LIST of FIGURES

FIGURES

Page No.

Chapter I	Introduction and Literature Review	1-40
Fig. 1.1	Working principle of fuel cell	1
Fig. 1.2	Polarization curve of fuel cell	2
Fig. 1.3	Working principle of SOFC	8
Fig. 1.4	Planer SOFC	9
Fig. 1.5	Tubular SOFC	10
Fig. 1.6	Temperature dependence of electrical conductivity	14
	of oxide ion electrolytes	
Fig. 1.7	Crystal structure of ceria	17
Fig. 1.8	EDXM spectra of a grain and grain boundary in	21
	$CeO_2:6 mol\% Gd_2O_3 sample.$	
Fig. 1.9	Variation of association energy against the dopant concentration for various rare earth cation doped ceria	23
Fig. 1.10	Log σT and Log A vs Ea plot of vttria-doped ceria	24
Fig. 1.11	Log σ T and Log A vs Ea plot of gadolinia-doped ceria	25
Fig. 1.12	(a) TEM images and (b) SEM images of ceria/carbonate	28
C	nanocomposites	
Fig.1.13	Variation of ionic conductivity of composites electrolyte	29
C	with carbonate compositions	
Fig. 1.14	Variation of conductivity with carbonate content at	30
C	650 °C	
Fig. 1.15	Electrical field at the interfaces between two constituent	32
	phase particles	
Fig. 1.16	Conducting highways at the interfaces of two phase	33
	particles resulting in interfacial superionic conduction	
Fig. 1.17	(a) Time dependence of electrical conductivity of	34
-	GDC/(Li-K) ₂ CO ₃ composite at 600 °C in air under OCV	
	condition (b) Evaluation of cell performances vs. time for	
	ceria/carbonate composite electrolytes based SOFC at	
	550 °C	
Fig. 1.18	Basic building block for automobile APUs	36
Fig. 1.19	500 W battery charging system concept	37
Fig. 1.20	Portable SOFC system	37
Fig. 1.21	Multi-ion conduction and advanced applications of ceria/	39
-	carbonates nanocomposites	

Chapter III	Experimental Work	46-62
Fig. 3.1	Flow chart for preparation of nitrates	48
Fig. 3.2	Flow chart for synthesis of ceria powders	49
Fig. 3.3	Flow chart of the preparation of nanocomposites	50
Fig. 3.4	Optimization of load	51
Fig. 3.5	NETZSCH Gerate Bau DTA/TGA	52
Fig. 3.6	Schematic diagram of X-ray diffractometer	54
Fig. 3.7	Working principle of FE-SEM	56
Fig. 3.8	Image of FEI NOVA NANOSEM	57
Fig. 3.9	Image of push rod dilatometer	58
Fig. 3.10	A schematic representation of impedance plot of a	61
	polycrystalline solid electrolyte with an equivalent circuit	
Fig. 3.11	A schematic diagram of sample cell used in impedance	61
	measurements	
Chapter IV	La and Sr Co-Doped Ceria, Ce _{1-x-v} La _x Sr _v O _{2-ð} (Fixed	63-115
	OxygenVacancies) and its Nanocomposites	
Fig. 4.1	DTA/TGA plot of the ash of composition CLO15	65
Fig. 4.2	Powder X-ray diffraction patterns of sintered powders for	66
	various compositions (a) CL015 (b) CL11S2(c) CL7S4 (d)	
	CL3S6 in the system $Ce_{1-x-y}La_xSr_yO_{2-\{x/2+y\}}$	
Fig. 4.3	Variation of lattice parameter as a function of Sr ²⁺	69
	concentration in the system $Ce_{1-x-y}La_xSr_yO_{2-\{x/2+y\}}$	
Fig. 4.4	SEM micrographs of various compositions (a) CLO15	70
	(b) CL11S2 (c) CL7S4 (d) CL3S6 in the system	
	$Ce_{1-x-y}La_xSr_yO_{2-\{x/2+y\}}$	
Fig. 4.5	EDS spectrum of the composition CLO15 at three different	71
	points	
Fig. 4.6	EDS spectrum of the composition CL7S4 at three different	72
	points	
Fig. 4.7	Complex plane impedance plots of the composition CLO15	74
	at different temperatures	
Fig. 4.8	Complex plane impedance plots of the composition CL11S2	77
	at different temperatures	
Fig. 4.9	Complex plane impedance plots of the composition CL7S4	80
	at different temperatures	
Fig. 4.10	Complex plane impedance plots of the composition CL3S6	83
	at different temperatures	
Fig. 4.11	Brick layer model of polycrystalline material	86

Fig. 4.12	Arrhenius plots of all the compositions for the grain, grain boundaries and total ionic conductivity in the grater C_{2} . Let $S_{2} O_{2}$	87
Fig 413	DTA plots of all the CL7S4/I NCO papocomposite powders	92
Fig. 4.13	XRD patterns of all the sintered powders: (a) CL784/35	93
8	LNCO (b) CL7S4/30 LNCO (c) CL7S4/20 LNCO and (d) CL7S4	20
Fig. 4.15	SEM micrograph of all the compositions (a) CL7S4: after polishing and thermal etching (b) CL7S4/20 LNCO: fractured sample (c) CL7S4/30 LNCO: fractured sample (d) CL7S4/35LNCO: fractured sample	95
Fig. 4.16	EDS spectrum of the composition CL7S4/35LNCO at two different points	96
Fig. 4.17	Thermal expansion curves for all the CL7S4/LNCO nanocomposites	97
Fig. 4.18	Complex plane impedance plots of the composition CL7S4/20LNCO at different temperatures	99
Fig. 4.19	Complex plane impedance plots of the composition CL7S4/30LNCO at different temperatures	102
Fig. 4.20	Complex plane impedance plots of the composition CL7S4/35LNCO at different temperatures	105
Fig. 4.21	Complex plane impedance plots of the composition LNCO at different temperatures	108
Fig. 4.22	Arrhenius plots of total conductivity for all the compositions	111
Fig. 4.23	Archie plot for the composite in the system CL7S4/LNCO	113
Chapter V	La and Sr Co-Doped Ceria, Ce _{0.85} La _{0.15-x} Sr _x O _{2-ð} and its Nanocomposites	116-159
Fig. 5.1	Powder X-ray diffraction patterns of the sintered powders in the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$ for (a) x = 0.0, (b) x = 0.025, (c) x = 0.050 and (d) x = 0.075	118
Fig. 5.2	Variation of lattice parameter with concentration of Sr in the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$	119
Fig. 5.3	BFTEM images of the compositions (i) CLO15 (ii) CL125S025 (iii) CL10S5 (iv) CL075S075	121
Fig. 5.4	SEM micrographs of different compositions in the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$ (a) CL015 (b) CL125S025 (c) CL10S5 and (d) CL075S075	122
Fig. 5.5	EDS spectrum of the composition CL125S025 at three different points: (a) in the grain (b) at the grain boundary (c) at triple point	123

Fig. 5.6	Complex plane impedance plots of the composition	125
Fig. 5.7	Complex plane impedance plots of the composition CL10S5 at different temperatures	129
Fig. 5.8	Complex plane impedance plots of the composition CL075S075 at different temperatures	132
Fig. 5.9	Arrhenius plots for the grain, grain boundaries and total ionic conductivity in the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$	136
Fig. 5.10	DTA plots of all the composite samples of CL125S025/LNCO	141
Fig. 5.11	Powder XRD patterns of various compositions (a)CL125S025 (b) CL125S025/20LNCO (c) CL125S025/ 30LNCO and (d) CL125S025/35LNCO sintered powders	142
Fig. 5.12	Thermal expansion curves for CL125S025/LNCO composites	143
Fig. 5.13	Scanning electron micrograph of all the fractured samples (a) CL125S025 (b) CL125S025/20LNCO (c) CL125S025/30 LNCO and (d) CL125S025/35 LNCO	144
Fig. 5.14	EDS spectrum of the composition CL125S025/35LNCO at two different points	145
Fig. 5.15	Complex plane impedance plots of CL125S025/20LNCO at different temperatures	147
Fig. 5.16	Complex plane impedance plots of CL125S025/30LNCO at different temperatures	150
Fig. 5.17	Complex plane impedance plots of CL125S025/35LNCO at different temperatures	153
Fig. 5.18	Arrhenius plots of total conductivity for all the compositions	156
Fig. 5.19	Arhie plot of the system CL125S025/LNCO	158
Chapter V	T Sm and Sr Co-Doped Ceria and its Nanocomposites	160-205
Fig. 6.1	Powder XRD patterns of the sintered samples in the system $Ce_{1-x-y}Sm_xSr_yO_{1.90}$ system with (a) SDC (b) 2SrSDC (c) 4SrSDC and (d) 6SrSDC	162
Fig. 6.2	Variation of lattice parameter with Sr content in the system $Ce_{1-x-y}Sm_xSr_yO_{1.90}$	163
Fig. 6.3	SEM micrographs of thermally etched samples (a) SDC (b) 2SrSDC (c) 4SrSDC and (d) 6SrSDC	165
Fig. 6.4	EDS spectrum of the composition SDC at three different points	166
Fig. 6.5	EDS spectrum of the composition 2SrSDC at three different points	166

Fig. 6.6	Complex plane impedance plots of the composition SDC at different temperatures	168
Fig. 6.7	Complex plane impedance plots of the composition 2SrSDC	171
Fig. 6.8	Complex plane impedance plots of the composition 4SrSDC	174
Fig. 6.9	Complex plane impedance plots of the composition 6SrSDC	177
Fig. 6.10	Arrhenius plots for grains, grain boundaries and total conductivity of all the compositions in the system $Ce_{1,x,y}Sm_ySr_yO_{1,90}$	182
Fig. 6.11	Plots of variation of activation energy with dopant concentration for $Ce_{1-x-y}Sm_xSr_yO_{1.90}$ system	184
Fig. 6.12	DTA plots of all the samples in the system SSDC/LNCO	186
Fig. 6.13	Powder X-ray diffraction patterns of various compositions (a) Pure LNCO (b) SSDC (c) SSDC/20 LNCO (d) SSDC/30 LNCO (e) SSDC/35 LNCO	187
Fig. 6.14	Scanning electron micrograph of all the compositions (i) SSDC (ii) SSDC/20 LNCO (iii) SSDC/30 LNCO (iv) SSDC/35 LNCO	189
Fig. 6.15	EDS spectrum of the composition SSDC/35LNCO at two different points	190
Fig. 6.16	Thermal expansion curves for SSDC/LNCO composites	191
Fig. 6.17	Complex plane impedance plots of the composition SSDC/20LNCO at different temperatures	193
Fig. 6.18	Complex plane impedance plots of the composition SSDC/30 LNCO at different temperatures	196
Fig. 6.19	Complex plane impedance plots of the composition SSDC/35 LNCO at different temperatures	199
Fig. 6.20	Arrhenius plots of all the compositions in the system SSDC/LNCO	202
Fig. 6.21	Archie plot for SSDC/LNCO system	204
Chapter VII Ca and Sr co-doped ceria and its nanocomposites 206-		
Fig. 7.1	DTA/TGA plots of the as prepared ash of composition CCO5	207
Fig. 7.2	Powder X-ray diffraction patterns of various compositions (a) CCO5 (b) CC5S2 (c) CC5S2 (d) CC5S3 sintered at 1350 °C	208
Fig. 7.3	SEM micrographs of various compositions (a) CCO5 (b) CC5S1 (c) CC5S2 (d) CC5S3 thermally etched at 1250 °C	210
Fig. 7.4	EDS spectrum of the composition CCO5 at three different points	211

Fig. 7.5	EDS spectrum of the composition CC5S2 at three different Points	211
Fig. 7.6	Complex plane impedance plots of the composition CCO5 at different temperatures	213
Fig. 7.7	Complex plane impedance plots of the composition CC5S1 at different temperatures	216
Fig. 7.8	Complex plane impedance plots of the composition CC5S2 at different temperatures	219
Fig. 7.9	Complex plane impedance plots of the composition CC5S3 at different temperatures	222
Fig. 7.10	Arrhenius plots of all the compositions in the system $Ce_{0.95-x}Ca_{0.05}Sr_xO_{1.95-x}$	226
Fig. 7.11	DTA plots of all the samples in the system CC5S2/LNCO	230
Fig. 7.12	Powder X-ray diffraction patterns of various compositions (a) CC5S2 (b) CC5S2 /20 LNCO (c) CC5S2 /30 LNCO and (d) CC5S2 /35LNCO	231
Fig. 7.13	Scanning electron micrograph of all the fractured samples (a) CC5S2 (b) CC5S2 /20 LNCO (c) CC5S2/30 LNCO and (d) CC5S2/35 LNCO	232
Fig. 7.14	EDS spectrum of the composition CC5S2/LNCO at two different points	233
Fig. 7.15	Thermal expansion curves for CC5S2/LNCO composites	234
Fig. 7.16	Complex plane impedance plots of the composition CC5S2/20LNCO at different temperatures	236
Fig. 7.17	Complex plane impedance plots of the composition CC5S2/30LNCO at different temperatures	239
Fig. 7.18	Complex plane impedance plots of the composition CC5S2/35LNCO at different temperatures	242
Fig. 7.19	Arrhenius plots of total conductivity for all the compositions	246
Fig. 7.20	Archie plot for the system CC5S2/LNCO	247
Chapter V	VIII Mg and Sr co-doped ceria and its nanocomposites	249-297
Fig. 8.1	Powder X-ray diffraction patterns of the sintered powders of compositions (a) CMO10 (b) CM8S2 (c) CM6S4 and (d) CM4S6 in the system $Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$	251
Fig. 8.2	SEM micrograph of the fractured samples in the system $Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$ for (a) CMO10 (b) CM8S2 (c) CM6S4 and (d) CM4S6	253

Fig. 8.3	EDX spectrum of the composition CMO10 at two different points: Spectrum 1 (in the grain) Spectrum 2 (at the grain boundary)	254
Fig. 8.4	EDX spectrum of the composition CM6S4 at two different points: (a) in the grain (b) at the grain boundary (c) at triple point	255
Fig. 8.5	Complex plane impedance plots of the composition CMO10 at different temperatures	257
Fig. 8.6	Complex plane impedance plots of the composition CM8S2 at different temperatures	261
Fig. 8.7	Complex plane impedance plots of the composition CM6S4 at different temperatures	265
Fig. 8.8	Complex plane impedance plots of the composition CM4S6 at different temperatures	269
Fig. 8.9	Arrhenius plots of all the compositions in the system $Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$	274
Fig. 8.10	DTA plots of all the composite samples (a) CM6S4/20LNCO (b) CM6S4/30LNCO and (c) CM6S4/35LNCO	279
Fig. 8.11	Powder X-ray diffraction patterns of all the compositions (a) CM6S4 (b) CM6S4/20 LNCO (c) CM6S4/30LNCO and (d) CM6S4/35LNCO	280
Fig. 8.12	Thermal expansion curves for CM6S4/LNCO composites	281
Fig. 8.13	SEM micrograph of all the sintered fractured samples (a)	282
-	CM6S4 (b) CM6S4/20 LNCO (c) CM6S4/30 LNCO and (d) CM6S4/35 LNCO	
Fig. 8.14	EDS spectrum of the composition CM6S4/35LNCO at two different points	283
Fig. 8.15	Complex plane impedance plots of the composition CM6S4/20LNCO at different temperatures	285
Fig. 8.16	Complex plane impedance plots of the composition CM6S4/30LNCO at different temperatures	288
Fig. 8.17	Complex plane impedance plots of the composition CM6S4/35LNCO at different temperatures	291
Fig. 8.18	Arrhenius plots of total conductivity for all the compositions	294
Fig. 8.19	Arhie plot for composites in the system CM6S4/LNCO	296