since f is continuous at x0 and ‖ξ‖ < 1, we can choose a sufficiently small ε > 0

so that |f(x0 + εξ) − f(x0)| < η where η is arbitrarily chosen small positive number.

Therefore, using (2.3.2) we get,

|Cεεn
∫
‖ξ‖<1

[f(x0 + εξ)− f(x0)] e
− 1

1−‖ξ‖2 dξ| < η

Since η is an arbitrarily chosen small number we have,

lim
ε→0

Cεε
n

∫
‖ξ‖<1

[f(x0 + εξ)− f(x0)] e
− 1

1−‖ξ‖2 dξ = 0 (2.3.4)

Therefore, using (2.3.3) and (2.3.4), (2.3.1) follows.

Since wε(x) ∈ D(Rn) it also belongs to L2(Rn). Our this result can be used to prove

parts (i) and (ii) of corollary 2.2.6 to Theorem 2.2.2. Some of these results are found in

Dirac (1930); Postnikov et al. (2007); Vladimirov (1979) as well in some form but our

results are more detailed and rigorous.

Theorem 2.3.2 Let f ∈ L2(Rn) be continuous at x = x0 and f̂(y) be its Fourier trans-

form. Let wε(x) be the function as defined in theorem 2.3.1, then

lim
ε→0

1

(2π)n/2

∫
Rn
f̂(y)eiy·xwε(x) dy =

1

(2π)n/2

∫
Rn
f̂(y)eiy·x0 dy (2.3.5)
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Proof. It is easy to verify that ∀x ∈ Rn, w2
ε (x) ≤ wε(x). Therefore,

‖wε(x)‖2 =

∫
Rn
w2
ε (x) dx ≤

∫
Rn
wε(x) dx ≤ 1

Therefore, ‖wε(x)‖ ≤ 1,∀ε > 0. Now,〈
1

(2π)n/2

∫
Rn
f̂(y)eiy·x dy, wε(x)

〉
=

〈
1

(2π)n/2

∫
‖y‖≤N

f̂(y)eiy·x dy, wε(x)

〉
+

〈
1

(2π)n/2

∫
‖y‖≥N

f̂(y)eiy·x dy, wε(x)

〉
(2.3.6)

Since 1
(2π)n/2

∫
‖y‖≤N f̂(y)eiy·x dy is a continuous function of x , ∀x ∈ Rn it follows in

view of theorem 2.3.1 that

lim
ε→0

〈
1

(2π)n/2

∫
‖y‖≤N

f̂(y)eiy·x dy, wε(x)

〉
=

1

(2π)n/2

∫
‖y‖≤N

f̂(y)eiy·x0 dy

Therefore,

lim
N→∞

lim
ε→0

〈
1

(2π)n/2

∫
‖y‖≤N

f̂(y)eiy·x dy, wε(x)

〉
=

1

(2π)n/2

∫
Rn
f̂(y)eiy·x0 dy (2.3.7)

Now consider the other expression on the R.H.S. of (2.3.6).

|
〈

1

(2π)n/2

∫
‖y‖≥N

f̂(y)eiy·x dy, wε(x)

〉
| ≤ ‖ 1

(2π)n/2

∫
‖y‖≥N

f̂(y)eiy·x dy‖‖wε(x)‖

≤ ‖ 1

(2π)n/2

∫
‖y‖≥N

f̂(y)eiy·x dy‖

→ 0 as N →∞

Therefore,

lim
N→∞

lim
ε→0

〈
1

(2π)n/2

∫
‖y‖≥N

f̂(y)eiy·x dy, wε(x)

〉
= 0 (2.3.8)

Using (2.3.7) and (2.3.8), our result follows.

Corollary: Now using theorems 2.3.1 and 2.3.2 and the fact that

1

(2π)n/2

∫
Rn
f̂(y)eiy·x dy = f(x) in L2(Rn)

we get
1

(2π)n/2

∫
Rn
f̂(y)eiy·x0 dy = f(x0).

Discussion: Our n-dimensional wavelet inversion formula is ( see Bogess and Narcowich

(2001); Pandey et al. (2015))

1

Cψ

∫
Rn

∫
Rn
|a|−1/2ψ

(
x− b
a

)
(Wψf)(a, b)

db da

|a|2
=

1

(2π)n/2

∫
Rn
f̂(y)eiy·x dy
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We now derive a pointwise inversion formula as follows: Let

F (x0) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞
|a|−1/2ψ

(
x0 − b
a

)
(Wψf)(a, b)

db da

a2

Using Plancherel theorem we have

F (x0) =

∫ ∞
−∞

da√
|a|a2

∫ ∞
−∞

Fb

{
ψ

(
x0 − b
a

)}
(y)Fb {(Wψf)(a, b)} (y) dy

Now

Fb

{
ψ

(
x0 − b
a

)}
(y) = aeiyx0ψ̂(ay)

So

F (x0) =
1

Cψ

∫ ∞
−∞

√
2πa

|a|

∫ ∞
−∞
|ψ̂(ay)|2f̂(y)eiyx0 dy

=
1

Cψ

∫ ∞
−∞

√
2πf̂(y)eiyx0 dy

∫ ∞
−∞

|ψ̂(ay)|2

|a|
da

But ∫ ∞
−∞

|ψ̂(ay)|2

|a|
da =

∫ ∞
−∞

|ψ̂(u)|2

|u|
du =

Cψ
2π

Therefore,

F (x0) =
1

Cψ

∫ ∞
−∞

√
2πf̂(y)eiyx0

Cψ
2π

dy

=
1√
2π

∫ ∞
−∞

f̂(y)eiyx0 dy

or,

1

Cψ

∫ ∞
−∞

∫ ∞
−∞
|a|−1/2ψ

(
x0 − b
a

)
(Wψf)(a, b)

db da

a2
=

1√
2π

∫ ∞
−∞

f̂(y)eiyx0 dy (2.3.9)

In Rn this formula takes the form (Pandey et al. , 2015, see)

1

Cψ

∫
Rn

∫
Rn
|a|−1/2ψ

(
x0 − b
a

)
(Wψf)(a, b)

db da

|a|2
=

1

(2π)n/2

∫
Rn
f̂(y)eiy·x0 dy

(2.3.10)

Here, a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn), |a| = |a1a2 · · · an|,

x0 = (x1
0, x

2
0, · · · , xn0 ), y · x0 = y1x

1
0 + y2x

2
0 + · · ·+ ynx

n
0 .

So by Theorem 2.3.2 we have

1

(2π)n/2

∫
Rn
f̂(y)eiy·x0 dy = f(x0) (2.3.11)
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Therefore, using (2.3.10) and (2.3.11) our pointwise n-dimensional wavelet inversion

formula becomes

1

Cψ

∫
Rn

∫
Rn
|a|−1/2ψ(

x0 − b
a

)(Wψf)(a, b)
db da

|a|2
= f(x0) (2.3.12)

The advantage of this pointwise inversion formula is that it only uses the fact that ψ ∈

L2(Rn) and that f ∈ L2(Rn) is continuous at x = x0.

Our result (2.3.12) is more general than the result (2.2.11).

2.4 Conclusion

The work presented in this chapter generalizes the conventional approach to the mul-

tidimensional wavelet transform with positive scales on the case of both positive and

negative scales with respect to its inversion. Its importance is principally connected with

the consideration of the wavelet transform applied to real-valued functions, which have

both positive and negative Fourier components. The standard cut-off of negative frequen-

cies (which is required to apply CWT with a > 0) may result in a loss of information,

if the transformed function were a non-symmetric (in the Fourier space) mixture of real

and imaginary frequency components. The proposed and proven inversion formula is free

from the mentioned defect. The proved result significantly enhances the possible further

practical utility of the wavelet inversion formula to the image processing and other areas.


