
Chapter 1

Introduction

In recent years, wavelet analysis has attracted much attention due to its wide range of

applications in various disciplines of science and engineering. The concept of wavelet

analysis is not new in the sense that similar ideas under different names have been in

place since the beginning of twentieth century. The Littlewood-Paley technique (see Lit-

tlewood and Paley (1937)) and Calderon Zygmund theory (see Calderon (1964)) in

Harmonic analysis and digital filter bank theory in signal processing may be considered

as fore runners of wavelet analysis. The wavelet theory provides a unified framework and

coherent theory for a number of different ideas and techniques that have been indepen-

dently developed in several fields. In its present form, the wavelets attracted attention in

the 1980s through the works of researchers from various fields (see Grossmann and Mor-

let (1984); Daubechies (1988); Mallat (1989); Chui (1992)). There are opportunities

for further development of both the mathematical understanding of wavelets and a wide

range of applications in science and engineering.

In this chapter, we present an overview of wavelet transform.

1.1 Evolution of Wavelet Transform

1.1.1 The Fourier Series and Fourier Transform

The Fourier analysis is one of the most popular technique for signal analysis. It trans-

forms the signal from one domain (time) to another domain (frequency) in which many

characteristics of the signal are revealed.
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In 1808, Joseph Fourier proposed that any 2π-periodic function (signal) can be repre-

sented as the sum of infinite number of sinusoids. Such a representation is known as the

Fourier series, and can be expressed as

f(t) = a0 +
∞∑
n=1

an cos(nt) +
∞∑
n=1

sin(nt) (1.1.1)

In complex exponential notation eq. (1.1.1) can be represented as

f(t) =
∞∑

n=−∞

cne
int (1.1.2)

where the constants cn, called Fourier coefficients of f , are given by

cn =
1

2π

2π∫
0

f(t)e−int dt. (1.1.3)

The above fact can be summarised as “every 2π-periodic square-integrable function is

generated by a superposition” of integral dilations of the basic function w(t) = eit

[Chui]”.

The above approach of decomposing a signal into integer frequency components was

not well suited for the non-periodic signals. To overcome this shortcoming the Fourier

transform of a signal f(t) is defined as

F (ω) =
1

2π

∞∫
−∞

f(t)e−iωt dt (1.1.4)

with its inversion formula given by

f(t) =
1

2π

∞∫
−∞

F (ω)eiωt dω (1.1.5)

The Fourier transform can be thought of as a continuous form of Fourier series [Nar-

cowich]. The above equations can be summed up as “ a non-periodic signal can be repre-

sented by the integral sum of complex exponentials with weights given by the Frequency

spectrum F (ω)”.

If we have a scaled version of the original signal, fs(t) = f(st), then its correspond-

ing Fourier transform will be Fs(ω) = 1
|s|F (ω

s
). From last two relations, we can observe

that reducing the time spread of f by s( if s > 1) results in dilation of the Fourier trans-

form by s. This is interpreted as localization in time can be achieved at the cost of losing
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frequency localization. The poor localization in time is the main drawback of the Fourier

transform. While Fourier analysis was very efficient technique for analysing signals hav-

ing time-dependent wave-like features, it was suitable for signals which have transitory

characteristics.

1.1.2 Short-Time Fourier Transform (STFT)

To see the changes of frequency content of a signal over time, a new dimension of time

was to be incorporated in the Fourier transform. This was done by Gabor (1946), who

adapted the Fourier transform to analyse only a small section of the signal at a time

by cutting it out using a window function. The truncated sections of the signal, which

now can be assumed as stationary, were analysed by sliding the window function (of

fixed width) along the time axle to obtain the change relationship of frequency over time.

The resulted in two-dimensional representation of the signal as function of time and fre-

quency. This time-frequency representation, called Short-time Fourier transform (STFT),

can be mathematically described as:

F (τ, ω) =

∞∫
−∞

f(t)w(t− τ)e−iωt dt (1.1.6)

where w(t) is a window function.

Though the STFT overcame the deficiency of the Fourier transform to some extent in

local analysis, it had some limitations due to the fixed size of the window function. As

the resolution of window function is restricted by Heisenberg uncertainty principle, the

time resolution was lower and the frequency resolution was higher when a long window

was used, the situation was reversed when a short window was used. This resulted in

fixed time- frequency resolution which makes STFT not suitable for analysing the signals

having a variety of difference of scales (see Yansong et al. (2011)). The next logical step-

a windowing technique with windows of variable size, was the Wavelet transform.

1.1.3 Wavelet Transform

The need of simultaneous representation and localization of both time and frequency for

non-stationary signals (e.g. music, speech, images) led toward the evolution of wavelet

transform from the popular Fourier transform. To deal with the fixed time-frequency par-
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titioning (resolution) of STFT, a new set of basis functions was required. To accomplish

this, a function ψ, which was localized both in time and frequency, was modified by

dilations and translations to obtain a family of functions, called wavelets ψa,b, given by

ψa,b(t) =
1√
|a|
ψ

(
t− b
a

)
. (1.1.7)

Given this family of wavelets, the wavelet transform of a function f ∈ L2(R) is defined

as

(Wψf)(a, b) =
1√
a

∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt (1.1.8)

The parameter a, a non-zero real number, is used for dilation or scale, measures the de-

gree of compression. The parameter b, a real number, is the translation parameter which

determining the time location of the wavelet. The factor 1√
|a|

was to ensure the energy of

each wavelet ψa,b is same as that of original function ψ. With the dilation parameter a,

the support of ψa,b varies proportionally , whereas the frequency interval varies in inverse

proportion. In other words, wavelets have time-widths adapted to their frequencies. This

enables wavelets enables to capture events local in time by giving up some frequency res-

olution and vice versa. The mother wavelet can be stretched according to the frequency

to provide reasonable window, a long time window is used in low frequency and a short

time window is used in high frequency. The variable sized windows of wavelets pro-

vides good frequency resolution for low frequencies, and good time resolution for high

frequencies. The balance between time and frequency makes wavelets an ideal tool for

studying non-stationary signals.

Time-frquency tiling in different transforms are shown in Figure 1.1. (a) The fre-

quency domain after computing the Fourier transform, representing perfect frequency

resolution and no time resolution. (b) The time domain representation of the observed

time series, representing perfect time resolution and no frequency resolution. (c) Rep-

resents balanced resolution between time and frequency by using the short-time Fourier

transforms (Gabor transform). (d) The wavelet transform adaptively partitions the time-

frequency plane.
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Figure 1.1: Time-Frequency tiling in different transforms

1.2 Wavelet Analysis

1.2.1 Definition and Basic Properties

Consider a real or complex-valued function ψ satisfying the following conditions:∫ ∞
−∞
|ψ(t)|2 dt <∞ (1.2.1)∫ ∞

−∞

|ψ̂(ω)|2

|ω|
<∞ (1.2.2)

where ψ̂ is the Fourier transform of ψ. The first condition implies finite energy of the

function ψ, and the second condition, the admissibility condition, implies that if ψ̂(ω) is

smooth then ψ̂(0) = 0 which in turn implies that
∫∞
−∞ ψ(t) dt = 0. This is suggestive of a

function that is oscillatory or has wavy appearance. Thus a function satisfying the above

properties must be a “small wave” or a wavelet.

Definition 1.2.1 A wavelet is a function ψ ∈ L2(R) which satisfies the admissibility

condition

0 < Cψ := 2π

∫
R

|ψ̂(ω)|2

|ω|
dω <∞

where ψ̂ denotes the Fourier transform of the wavelet ψ.

Following are examples of some common wavelets.
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1. Haar Wavelet:

ψ(t) =


1 if 0 ≤ t < 1/2

−1 if 1/2 ≤< 1

0 else

2. Mexican Hat Wavelet: It is defined as the second derivative of a Gaussian.

ψ(t) = − d2

dt2
e−t

2/2 = (1− t2)e−t
2/2

3. Morlet wavelet: The Morlet wavelet is constructed by manipulating a cosine func-

tion.

4. Daubechies wavelet: It has no closed form formula. These are obtained by itera-

tion.

These above wavelets are shown in Figure 1.2.

 

(a) Haar Wavelet     (b) Maxican Hat Wavelet 

 

 

     

(c) Morlet Wavelet     (d)   Daubechies Wavelet D4 

Figure 1.2: Some common Wavelets
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1.2.2 Continuous Wavelet Transform (CWT)

For a prototype function ψ(t) ∈ L2(R) called the mother wavelet or wavelet function,

the family of functions can be obtained by shifting and scaling this ψ(t) as:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, where a, b ∈ R, a > 0

The parameter b corresponds to the time shift and the parameter a corresponds to the scale

of the analyzing wavelet. The factor of 1√
a

appears for normalization so that ‖ψ(t)‖ =

‖ψa,b(t)‖, that is, the energy remains the same for all a and b.

If ψ satisfies the conditions described above, then for a real valued signal f(t) (a

function with finite energy i.e. f(t) ∈ L2(R), the set of square integrable functions) the

wavelet transform of with respect to the wavelet function ψ(t) at a scale a ∈ R+ and at

translational value b ∈ R is defined as:

(Wψf)(a, b) =
1√
a

∫ ∞
−∞

f(t)ψ∗a,b(t) dt = 〈f(t), ψa,b(t)〉 (1.2.3)

where ∗ stands for complex conjugation and 〈, 〉 denotes the inner products.

Alternatively, the CWT can be expressed as the output of a filter matched to ψa,b at time

b

(Wψf)(a, b) = f ∗ ψ̃a,b (1.2.4)

where ∗ denotes linear convolution and ψ̃(t) = ψ∗(−t).

If the mother wavelet satisfies the admissibility condition, then the Inversion formula

for wavelet transform is given by

f(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

(Wψf)(a, b)ψa,b(t)
da db

a2
(1.2.5)

Thus the above equation interprets the wavelet transform as providing a weighing func-

tion for synthesizing a given function f(t) from the translates and dilates of the mother

wavelet ψ(t).

Using the Cauchy-Schwarz inequality in eq. (1.2.3) gives

|(Wψf)(a, b)|2 ≤ ‖f(t)‖2‖ψa,b(t)‖2. (1.2.6)

This implies that (Wψf)(a, b) always exists because the function and the wavelet have

finite norms. Equality holds in this relation if and only if

ψa,b(t) = αf(t) (1.2.7)
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for some scalar α. This equation inspires the need of wavelets matched to the signal

at hand. Chapter 3-5 of this thesis is based on construction and application of matched

wavelets.

1.2.3 Discrete Wavelet Transform (DWT)

The general CWT maps a 1-D signal into 2-D (dilation and position) space. As parame-

ters (a, b) take continuous values, the resulting CWT is a very redundant representation

in the sense that the entire support of W (a, b) need not be used to recover f(t) (see Rao

and Bopardikar (1998)). It is computationally impossible to analyze a signal using all

wavelet coefficients. Therefore, instead to varying the parameters a and b continuously,

we analyze the signal with a small number of scales with varying number of translations

at each scale. The scale and shift parameters are evaluated on a discrete grid of time-

scale plane leading to a discrete set of continuous basis functions. The discretization is

performed by setting a = a−j0 and b = ka−j0 b0 for j, k ∈ Z. The corresponding family of

wavelets are now given as

ψj,k(t) = a
j/2
0 ψ(aj0t− kb0) (1.2.8)

With a0 = 2 and b0 = 1, the process is called dyadic sampling because consecutive

values of the discrete scales as well as the corresponding sampling intervals differ by a

factor of two. With this sampling, the discretized version of CWT is given by

W (j, k) =

∞∫
−∞

f(t)ψj,k(t) dt (1.2.9)

W (j, k)’s are called wavelet coefficients or discrete wavelet transform(DWT) of f(t).

The original function can be reconstructed using

f(t) =
∑
j∈Z

∑
k∈Z

W (j, k)ψj,k(t) (1.2.10)

The above equation (1.2.10) is called the wavelet series of f(t).

We conclude this section by listing of some Advantages of wavelet analysis:

1. Wavelets offer a simultaneous localization in time and frequency domain.

2. Wavelets have the great advantage of being able to separate the fine details in a

signal. Very small wavelets can be used to isolate very fine details in a signal,

while very large wavelets can identify coarse details.
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3. With wavelets, it is often possible to obtain a good approximation of the given func-

tion f by using only a few coefficients which is the great achievement compared to

Fourier transform.

4. In the case of wavelet transform, the analysing function ψ can be chosen according

to the application at hand that is we have more freedom in the selection of ba-

sis functions. This flexibility was missed in Fourier transform (and STFT) where

exponentials were the only possible basis functions.

5. It is computationally very fast (using fast wavelet transform).

6. Most of the wavelet coefficients vanish rapidly.

7. Wavelet analysis is able to reveal signal aspects that other analysis techniques miss,

such as trends, breakdown points, discontinuities, etc.

1.3 Implementation of DWT

Implementation of DWT can be understood with the concept of Multiresolution Analysis.

Definition 1.3.1 (Multiresolution Analysis) A sequence of closed (nested) subspaces

{Vj : j ∈ Z} of L2(R) together with a function φ ∈ V0 is called a Multiresolution

Analysis (MRA) if it satisfies the following conditions;

1. (Nested) · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ;

2. (Density) ∪j∈ZVj = L2(R);

3. (Separation) ∩j∈ZVj = {0};

4. (Scaling) f(t) ∈ Vj if and only if f(2t) ∈ Vj+1 for all j ∈ Z;

5. (Orthonormal basis) The integer translates {φ(t − n) : n ∈ Z} of φ, called a

scaling function, is an orthonormal basis for V0.

Condition 5 might be relaxed in general case where it is enough for {φ(t− n) : n ∈ Z}

to be a Riesz basis of V0.
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Let Wj be the orthogonal complement of Vj in Vj+1, then

Vj+1 = Vj ⊕Wj (1.3.1)

= Vj−1 ⊕Wj−1 ⊕Wj (1.3.2)

= V0 ⊕W0 ⊕ · · · ⊕Wj−2 ⊕Wj−1 ⊕Wj (1.3.3)

Letting j →∞ and the use of condition 2 gives,

L2(R) = V0 ⊕j≥0 Wj (1.3.4)

Decomposing Vj for j ≤ 0, and using conditions 2 and 3 of MRA we have

L2(R) = ⊕j∈ZWj (1.3.5)

Figure 1.3: Nested spaces spanned by scaling and wavelet bases

Mallat (1989) showed that there exists a function ψ(t) (Mother wavelet) such that

{ψ(t− n) : n ∈ Z} constitutes an orthonormal basis for W0.

From conditions 4 and 5 of MRA above, it is easy to see that for each fixed j ∈ Z,

the set of functions

{φj,k(t) = 2j/2φ(2jt− k) : k ∈ Z}

is an orthonormal basis for Vj . Similarly, the family

{ψj,k(t) = 2j/2ψ(2jt− k) : k ∈ Z}

forms an orthogonal basis for Wj .

Now, using condition 4 of MRA, we can express ψ(t) ∈ V0 in terms of basis elements

of V1, since V0 ⊂ V1. This fact is represented by the following relation, called two-scale
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relation,

φ(t) = 2
∑
k∈Z

h(k)φ(2t− k) (1.3.6)

where h(k) = 〈φ(t), φ(2t − k). Since W0 ⊂ V1, the wavelet function satisfies similar

equation,

ψ(t) = 2
∑
k∈Z

g(k)φ(2t− k) (1.3.7)

where g(k) = 〈ψ(t), φ(2t− k). We take g(k) = (−1)kh(1− k) to ensure orthogonality

of φ and ψ. The coefficients h(k) and g(k) are called filter coefficients.

In the view of eq. (1.3.4), a function f(t) ∈ L2(R) can be expressed as

f(t) =
∑
k∈Z

akφ(t− k) +
∑
j≥0

wj(t) (1.3.8)

and eq. (1.3.5) gives

f(t) =
∑
j∈Z

wj(t) (1.3.9)

with wj(t) ∈ Wj for all j ∈ Z. Since {ψj,k(t) : k ∈ Z} is an orthonormal basis of Wj ,

we can represent wj(t) as

wj(t) =
∑
k∈Z

dj,kψj,k(t) (1.3.10)

where dj,k = 〈f(t), ψj,k(t)〉 Therefore, the equations (1.3.8) and (1.3.9) take the form

f(t) =
∑
k∈Z

akφ(t− k) +
∑
j≥0

∑
k∈Z

dj,kψj,k(t) (1.3.11)

f(t) =
∑
j∈Z

∑
k∈Z

dj,kψj,k(t) (1.3.12)

The eq. 1.3.12 is similar to eq. 1.2.10.

For a signal (or function) f(t) the orthogonal projection onto the space Vj is defined

as

Ajf(t) =
∑
k∈Z

s(j, k)φj,k(t) (1.3.13)

where sj,k = 〈f(t), φj,k(t)〉, called scaling coefficients. Since Ajf(t) is the orthogonal

projection of f(t), it is the best approximation of f(t) in Vj . We can see lim
j→−∞

Ajf(t) =

0.

From the relation Vj ⊂ Vj+1, we can conclude thatAj+1f(t) is a better approximation

of f(t) than Ajf(t). In view of eq. 1.3.1, the difference of two approximations, known
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as detail signal, is given by

Djf(t) = Aj+1f(t)− Ajf(f) =
∑
k∈Z

〈f(t), ψj,k(t)〉ψj,k(t) =
∑
k∈Z

dj,kψj,k(t) (1.3.14)

that is, the wavelet coefficients dj,k describes the information loss when going from pro-

jection of f(t) onto the space Vj+1, to the projection onto the lower resolution space

Vj .

DWT Decomposition and Reconstruction:

We have

sj,k = 〈f(t), φj,k(t)〉 (1.3.15)

But, from two-scale relation 1.3.6 between levels j and j + 1 we get

φj,k(t) = 2−1/2
∑
m∈Z

h(m− 2k)φj+1,m(t) (1.3.16)

Taking inner product with f(t) on both sides of equation (1.3.16) and the use of equation

(1.3.15) gives

sj,k = 2−1/2
∑
m∈Z

h(m− 2k)sj+1,m (1.3.17)

The corresponding relation for the wavelet coefficients is:

dj,k = 2−1/2
∑
m∈Z

g(m− 2k)sj+1,m (1.3.18)

The equations 1.3.17 and 1.3.18 are called decomposition formula.

Using orthogonality and scaling relation we get reconstruction formula

sj+1,k = 2−1/2
∑
m∈Z

sj,mh(k − 2m) + 2−1/2
∑
m∈Z

dj,mg(k − 2m) (1.3.19)

The decomposition and reconstruction formula relate the wavelet and approximation co-

efficients at two successive levels. Decomposition can be interpreted as the convolution of

approximation coefficients is with filter coefficient h (and g), followed by downsampling

by two whereas in reconstruction, upsampling by two is applied on the approximation

and detail coefficients at each level. These coefficients are fed into the low pass and high

pass synthesis filters and added afterward. This process continues until the number of

levels become same as the number of levels in decomposition process. Reconstruction

process is necessary to achieve the original signal. The decomposition and reconstruction

formula are shown by block diagrams in Figures 1.4 and 1.5, respectively.
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Figure 1.4: Block diagram for Multiresolution Decomposition

Figure 1.5: Block diagram for Multiresolution Reconstruction

1.4 Literature Review

Multidimensional Wavelet Transform

During the last two decades several authors [Antoine et al (2006); Chui (1992); Daubechies

(1992); Meyer (1992); Cohen and Daubechies (1993); Pandey et al. (2015); Pathak

(2009); Walter and Shen (2009); Walter (1995)] have worked on multidimensional

wavelet transform and its inversion formulae. The most notable amongst them are the

works of Daubechies (1992) and Meyer (1992). (Daubechies , 1992, see pp. 33-

34) chose the wavelet ψ ∈ L2(Rn) so that it is spherically symmetric. Some authors

[Murenzi (1989); Argoul et al. (1989)] chose a ψ that is not spherically symmetric, and

introduced rotations as well as dilations and translations.

Pointwise convergence to the wavelet series expansion was done by Walter (1995)

and the pointwise convergence for the inversion formula for continuous wavelet trans-



1.4. Literature Review 14

form in one dimension was done by (Chui , 1992, see pp. 62-63). He however assumes

the continuity of the function f at the point x and the continuity of ψ(x), ∀x ∈ R.

The formulas derived by Daubechies and Meyer are valid only at R × Rn. Pandey

et al. (2015) proved a more general formula that is valid in Rn × Rn.

Matched Wavelet Construction

In applications where the output of the Wavelet Transform is to be maximized, it is nec-

essary to use wavelets that are specifically matched to the signal of interest.In the last

decade or so, a large number of researchers have focused their attention on estimation of

wavelet that is matched to the signal or provides best representation of the signal. Tewfik

et al. (1992) developed a technique for finding an orthonormal wavelet with compact

support that provides the ”best” signal representation of a specified signal over a finite

number of scales by minimizing an upper bound of the error performance. Mallat and

Zhang (1993) pointed out that a single wavelet basis function is not flexible enough to

represent a complicated non-stationary signal. Aldroubi at al. (1993) proposed method

to find matched wavelet by projecting the signal onto an existing basis. Gopinath et al.

(1994) expanded the work of Tewfik, et. al., by assuming bandlimited wavelets. Krim

et al. (1999) searched for best basis for signal enhancement in white Gaussian noise.

Chapa (1995); Chapa et al. (2000) proposed a generalized technique to design a

wavelet such that a single wavelet could provide the best match for the signal of inter-

est achieved orthonormality for bandlimited wavelets. In their approach, they separated

the matching procedure into matching spectra amplitude and matching spectra phase of

signal and bandlimited wavelet.

Gupta et al. (2002) obtained the matched wavelet by maximizing the projection of

the signal onto the scaling subspace. They proposed several other techniques to construct

matched wavelets with some desired properties from a signal of interest (see Gupta et al.,

2003a;2003b;2005a;2005b). Misiti et al. (2003) approximated a given pattern using

least squares optimization under constraints, leading to an admissible wavelet well suited

for the pattern detection using continuous wavelet transform(CWT). Bahrampour et al.

(2008, 2009) used variational methods to design wavelets matching to a specified sig-

nal. Mansour (2014) proposed a new construction technique for matched wavelet and

matched scaling function that is based on a new parametrization of compactly supported

orthonormal wavelets where the coefficients of the wavelet filter are the solution of a
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linear system of equations and are a continuous function of an arbitrary vector of half its

length. Their proposed model provided a more general optimization framework where

matched wavelets is a special case.

Wavelet based Transformer Protection

The Power Transformer is a major equipment in power systems. It requires highly re-

liable protective devices. When Power Transformer internal faults occur, immediate

disconnection of the faulted transformer is necessary to avoid extensive damage and/or

preserve power system stability. Many methods for protection of transformer have been

proposed. A comparative study of algorithms for protection of power transformers has

been presented by Rahman et al. (1988) and Habib et al. (1988). The ability to ex-

tract information from the transient signals simultaneously in both time and frequency

domains has made wavelet transform an excellent tool for analysis of such signals which

include the inrush and fault currents in transformer. Some wavelet based transformer

protection methods are presented in (Moises et al. (1999); Rajoub (2002); Faiz et al.

(2006); Miaou et al. (2002)).

ECG signal Compression Using Wavelet Transform

ECG signals are collected both over long periods of time and at high resolution. This

results in substantial volumes of data for storage and subsequent transmission. The

main goal of data compression is to reduce the number of bits of information required to

store or transmit digitized ECG signals without significant loss of signal quality. Many

schemes have been proposed for ECG signal compression. These can be categorized as

either direct methods or transform methods. In direct methods, compression is performed

directly on the ECG signal. In transform methods, the ECG signal is first transformed into

another domain, compression is done afterward. Some traditional transform methods are

Fourier, Walsh, Kahunen Loeve and discrete cosine transforms. The wavelet transform

has also been used for ECG signal compression (Jalaleddine et al. 1990). The ability

to provide simultaneous time and frequency resolution makes wavelet transform an ex-

cellent tool for analysis of non-stationary, high frequency component signals, like ECG.

An early paper by Crowe et al (1992) suggested the wavelet transform as a method for

compressing both ECG and heart rate variability data sets. Two methods of data reduc-

tion on a dyadic scale for normal and abnormal cardiac rhythms has been compared by

Thakor et al (1993), detailing the errors associated with increasing data reduction ratios.
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Chen et al (1993) used discrete orthonormal wavelet transforms and Daubechies D10

wavelets for ECG compression. They obtained compression ratios up to 22.9:1 while

retaining clinically acceptable signal quality. In a later paper (Chen and Itoh 1998), again

using D10 wavelets, they incorporate an adaptive quantization strategy which allows a

predetermined desired signal quality to be achieved. Miaou and Lin (2000, 2001) also

propose quality driven compression methodology based on Daubechies and biorthogonal

wavelets. The set partitioning of hierarchical tree (SPIHT) coding strategy was adopted

in the latter algorithm. Bradie (1996) suggested the use of a wavelet-packet-based al-

gorithm for compression of the ECG. When compared to the KarhunenLoeve transform

(KLT) applied to the same data the WP method generated significantly lower data rates at

less than one-third the computational effort with generally excellent reconstructed signal

quality. However, Blanchett et al (1998) report at least as good compression results for

a KLT-based method. A comparison of the performance of the many ECG compression

methodswavelets and othercan be found in the paper by Cardenas-Barrera and Lorenzo-

Ginori (1999). More recent data compression schemes for the ECG include the method

using non-orthogonal wavelet transforms by Ahmed et al (2000) and the set partitioning

in hierarchical trees (SPIHT) algorithm employed by Lu et al (2000).

1.5 Outline of the thesis

The chapter 1 is introductory containing an overview of wavelet transforms. The work

presented in chapter 2 generalizes the conventional approach to the multidimensional

wavelet transform with positive scales to the case of both positive and negative scales

with respect to its inversion. In chapter 3, review of the algorithm proposed by Chapa

et al. (2000) for designing a wavelet matching to a specified signal has been presented.

Chapter 4 presents a method for inrush and fault detection for differential protection of

transformer. A wavelet matched to the inrush and fault waveforms have been constructed

and used for analysing the output from a power transformer. Chapter 5 presents an algo-

rithm for compression of ECG signal. A matching wavelet has been designed for such a

signal obtained from MIT-BIH database and used for compression.


