DEDICATED WITH EXTREME AFFECTION AND GRATITUDE TO MY BELOVED PARENTS & MY SUPERVISOR

Copyright © Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, INDIA, 2016. All rights reserved.

CERTIFICATE

It is certified that the work contained in the thesis titled "Synthesis, Characterization and Application of Nano-Adsorbents for Removal of Metallic Species from Aqueous Solutions" by "Shikha Dubey" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

ていかをして-50をい

13. Lozel 6 Department of Chemistry, Indian Institute of Technology, Varanasi-221000 Banaras Hindu University, Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Shikha Dubey certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Prof. Yogesh Chandra Sharma from July 2013 to July 2016 at the Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 13.10.2016 **Place:** Varanasi

Certificate by the Supervisor

It is certified that the above statement made by the student is correct to the best of my knowledge.

3554 4

Prof. Yogesh C. Sharma³· (o' 2016 (Supervisor) of. Yogesh C. Sharma Department of Chemistry Sc. IIT(BHU), Varanasi tment of Chemistry Indian Institute of Technology(BHU) Varanasi 221005, INDIA

Prof. R.B. Rastogi (Head) Department of Chemistry, IIT(DHTU), अभिमितिन रसायन विज्ञान विभाग Department of Chemistry भारतीय प्रौद्योगिकी संस्थान (का.हि.वि.वि.) Indian Institute of Technology (B.H.U.) वाराणसी–२२१००५/ Varanasi-221005

pikho Dubey

(Shikha Dubey)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Synthesis, Characterization and Application of Nano-Adsorbents for Removal of Metallic Species from Aqueous Solutions

Name of the Student: Shikha Dubey

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date: 13.10.2016

Place: Varanasi

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal useprovided that the source and the Institute's copyright notice are indicated.

frikle Dubey.

(Shikha Dubey)

At the outset I would like to pay my tribute to respected **Pt. Mahamana Madan Mohan Malviya** ji, the father of my great Institute because of whom thousands of students every year put their step towards bright and prosperous future and receive a warm gesture wherever they go by the spirit of Banaras Hindu University and Mahamana.

It is indeed a profound privilege for me to express my sincere gratitude and respectful regards to my supervisor **Prof. Yogesh Chandra Sharma**, Department of Chemistry, Indian Institute of Technology(BHU) Varanasi for his constant and motivating guidance throughout the course of this research. He has guided me with his invaluable suggestions, lightened up the way in my darkest times and encouraged me a lot in my personal and academic life. The blessing, help and guidance given by him time to time shall carry me a long in the journey of life on which I am about to embark. His dynamism, fantastic stamina and day-to-day monitoring of every minute detail were constant source of inspiration to me. It was a great pleasure for me to have a chance of working with a unique personality like him. He was the best choice I could have made for an advisor.

I express my sincere thanks and deep sense of gratitude to **Prof. P.C. Pandey**, Department of Chemistry, Indian Institute of Technology (BHU) Varanasi and **Prof. Prabhat K. Singh**, Department of Civil Engineering, Indian Institute of Technology (BHU) Varanasi (both my RPEC members) for their regular encouragement and critical suggestions during my research. This juncture of formulating the whole thesis is the toughest part; it seems that my whole life of last 3 years is revolving around me. I can't forget the days when I first entered the lab, emotions of inadequacy and enthusiasm of learning new things were simultaneously occupying my mind. In those days the affection and care of my seniors, **Dr. Uma, Dr. Varsha Srivastava, Dr. Bhaskar Singh, Dr. Arun Lal Srivastava** and **Mr. Deepak Gusain** provided me an early boost up. I learnt lot of things from them which helped me during my research work and same made me feel proud of having seniors like them. Really, those days will remain preserved deeply in my heart forever. I would also like to acknowledge my other lab mates, **Mr. Ashutosh Kumar, Mr. D. Madhu, Ms. Veena Singh,** and **Ms. Meena Yadav** for their help and support throughout this journey.

I convey my sincere thanks to all the teaching and non-teaching staff members of Department of Chemistry, Indian Institute of Technology (BHU), Varanasi for their prompt help and co-operation extended to me during my research.

I gratefully acknowledge the financial support of **Defence Research Development** Organization (DRDO) New Delhi, India.

I wish to thank my colleagues, Ms. Uzra Diwan, Mr. Saurabh Yadav, Mr. Sandeep Gupta and Mr. Mohit Sharma for their unflagging encouragement and unconditional support during my course of work.

No such word in the world to express my indebtedness, reverence and regards towards my adorable father Shri Satya Deo Dubey and beloved mother Smt. Kalawati **Dubey** who are still working hard to see me with best achievement, it is their ambient benisons, inspirations and virtuousness which is keeping me on my target.

I am thankful to God for giving me affectionate sisters Indu Upadhyay and Rachana Tiwari, brothers-in-laws Pradeep Upadhyay and Prabhat Tiwari, brothers Ramakar Dubey and Abhishek Dubey, sister-in-law Vibha Dubey, nephews Ayushk and Utkarsh and niece Rakshita whose loving care, endurance, continuous encouragement and inspirations are unforgettable.

With immense gratitude, I wish to thank all others who directly or indirectly supported me and my all well-wishers whose names I may have failed to mention here. I thank all of them, for being there on my side and being there in my life.

Finally, my endless thanks go to God for all the blessings showed onto me, which has enabled me to write this last note in my research work.

dikho Dub of

(Shikha Dubey)

Date: 13-10-2016

Place: Varanasi

	Page No.
Acknowledgements	i-iii
Abbreviations	xiii-xv
List of Figures	xvi-xxvi
List of Tables	xxvii-xxxi
Preface	xxxii-xxxiv
Chapter 1: Introduction	(1-38)
1.1 Introduction	1
1.2 Global water distribution	2
1.3 Environmental pollution	7
1.4 Water pollution	7
1.5 Water pollutants	9
1.5.1 Organic pollutants	9
1.5.2 Inorganic pollutants	9
1.5.3 Sediments	9
1.5.4 Radioactive materials	10
1.5.5 Thermal pollutants	10
1.6 Heavy metal contamination in aquatic system	10
1.6.1 Technologies for heavy metal removal from water and waste water	14
1.7 Adsorption	16
1.7.1 Types of adsorption	16
1.7.2 Adsorption from solutions	18

1.7.3 Film diffusion	19
1.7.4 Pore diffusion	20
1.8 Factors influencing adsorption	21
1.8.1 Concentration	21
1.8.2 Temperature	21
1.8.3 pH of the solution	22
1.8.4 Nature of adsorbate and adsorbent	22
1.8.5 Particle size	23
1.8.6 Agitation speed	24
1.8.7 Presence of foreign ions	24
1.9 Contacting systems and modes of operation	24
1.9.1 Batch System	25
1.9.2 Continuous-flow-system	25
1.10 Nanotechnology and Wastewater Treatment: A General Vision	25
1.10.1 Nano-adsorbents	27
1.10.2 Metal oxide nanoparticles as nano-adsorbents for sorption of heavy metals	28
1.10.3 Synthesis and characterization of nano-adsorbents	30
1.11 Scope of the work	37
1.12 Objective of the Thesis	38
Chapter: 2 Literature review	(39-50)
2.1 Introduction	39
2.2 Conventional adsorbents for removal of heavy metals from aqueous solutions	39
2.3 Literature review: A brief overview of metal oxide nanoparticles utilized as adsorbents for removal of metallic species from aqueous solutions	

Chapter: 3 Materials and Methods	
3.1 Introduction	51
3.2 Materials	51
3.3 Reagents	51
3.4 Instruments	52
3.5.1 Chromium	52
3.5.2 Nickel	52
3.6 Adsorbents	55
3.6.1 Nano-alumina (n-Al ₂ O ₃)	57
3.6.2 Nano-cupric oxide (n-CuO)	58
3.7 Analytical procedures	58
3.7.1 Batch adsorption experiments	58
3.7.2 Design of experiment (DOE) for optimization of experimental parameters	60
3.7.2.1 Response surface methodology (RSM)	60
3.7.2.2 Box-Behnken design (BBD)	61
3.7.2.3 Analysis of variance (ANOVA)	63
3.7.2.4 Surface plots, Contour graphs and Optimization plot	64
3.8 Adsorption isotherm experiment	65
3.8.1 Langmuir isotherm model	65
3.8.2 Freundlich isotherm model	66
3.9 Adsorption kinetic experiments	67
3.9.1 Pseudo first order model	68
3.9.2 Pseudo-second-order model	68
3.9.3 Intra-particle diffusion model	69

3.9.4 Boyd model	70
3.10 Linear and non-linear analyses of isotherm and kinetic parameters	70
3.11 Adsorption thermodynamic study	71
3.11.1 Langmuir adsorption model	72
3.12 Desorption experiments	73
Chapter: 4 Synthesis and Characterization of Adsorbents	(74-87)
4.1 Introduction	74
4.2 Synthesis of nano-alumina (n-Al ₂ O ₃)	74
4.2.1 Experimental set-up for synthesis of nano-alumina	74
4.2.3 Characterization of synthesized nano-alumina	75
4.2.3.1 X-Ray diffraction analysis	75
4.2.3.2 Fourier transform infra-red analysis	76
4.2.3.3 Electron microscopic analysis	77
4.3 Synthesis of nano-Cupric oxide (n-CuO)	80
4.3.1 Green synthesis	80
4.3.2 Experimental set up for synthesis of CuO nanoparticles	81
4.3.3 Characterization of synthesized nano-cupric oxide	82
4.3.3.1 X-Ray diffraction analysis	82
4.3.3.2 Fourier transform infra-red analysis	82
4.3.3.3 Electron microscopic analysis	84
4.4 Determination of point of zero charge (pH_{zpc})	86
Chapter: 5 Adsorption study on removal of chromium on nano- alumina	(88-129)
5.1 Introduction	88
5.2 Results and discussions	90

5.2.1 Characterization of nano-alumina after adsorption of chromium	90
5.2.2 Adsorption Experiments	92
5.2.2.1 Effect of experimental parameters on the removal of chromium from aqueous solution	92
5.2.2.2 Design of experiment and data analysis for adsorption of chromium on nano-alumina	95
5.2.2.3 Analysis of variance (ANOVA)	98
5.2.2.4 Interaction effect of initial Cr(VI) concentration and Adsorbent dose	100
5.2.2.5 Interaction effect of pH and adsorbent dose	101
5.2.2.6 Interaction effect of pH and initial Cr(VI) concentration	102
5.2.2.7 Interpretation of process optimization of removal (%) of chromium on nano-alumina	103
5.2.3 Adsorption isotherm study	105
5.2.3.1 Linear analysis of adsorption isotherm	106
5.2.3.2 Non-linear analysis of adsorption isotherm	108
5.2.4 Adsorption kinetic modelling	112
5.2.4.1 Linear analysis of adsorption kinetics	113
5.2.4.2 Non-linear analysis of adsorption kinetics	117
5.2.4.3 Intra-particle diffusion	120
5.2.4.4 Boyd model	122
5.2.5 Adsorption thermodynamic study	123
5.2.5.1 Effect of temperature	123
5.2.5.2 Thermodynamic parameters	124
5.2.5.3 Activation energy	126
5.3 Desorption experiments	127

5.4 Conclusions	128
Chapter: 6 Adsorption study on removal of nickel on nano-alumina	(130-170)
6.1 Introduction	130
6.2 Results and discussions	131
6.2.1 Characterization of nano-alumina after adsorption of nickel	131
6.2.2 Adsorption Experiments	133
6.2.2.1 Effect of experimental parameters on the removal of Nickel from aqueous solution	134
6.2.2.2 Design of experiment and data analysis for adsorption of nickel on nano-alumina	137
6.2.2.3 Analysis of variance (ANOVA)	140
6.2.2.4 Interaction effect of initial Ni(II) concentration and adsorbent dose	141
6.2.2.5 Interaction effect of pH and adsorbent dose	143
6.2.2.6 Interaction effect of pH and initial Ni(II) concentration	144
6.2.2.7 Interpretation of process optimization of removal (%) of nickel on nano-alumina	145
6.2.3 Adsorption isotherm study	147
6.2.3.1 Linear analysis of adsorption isotherm	148
6.2.3.2 Non-linear analysis of adsorption isotherm	151
6.2.4 Adsorption kinetic modelling	154
6.2.4.1 Linear analysis of adsorption kinetics	155
6.2.4.2 Non-linear analysis of adsorption kinetics	159
6.2.4.3 Intra-particle diffusion	162
6.2.4.4 Boyd model	163
6.2.5 Adsorption thermodynamic study	164
6.2.5.1 Effect of temperature	164

6.2.5.2 Thermodynamic parameters	165
6.2.5.3 Activation energy	167
6.3 Desorption experiments	168
6.4 Conclusions	169
Chapter: 7 Adsorption study on removal of chromium on nano-cupric oxide	(171-210)
7.1 Introduction	171
7.2 Results and discussions	172
7.2.1 Characterization of nano-cupric oxide after adsorption of chromium	172
7.2.2 Adsorption Experiments	174
7.2.2.1 Effect of experimental parameters on the removal of chromium from aqueous solution	174
7.2.2.2 Design of experiment and data analysis for adsorption of chromium on nano-cupric oxide	177
7.2.2.3 Analysis of variance (ANOVA)	180
7.2.2.4 Interaction effect of initial Cr(VI) concentration and adsorbent dose	182
7.2.2.5 Interaction effect of pH and adsorbent dose	183
7.2.2.6 Interaction effect of pH and initial Cr(VI) concentration	185
7.2.2.7 Interpretation of process optimization of removal (%) of chromium on nano-cupric oxide	185
7.2.3 Adsorption isotherm study	187
7.2.3.1 Linear analysis of adsorption isotherm	188
7.2.3.2 Non-linear analysis of adsorption isotherm	191
7.2.4 Adsorption kinetic modelling	195
7.2.4.1 Linear analysis of adsorption kinetics	196

7.2.4.2 Non-linear analysis of adsorption kinetics	198
7.2.4.3 Intra-particle diffusion	202
7.2.4.4 Boyd model	204
7.2.5 Adsorption thermodynamic study	205
7.2.5.1 Effect of temperature	205
7.2.5.2 Thermodynamic parameters	206
7.2.5.3 Activation energy	208
7.3 Desorption experiments	209
7.4 Conclusions	210
Chapter: 8 Adsorption study on removal of nickel on nano-cupric oxide	(212-253)
8.1 Introduction	212
8.2 Results and discussions	214
8.2.1 Characterization of nano-cupric oxide after adsorption of nickel	214
8.2.2 Adsorption Experiments	216
8.2.2.1 Effect of experimental parameters on the removal of nickel from aqueous solution	216
8.2.2.2 Design of experiment and data analysis for adsorption of nickel on nano-cupric oxide	220
8.2.2.3 Analysis of variance (ANOVA)	223
8.2.2.4 Interaction effect of initial Ni(II) concentration and adsorbent dose	224
8.2.2.5 Interaction effect of pH and adsorbent dose	225
8.2.2.6 Interaction effect of pH and initial Ni(II) concentration	226
8.2.2.7 Interpretation of process optimization of removal (%) of nickel on nano-cupric oxide	227
8.2.3 Adsorption isotherm study	229

8.2.3.1 Linear analysis of adsorption isotherm	230
8.2.3.2 Non-linear analysis of adsorption isotherm	233
8.2.4 Adsorption kinetic modelling	237
8.2.4.1 Linear analysis of adsorption kinetics	238
8.2.4.2 Non-linear analysis of adsorption kinetics	240
8.2.4.3 Intra-particle diffusion	244
8.2.4.4 Boyd model	246
8.2.5 Adsorption thermodynamic study	247
8.2.5.1 Effect of temperature	247
8.2.5.2 Thermodynamic parameters	248
8.2.5.3 Activation energy	250
8.3 Desorption experiments	251
8.4 Conclusions	252
Summary	254-260
References	261-284

List of Research Publications

PREFACE

The past several decades have witnessed an impetus in exponential population growth and civilization expansion, opulent lifestyles and resources consumption, and proceeding industrial and technological advancements that have led to climbing wages, as well as to a sharp modernization and metropolitan growth. The development of any country reckons on its industrial as well as agricultural activities and the natural resources such as air, water, soil, and plant as well as animal life constitute the natural capital on which man depends on to satisfy his needs to achieve his aspirations for development. However, rates of exploitation of these natural resources as well as extensive industrial activities are far surpassing the past with a negative connotation of accompanying environmental degradation. Therefore, the planet has experienced an assortment of pressing environmental challenges such as climate change, global warming, waste, and water pollution, leading to serious environmental degradation. The contamination of water resources by hazardous pollutants has pulled in much serious attention in the last few decades. This is particularly due to their toxic, acute and chronic health effects that seriously threaten the human health and environment. Providing clean and affordable water is considered as one of the most basic humanitarian goals, and it becomes a grand challenge of the 21st century.

Heavy metal contamination due to tremendous increase in industrial applications as well as man's indifferent behaviour towards nature is of a significant concern today. Heavy metals, among various contaminants are of special concern due to their recalcitrant and persistent nature in the environment and are reported to cause life-threatening effects even at trace concentrations.

A wide range of treatment technologies have been developed for treatment of water rich in heavy metals, of which adsorption process is of major interest due to its simplicity, economic viability, and technological feasibility. A number of different conventional low cost adsorbents are being used for treatment of water and wastewater and are being superseded by nano-adsorbents in terms of their large surface area which enables them to adsorb larger amounts of metal ions with enhanced adsorption capacity and rapid sorption rate. Additionally, their ability of regeneration and reuse; low dose requirement make their application economical.

The limitations of classical methods of studying a process by maintaining other factors involved at an unspecified constant level can be overcome by response surface methodology (RSM) where all the affecting parameters can be optimized collectively resulting in improved product yields, reduced process variability, closer confirmation of the output response to nominal and targeted requirements, as well as reduced development time and overall costs. Box-Behnken (BBD) design of RSM is slightly more efficient than the central composite design, but is much efficient than the three-level full factorial designs in terms of cost when the number of factor is higher than 2. Also, it does not contain combinations for which all factors are simultaneously at their highest or lowest levels. Linear regression for the best fitting of isotherm and kinetic data is the most feasible tool for analysing adsorption parameters, but due to its inappropriateness for isotherms with more than two parameters and also inherent biasness associated with it, alternative isotherm parameter sets were determined by non-linear regression. The intention of this thesis is to contribute the scientific findings investigated by me, keeping in view all these facts, a humble attempt has been made to cover the overview of treatment of water laden with heavy metals, synthesis of nano-adsorbents and their characterization for applications for removal of metallic species from aqueous solutions as well as optimization of the process in the present thesis. Best efforts are made to illustrate the scientific findings in the thesis with appropriate justifications, figures, and references.

In the light of above, outcomes of present research investigations are subdivided into eight chapters. First chapter is an introductory chapter; second chapter gives a brief preview of the up-to-date survey of the literature in the area related to the research in the thesis. Third chapter depicts various materials experimental procedures and methods involved all through the research work; and fourth chapter illustrates the synthesis and characterization of nano-adsorbents. The experimental findings of the present thesis are presented in chapters fifth to eighth where each of these chapters begins with a brief review of literature relevant to the work presented in that chapter to put the appropriate outlook, results and discussion followed by conclusion. The chapter wise summary of the work is compiled at the end followed by the list of references.

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Distribution of World's Water	3
Figure 1.2	The Water Cycle	4
Figure 1.3	Major sources of water pollution	8
Figure 1.4	Top down and bottom up approaches for the synthesis of nanomaterials	31
Figure 3.1	Speciation diagram of Chromium	53
Figure 3.2	Speciation diagram of Nickel	56
Figure 4.1	X-ray diffraction (XRD) pattern of nano-alumina	76
Figure 4.2	Fourier transform infra-red (FTIR) spectrum of nano- alumina	77
Figure 4.3	(A) Transmission electron micrograph; and (B) Selected area electron diffraction (SAED) pattern of nano-alumina	78
Figure 4.4	Scanning electron micrograph (SEM) of alumina nanoparticles	79
Figure 4.5	Energy dispersive x-ray (EDAX) pattern of alumina nanoparticles	79
Figure 4.6	X-ray diffraction pattern (XRD) pattern of nano-cupric oxide	83
Figure 4.7	Fourier transform infra-red (FTIR) spectrum of nano- cupric oxide	83
Figure 4.8	Transmission electron micrograph (TEM) of nano-cupric oxide	84
Figure 4.9	Scanning electron micrograph (SEM) of nano-cupric oxide	85
Figure 4.10	Energy dispersive x-ray (EDAX) pattern of nano-cupric	85

oxide

Figure 4.11	pHzpc of synthesized nano-alumina	86
Figure 4.12	pHzpc of synthesized nano-cupric oxide	87
Figure 5.1	XRD pattern of nano-alumina before and after adsorption of Cr(VI) ions	91
Figure 5.2	FT-IR spectra of nano-alumina before and after adsorption of Cr(VI) ions	91
Figure 5.3	EDS pattern of nano-alumina after adsorption of Cr(VI) ions	92
Figure 5.4	Effect of initial pH on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial concentration= 10 mg/L, adsorbent dose= 10g/L, Temperature= 303 K)	93
Figure 5.5	Effect of contact time on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial concentration=10mg/L, Initial pH=2.0, Initial dose=10g/L, Temperature= 303 K)	94
Figure 5.6	Effect of adsorbent dose on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial pH=2.0, Initial concentration=10mg/L, Temperature=303 K)	94
Figure 5.7	Effect of initial concentration on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial pH= 2.0, Initial dose =10g/L, Temperature=303 K)	95
Figure 5.8	(a) Surface plot; and (b) Contour plot of percentage removal vs. dose and concentration at hold value of pH at 10	101
Figure 5.9	(a) Surface plot; and (b) Contour plot of percentage removal vs. pH and dose at hold value of concentration at 25 mg/L	102
Figure 5.10	(a) Surface plot; and (b) Contour plot of percentage removal vs. pH and concentration at hold value of dose at 20 g/L	103
Figure 5.11	Response optimization plot for chromium removal on nano-alumina	104

Figure 5.12	Linear Langmuir isotherm plot of Cr(VI) removal on nano- alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	107
Figure 5.13	Linear Freundlich isotherm plot of Cr(VI) removal on nano- alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	107
Figure 5.14	Non-linear Langmuir isotherm plot of chromium removal on nano-alumina obtained by in-built Microcal origin function symbols (represent the experimental data and lines represent the data estimated by the model)	109
Figure 5.15	Non-linear Freundlich isotherm plot of chromium removal on nano-alumina obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	110
Figure 5.16	Non-linear Langmuir isotherm plot of chromium removal on nano-alumina obtained by customized Microcal origin function (symbols represent the experimental data and lines data represent the estimated by the model)	110
Figure 5.17	Non-linear Freundlich isotherm plot of chromium removal on nano-alumina obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	111
Figure 5.18	Linear pseudo-first order plot of chromium removal on nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	114
Figure 5.19	Linear pseudo-second order plot of chromium removal on nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	115
Figure 5.20	Non-linear pseudo-first order plot of chromium removal on nano-alumina obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	117
Figure 5.21	Non-linear pseudo-second order plot of chromium removal on nano-alumina obtained by in-built Microcal origin	118

function (symbols represent the experimental data and lines represent the data estimated by the model)

- Figure 5.22Non-linear pseudo-first order plot of chromium removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)118
- Figure 5.23Non-linear pseudo-second order plot of chromium removal
on nano-alumina obtained by in-built Microcal origin
function (symbols represent the experimental data and
straight lines represent the data estimated by the model)119
- Figure 5.24A) Intra-particle diffusion plot for removal of chromium122from aqueous solution on nano-alumina. B) Boyd modelplot for removal of chromium from aqueous solution on
nano-alumina
- Figure 5.25Effect of temperature on removal of Cr(VI) from aqueous124solutions on nano-alumina
- Figure 5.26Arrhenius plot for removal of chromium from aqueous127solution on nano-alumina
- Figure 6.1XRD pattern of nano-alumina before and after adsorption132of Ni(II) ions
- Figure 6.2FT-IR spectra of nano-alumina before and after adsorption132of Ni(II) ions
- Figure 6.3EDS pattern of nano-alumina after adsorption of Ni(II)133ions
- Figure 6.4Effect of initial pH on removal (%) of nickel from aqueous
solution on nano-alumina (Initial concentration= 20 mg/L,
adsorbent dose= 10g/L, Temperature= 303 K)135
- Figure 6.5Effect of adsorbent dose on removal (%) of nickel from
aqueous solution on nano-alumina (Initial pH=7.0, Initial
concentration=20mg/L, Temperature=303 K)135
- Figure 6.6 Effect of contact time on removal (%) of nickel from 136 aqueous solution on nano-alumina (Initial concentration=10mg/L, Initial pH=7.0, Initial dose=10g/L, Temperature= 303 K)
 Figure 6.7 Effect of initial concentration on removal (%) of nickel 136
- Figure 6.7 Effect of initial concentration on removal (%) of nickel 13 from aqueous solution on nano-alumina (Initial pH= 7.0,

Initial dose=10g/L, Temperature=303 K)

- Figure 6.8(a) Surface plot; and (b) Contour plot of percentage142removal vs. dose and concentration at hold value of pH at
- Figure 6.9 (a) Surface plot; and (b) Contour plot of percentage 143 removal vs. pH and dose at hold value of concentration at 25 mg/L
- Figure 6.10 (a) Surface plot; and (b) Contour plot of percentage 145 removal vs. pH and concentration at hold value of dose at 20 g/L
- Figure 6.11Response optimization plot for nickel removal on nano-146alumina
- Figure 6.12Linear Langmuir isotherm plot of nickel removal on nano-
alumina (symbols represent the experimental data and
straight lines represent the data estimated by the model)149
- Figure 6.13 Linear Freundlich isotherm plot of nickel removal on 149 nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)
- Figure 6.14Non-linear Langmuir isotherm plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)151
- Figure 6.15Non-linear Freundlich isotherm plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)152
- Figure 6.16Non-linear Langmuir isotherm plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)152
- Figure 6.17Non-linear Freundlich isotherm plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)153
- Figure 6.18Linear pseudo-first order plot of nickel removal on nano-
alumina (symbols represent the experimental data and
straight lines represent the data estimated by the model)156

Figure 6.19	Linear pseudo-second order plot of nickel removal on	157
	nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the	
	model)	

- Figure 6.20Non-linear pseudo-first order plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)159
- Figure 6.21Non-linear pseudo-second order plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)160
- Figure 6.22Non-linear pseudo-first order plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)160
- Figure 6.23Non-linear pseudo-second order plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)161
- Figure 6.24A) Intra-particle diffusion plot for removal of nickel from
aqueous data solution on nano-alumina. B) Boyd model
plot for removal of nickel from aqueous solution on nano-
alumina162
- Figure 6.25Effect of temperature on removal of nickel from aqueous165solutions on nano-alumina
- Figure 6.26Arrhenius plot for removal of nickel from aqueous solution168on nano-alumina
- Figure 7.1XRD pattern of nano-cupric oxide before and after173adsorption of Cr(VI) ions
- Figure 7.2FT-IR spectra of nano-cupric oxide before and after173adsorption of Cr(VI) ions
- Figure 7.3EDS pattern of nano- nano-cupric oxide after adsorption of
Cr(VI) ions174
- Figure 7.4 Effect of initial pH on removal (%) of chromium from 175

aqueous solution on nano-cupric oxide (Initial concentration=10 mg/L, adsorbent dose= 8g/L, Temperature= 303 K)

- Figure 7.5Effect of adsorbent dose on removal (%) of chromium
from aqueous solution on nano-cupric oxide (Initial
pH=2.0, Initial concentration=10mg/L, Temperature=303
K)176
- Figure 7.6Effect of contact time on removal (%) of chromium from
aqueous solution on nano-cupric oxide (Initial
concentration=10mg/L, Initial pH=2.0, Initial dose=8g/L,
Temperature= 303 K)176
- Figure 7.7Effect of initial concentration on removal (%) of chromium
from aqueous solution on nano-cupric oxide (Initial pH=
2.0, Initial dose=8g/L, Temperature=303 K)177
- **Figure 7.8** (a) Surface plot; and (b) Contour plot of percentage **182** removal vs. dose and concentration at hold value of pH at 10
- Figure 7.9(a) Surface plot; and (b) Contour plot of percentage184removal vs. pH and dose at hold value of concentration at
25 mg/L25 mg/L
- Figure 7.10(a) Surface plot; and (b) Contour plot of percentage185removal vs. pH and concentration at hold value of dose at
20 g/L20 g/L
- Figure 7.11 Response optimization plot for chromium removal on 186 nano-cupric oxide
- Figure 7.12Linear Langmuir isotherm plot of Cr(VI) removal on nano-
cupric oxide (symbols represent the experimental data and
straight lines represent the data estimated by the model)189
- Figure 7.13 Linear Freundlich isotherm plot of Cr(VI) removal on 190 nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)
- Figure 7.14Non-linear Langmuir isotherm plot of chromium removal
on nano-cupric oxide obtained by in-built Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)192

Figure 7.15	Non-linear Freundlich isotherm plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	193
Figure 7.16	Non-linear Langmuir isotherm plot of chromium removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	193
Figure 7.17	Non-linear Freundlich isotherm plot of chromium removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	194
Figure 7.18	Linear pseudo-first order plot of chromium removal on nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	197
Figure 7.19	Linear pseudo-second order plot of chromium removal on nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	198
Figure 7.20	Non-linear pseudo-first order plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	200
Figure 7.21	Non-linear pseudo-second order plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	200
Figure 7.22	Non-linear pseudo-first order plot of chromium removal on nano-cupric oxide obtained by customized Microcal origin function represent the experimental data and lines represent the data estimated by the model)	201
Figure 7.23	Non-linear pseudo-second order plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	201
Figure 7.24	A) Intra-particle diffusion plot for removal of chromium from aqueous solution on nano- cupric oxide. B) Boyd	203

model plot for removal of chromium from aqueous solution on nano-cupric oxide

Figure 7.25 Effect of temperature on removal of chromium from 206 aqueous solutions on nano-cupric oxide Arrhenius plot for removal of chromium from aqueous 209 Figure 7.26 solution on nano-cupric oxide XRD pattern of nano-cupric oxide before and after Figure 8.1 215 adsorption of Ni(II) ions Figure 8.2 FT-IR spectra of nano-cupric oxide before and after 215 adsorption of Ni(II) ions Figure 8.3 EDS pattern of nano-cupric oxide after adsorption of Ni(II) 216 ions Figure 8.4 Effect of initial pH on removal (%) of nickel from aqueous 217 solution on nano-cupric oxide (Initial concentration= 20 mg/L, adsorbent dose= 6g/L, Temperature= 303K) Figure 8.5 Effect of adsorbent dose on removal (%) of nickel from 218 aqueous solution on nano-cupric oxide (Initial pH=7.0, Initial concentration=20 mg/L, Temperature=303K) Effect of contact time on removal (%) of nickel from 219 Figure 8.6 aqueous solution on nano-cupric oxide (Initial concentration=20mg/L, Initial pH=7.0, Initial dose=8g/L, Temperature= 303K) Figure 8.7 Effect of initial concentration on removal (%) of nickel 219 from aqueous solution on nano-cupric oxide (Initial pH= 7.0, Initial dose=6g/L, Temperature=303 K) 225 Figure 8.8 (a) Surface plot; and (b) Contour plot of percentage removal vs. dose and concentration at hold value of pH at 7.0 Figure 8.9 226 (a) Surface plot; and (b) Contour plot of percentage removal vs. pH and dose at hold value of concentration at 25 mg/LFigure 8.10 (a) Surface plot; and (b) Contour plot of percentage 227 removal vs. pH and concentration at hold value of dose at 20 g/L

Figure 8.11	Response optimization plot for nickel removal on nano- cupric oxide	228
Figure 8.12	Linear Langmuir isotherm plot of nickel removal on nano- cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	231
Figure 8.13	Linear Freundlich isotherm plot of nickel removal on nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	232
Figure 8.14	Non-linear Langmuir isotherm plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	233
Figure 8.15	Non-linear Freundlich isotherm plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	234
Figure 8.16	Non-linear Langmuir isotherm plot of nickel removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	234
Figure 8.17	Non-linear Freundlich isotherm plot of nickel removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	235
Figure 8.18	Linear pseudo-first order plot of nickel removal on nano- cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	238
Figure 8.19	Linear pseudo-second order plot of nickel removal on nano-cupric oxide (symbols represent the experimental data and lines represent the data estimated by the model)	239
Figure 8.20	Non-linear pseudo-first order plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	241
Figure 8.21	Non-linear pseudo-second order plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin	242

function (symbols represent the experimental data and lines represent the data estimated by the model)

- Figure 8.22Non-linear pseudo-first order plot of nickel removal on
nano-cupric oxide obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)242
- Figure 8.23Non-linear pseudo-second order plot of nickel removal on
nano-cupric oxide obtained by in-built Microcal origin
function (symbol represent the experimental data and lines
represent the data estimated by the model)243
- Figure 8.24A) Intra-particle diffusion plot for removal of nickel from
aqueous solution on nano-cupric oxide. B) Boyd model
plot for removal of nickel from aqueous solution on nano-
cupric oxide245
- Figure 8.25Effect of temperature on removal of nickel from aqueous247solutions on nano-cupric oxide
- Figure 8.26Arrhenius plot for removal of nickel from aqueous solution251on nano-cupric oxide

LIST OF TABLES

Table No.	Table Caption	Page No.
Table 1.1	Estimate of global fresh-water distribution	6
Table 1.2	Occurrence of metals in industrial effluents of various industries	13
Table 1.3	Metals with their toxicities and MCL standards	14
Table 1.4	Limitations of various physico-chemical methods used for treatment of metal rich effluents	15
Table 1.5	Different methods of fabrication of nanoparticles used as an adsorbent for water treatment	33
Table 1.6	Characterization techniques of nano-particles synthesized as an adsorbent for water treatment	36
Table 2.1	Application of nanoparticles as adsorbent for the removal of metallic pollutants from water and wastewater by adsorption	47
Table 3.1	Experimental ranges and levels of independent factors	63
Table 5.1	Box-Behnken designed experimental runs for removal of chromium on nano-alumina	96
Table 5.2	Estimated regression coefficients for removal of chromium on nano-alumina	98
Table 5.3	Analysis of variance for removal of chromium on nano- alumina	99
Table 5.4	Confirmation experiments for removal of chromium on nano-alumina	105
Table 5.5	Langmuir and Freundlich isotherm parameters for linear analysis for adsorption of chromium from aqueous solution on nano-alumina	108
Table 5.6	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by in-built Microcal origin functions for adsorption of chromium from aqueous solution on nano-alumina	111

Table 5.7	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by customized Microcal origin functions for adsorption of chromium from aqueous solution on nano-alumina	112
Table 5.8	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by Microcal origin for adsorption of chromium from aqueous solution on nano-alumina	116
Table 5.9	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by customized Microcal origin for adsorption of chromium from aqueous solution on nano-alumina	120
Table 5.10	Intra-particle diffusion constant values for removal of chromium from aqueous solution on nano-alumina	121
Table 5.11	Thermodynamic parameters for adsorption of chromium from aqueous solution on nano-alumina	125
Table 5.12	Chromium removal after subsequent regeneration cycle (Initial conc.=5 mg/L, pH = 2.0, Dose = 10 g/L, Temperature =303 K)	128
Table 6.1	Box-Behnken designed experimental runs for removal of nickel on nano-alumina	137
Table 6.2	Estimated regression coefficients for removal of nickel on nano-alumina	139
Table 6.3	Analysis of variance for removal of nickel on nano- alumina	141
Table 6.4	Confirmation experiments for removal of nickel on nano- alumina	147
Table 6.5	Langmuir and Freundlich isotherm parameters for linear analysis for adsorption of nickel from aqueous solution on nano-alumina	150
Table 6.6	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by in-built Microcal origin functions for adsorption of chromium from aqueous solution on nano-alumina	153
Table 6.7	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by customized Microcal origin	154

functions for adsorption of chromium from aqueous solution on nano-alumina

- Table 6.8Pseudo-first order and pseudo-second order kinetic158parameters for linear analysis and non-linear analysis by
Microcal origin for adsorption of chromium from aqueous
solution on nano-alumina158
- Table 6.9Pseudo-first order and pseudo-second order kinetic161parameters for linear analysis and non-linear analysis by
customized Microcal origin for adsorption of chromium
from aqueous solution on nano-alumina
- **Table 6.10**Intra-particle diffusion constant values for removal of
chromium from aqueous solution on nano-alumina163
- **Table 6.11**Thermodynamic parameters for adsorption of chromium166from aqueous solution on nano-alumina
- Table 6.12Nickel removal after subsequent regeneration cycle169(Initial conc.=20 mg/L, pH = 7.0, Dose = 10 g/L,
Temperature =303 K)Temperature = 10 g/L,
- Table 7.1Box-Behnken designed experimental runs for removal of
chromium on nano-cupric oxide the data estimated by the
model)178
- **Table 7.2**Estimated regression coefficients for removal of180chromium on nano-cupric oxide
- **Table 7.3**Analysis of variance for removal of chromium on nano-
cupric oxide181
- Table 7.4Confirmation experiments for removal of chromium on187nano-cupric oxide
- **Table 7.5**Langmuir and Freundlich isotherm parameters for linear191analysis for adsorption of chromium from aqueous
solution on nano-cupric oxide
- **Table 7.6**Langmuir and Freundlich isotherm parameters for non-
linear analysis obtained by in-built Microcal origin
functions for adsorption of chromium from aqueous
solution on nano-cupric oxide**194**
- Table 7.7Langmuir and Freundlich isotherm parameters for non-
linear analysis obtained by customized Microcal origin
functions for adsorption of chromium from aqueous
solution on nano-cupric oxide195

Table 7.8	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by Microcal origin for adsorption of chromium from aqueous solution on nano-cupric oxide	199
Table 7.9	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by customized Microcal origin for adsorption of chromium from aqueous solution on nano-cupric oxide	202
Table 7.10	Intra-particle diffusion constant values for removal of chromium from aqueous solution on nano-cupric oxide	204
Table 7.11	Thermodynamic parameters for adsorption of chromium from aqueous solution on nano-cupric oxide	208
Table 7.12	Chromium removal after subsequent regeneration cycle (Initial conc.=10 mg/L, pH = 2.0, Dose = 8 g/L, Temperature =303 K)	210
Table 8.1	Box-Behnken designed experimental runs for removal of nickel on nano-cupric oxide	220
Table 8.2	Estimated regression coefficients for removal of nickel on nano-cupric oxide	222
Table 8.3	Analysis of variance for removal of nickel on nano- cupric oxide	223
Table 8.4	Confirmation experiments for removal of nickel on nano- cupric oxide	229
Table 8.5	Langmuir and Freundlich isotherm parameters for linear analysis for adsorption of nickel from aqueous solution on nano-cupric oxide	232
Table 8.6	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by in-built Microcal origin functions for adsorption of nickel from aqueous solution on nano-cupric oxide	236
Table 8.7	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by customized Microcal origin functions for adsorption of nickel from aqueous solution on nano-cupric oxide	236
Table 8.8	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by	240

Microcal origin for adsorption of nickel from aqueous solution on nano-cupric oxide

- **Table 8.9**Pseudo-first order and pseudo-second order kinetic244parameters for linear analysis and non-linear analysis by
customized Microcal origin for adsorption of nickel from
aqueous solution on nano-cupric oxide244
- **Table 8.10**Intra-particle diffusion constant values for removal of
nickel from aqueous solution on nano-cupric oxide246
- **Table 8.11**Thermodynamic parameters for adsorption of nickel from249aqueous solution on nano-cupric oxide
- Table 8.12Nickel removal after subsequent regeneration cycle252(Initial conc.=20 mg/L, pH = 7.0, Dose = 6 g/L,
Temperature =303 K)Temperature = 6 g/L,