Contents

List of Abbreviations List of Figures List of Table Preface			vi-vii viii-xiv xv-xvi xvii-xxiv	
Chapter-1	INTRODUCTION AND LITERATURE REVIEW	1-44		
1.1SEMICO	NDUCTOR TECHNOLOGY		1	
1.2 DIELEC	TRICS : OPTIONS FOR EMBEDDED CAPACITO	ORS	3	
1.2.1 Diele	ectric Ceramic Material: An Overview		4	
1.2.1	.1 Dielectric Loss		7	
1.2.1	.2 Dielectric Strength		8	
1.2.1	.3 Polarization		8	
1.2.1	.4 Debye Relations		10	
1.2.2 Cond	luction Losses and Degradation		12	
1.3 PEROVSE	KITE OXIDES: A GENERAL OVERVIEW		13	
1.3.1 Differe	ent Types of Perovskite Oxides		17	
1.3.2 Substit	tution in Perovskites		18	
1.3.2.1	Independent Isovalent substitution		19	
1.3.2.2	Independent Heterovalent substitutions		19	
1.3.2.3	Valence compensated substitutions		20	
1.3.3 Differ	ent Synthesis Routes for preparation of Perovskites		20	
1.3.4 Some]	Important Perovskites Exhibiting High Dielectric Constant		23	
1.3.4.1	Barium Titanate (BaTiO ₃)		23	
1.3.4.2	Calcium-Titanate (CaTiO ₃)		24	
1.3.4.3	Strontium Titanate (SrTiO ₃),		24	
1.3.5 Applica	ation of Perovskite		25	
1.4 ACu ₃ Ti ₄ O	12 TYPES OF MATERIALS		28	
1.5 <u>CALCIUN</u>	<u>A COPPER TITANATE</u> (CaCu ₃ Ti ₄ O ₁₂)		28	

1.6 LITERATURE REVIEW	29
1.6.1 Advantage of CaCu ₃ Ti ₄ O ₁₂ over BaTiO ₃	29
1.6.2 Crystal Structure of CaCu ₃ Ti ₄ O ₁₂ (CCTO)	30
1.6.3 Origin of High Dielectric Constant in CaCu ₃ Ti ₄ O ₁₂	31
1.6.3.1 Intrinsic factors: atomic structure aspects	32
1.6.3.2 Extrinsic factors: Microstructure aspects	33
1.6.3.2 (A) Single crystal of $CaCu_3Ti_4O_{12}$	33
1.6.3.2 (B) Internal barrier layer capacitor (IBLC) model	34
1.6.3.2 (C) Electrode and sample contact effects	35
1.6.3.2 (D) Interfacial polarization effect: Maxwell- Wagner model	35
1.6.4 HOW TO GET HIGH DIELECTRIC CONSTANT AND LOW	
LOSS IN CCTO	37
1.6.4.1 By Using Different Synthetic Routes	37
1.6.4.2 Processing Conditions	38
1.6.4.3 Substitutions Effects on CCTO Electro-ceramic	39
1.7 AIM OF THE PRESENT STUDY	42

Chapter-2 MATERIALS AND METHODS

45-58

2.1 INTRODUCTION	45
2.2 MATERIALS USED	45
2.3 PREPARATION OF VARIOUS RAW MATERIALS	46
2.3.1 Preparation of Ethylenadiaminetetraacetic Acid (EDTA)	
Solution	46
2.3.2 Preparation of Buffer Solution of pH 10	46
2.3.3 Preparation of Indicator (Eriochrome Black T) Solution	47
2.3.4 Preparation of Metal Nitrate Solution	47
2.4 ESTIMATION VARIOUS RAW MATERIALS	47
2 .4.1 Estimation of calcium ions in calcium nitrate solution	47
2.4.2 Estimation of copper ions in copper nitrate solution	48
2.4.3 Estimation of ferric ions in ferric nitrate solution	48
2.4.4 Estimation of magnesium ions in magnesium nitrate solution	48

2.4.5 Estimation of zinc ions in zinc nitrate solution	48
2.5 SYNTHESIS OF MATERIALS	49
2.5.1 Synthesis of Samples by Semi-wet Route	49
2.5.2 Calcination Process	51
2.5.3 Pressing and Sintering of Samples	51
2.6 CHARACTERIZATION OF MATERIALS	53
2.6.1 Thermal Analysis	53
2.6.2 X-Ray Diffraction Analysis (XRD)	53
2.6.3 Density and Porosity Measurements	54
2.6.4 Scanning Electron Microscopy (SEM) Analysis	54
2.6.5 Energy Dispersive X-ray Analysis (EDXS)	55
2.6.6 Atomic Force Microscopic Analysis	55
2.6.7 Transmission Electron Microscopy (TEM) Analysis	56
2.6.8 Dielectric and electrical Measurement	57

Chapter-3DIELECTRIC PROPERTIES OF Y2/3Cu3Ti4O12 CERAMICSYNTHESIZEDBY SEMI -WET ROUTE59-82

3.1	INTRODUCTION	59
3.2	RESULTD AND DISCUSSION	61
	3.2.1 Thermal Analysis	61
	3.2.2 X-Ray Diffraction Analysis	63
	3.2.3 Scanning Electron Microscopic and Energy Dispersive	
	X-ray Spectroscopic Studies	64
	3.2.4 Atomic Force Microscopic Study	66
	3.2.5 Transmission Electron Microscopic (TEM) Study	70
	3.2.6 P-E Loop measurement	72
	3.2.7 Dielectric and Electric Behavior	73
	3.2.8 Impedance Spectroscopic studies	77
	3.2.9 Modulus Spectroscopic studies	80
3.3 (CONCLUSION	82

Chapter-4DIELECTRIC PROPERTIES OF Y1/3La1/3Cu3Ti4O12CERAMIC SYNTHESIZED BY SEMI-WET ROUTE83-103

4.1	INTRODUCTION	83
4.2	RESULTS AND DISCUSSION	84
	4.2.1 Thermal Analysis	84
	4.2.2 X-Ray Diffraction Analysis	86
	4.2.3 Scanning Electron Microscopic and Energy Dispersive	87
	X-ray Spectroscopic (EDX) Studies	
	4.2.4 Atomic Force Microscopic Study	89
	4.2.5 Transmission Electron Microscopy	93
	4.2.6 Dielectric and Electric Behavior	93
	4.2.7 Impedance spectroscopic studies	98
4.3	CONCLUSION	103

Chapter-5 DIELECTRIC PROPERTIES OF $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10, 0.20 and 0.30) SYNTHESIZED BY SEMI-WET ROUTE 104-137

5.1 INTRODUCTION	104
5.2 RESULTS AND DISCUSSION	105
5.2.1 Thermal Analysis	105
5.2.2 X-Ray Diffraction Analysis	106
5.2.3 Scanning Electron Microscopic and Energy Dispersive	108
X-ray Spectroscopic (EDX) Studies	
5.2.4 Atomic Force Microscopic (AFM) Studies	112
5.2.5 Transmission Electron Microscopy	116
5.2.6 P.E. Loop measurement	118
5.2.7 Dielectric and Electric Behavior	119
5.2.8 Impedance spectroscopic studies	131
5.2.9 Modulus spectroscopic studies	135
5.2 CONCLUSION	137

Chapter-6 DIELECTRIC PROPERTIES OF Y_{2/3}Cu₃Ti_{4-x}Fe_xO₁₂ (x = 0.0.5, 0.10, 0.15, 0.20) SYNTHESIZED BY SEMI-WET ROUTE

6.1 INTRODUCTION	138
6.2 RESULTS AND DISCUSSION	140
6.2.1 Thermal analysis	140
6.2.2 X-Ray Diffraction Analysis	141
6.2.3 Scanning Electron Microscopic and Energy Dispersive	144
X-ray Spectroscopic (EDX) Studies	
6.2.4 Atomic Force Microscopic Study	149
6.2.5 Transmission Electron Microscopy	153
6.2.6 P.E. Loop measurement	154
6.2.7 Dielectric and Electric Behavior	155
6.2.8 Impedance Spectroscopic Studies	161
6.2.10 Modulus spectroscopic studies	165
6.2.10 Study of AC Conductivity	167
6.3 CONCLUSION	172

Chapter-7 CONCLUSIONS AND FUTURE SCOPE	173-176
7.1. CONCLUSIONS	173
7.2. FUTURE SCOPE	175
REFERENCES	206
List of Publications	

List of Papers Presented in Conferences

Curriculum Vitae

138-172

List of abbreviations	List	of	abb	revia	tions
-----------------------	------	----	-----	-------	-------

Ξ

IC	:	Integrated Circuits
VLSI	:	Very Large-scale Integration
ULSI	:	Ultra-large scale integration
BT	:	BaTiO ₃
PMN	:	$PbMg_{1/3}Nb_{2/3}O_{3-x}$
PZN	:	$PbZn_{1/3}Nb_{2/3}O_{3-x}$
PLZT	:	$Pb_{1-x}La_x(Zr_{1-y}Ti_y)O_3$
ССТО	:	Calcium Cooper Titanate (CaCu ₃ Ti ₄ O ₁₂)
YCYO	:	Yttrium Copper Titanate (Y _{2/3} Cu ₃ Ti ₄ O ₁₂)
YLCTO	:	Yttrium Lanthanum Copper Titanate (Y _{1/3} La _{1/3} Cu ₃ Ti ₄ O ₁₂)
YCZTO	:	Yttrium Copper Titanate ($Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$)
YCTFO	:	Yttrium Copper Titanate ($Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$)
3	:	permittivity or dielectric constant
*33	:	Complex Quantity of dielectric constant
ϵ'	:	real components of dielectric constant
ϵ''	:	imaginary components of dielectric constant
i	:	an imaginary number such that $i=\sqrt{-1}$
εο	:	permittivity or dielectric constant of free space
		$(\epsilon_o = 8.854 \times 10^{-12} \text{ F/m})$
ε _r	:	relative permittivity or dielectric constant of the material.
С	:	capacitance
F	:	Farad, a unit of capacitance.
$\tan\delta$:	dissipation factor or tangent loss
σ	:	electrical conductivity of a materials
f	:	frequency
DC	:	Direct Current
AC	:	Alternating Current
Р	:	Net polarization
Pelectronic	:	Electronic Polarization
Pionic	:	Ionic Polarization
P _{molecular}	:	Molecular Polarization

Pinterfacial	:	Interfacial Polarization
Hz	:	hertz, a unit of frequency
f	:	frequency
ω	:	angular frequency, $\omega = 2\pi f$
τ	:	Relaxation time
t	:	tolerance factor,
Å	:	angstrom, a unit of smallest length
R	:	Resistance
С	:	Capacitance
R _b	:	Resistance of bulk
C_{b}	:	Capacitance of bulk
$R_{\rm gb}$:	Resistance of grain boundary
$C_{\rm gb}$:	Capacitance of grain boundary
eV	:	electron Volt
TG A	:	Thermo-gravimetric Analysis
DTA	:	Differential Thermal Analysis
DTG	:	Differential Thermo-gravimetry
XRD	:	X-Ray Diffreaction
SEM	:	Scanning Electron Microscopy
EDX	:	Energy Dispersive X-Ray
TEM	:	Transmission Electron Microscopy
AFM	:	Atomic Force Microscopy

List of Figures

Figures No.		Description	
1.1	:	Some Ceramic capacitors	4
1.2	:	A parallel plate capacitor with an inserted dielectric	6
1.3	:	Typical response of the total polarizability of a crystal as a	9
		function of crystal as a function of electric field frequency	
		(Lasaga and Cygan, 1982)	
1.4	:	Relaxation spectra of dielectric constant (ϵ), conductivity,	12
		loss factor (ε ") simple relaxation process with a single	
		relaxation time.	
1.5	:	(a) A unit cell of ABO ₃ type cubic perovskite oxide	14
		(b) Corner sharing of [BO ₆] octahedra in perovskite	
		structure	
1.6	:	Zwitter ion of glycine molecule complexed with M^{n+}	22
1.7	:	Structural changes occurring at the three ferroelectric phase	23
		Transformations in BaTiO ₃ (Newnham, 1983)	
1.8	:	Crystal structure of CaCu ₃ Ti ₄ O ₁₂ (Subramanian et al., 2000).	31
1.9	:	An equivalent circuit of the Cole-Cole plots.	35
2.1	:	Flow chart for the synthesis of materials by semi-wet route	50
2.2	:	Schematic steps of processing and analysis of electro-	
		ceramic.	51
2.3	:	Schematic diagram of sample holder assembly used for	58
		measurement of dielectric parameters	
3.1	:	DTA/TGA curves for $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO) precursor	62
		powder.	
3.2	:	XRD patterns of YCTO ceramic sintered at 950 °C for 12h.	62
3.3	:	SEM micrographs of fractured surface of sintered	65
		$Y_{2/3}Cu_3Ti_4O_{12}$ ceramic.	
3.4	:	EDX spectra of pure $Y_{2/3}Cu_3Ti_4O_{12}$ ceramic sintered at 950 °C	66
		for 12h.	

3.5	:	(a) 2- dimensional AFM micrograph of thin film	68
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered Y _{2/3} Cu ₃ Ti ₄ O ₁₂ ceramic	
3.6	:	Different histograms for sintered $Y_{2/3}Cu_3Ti_4O_{12}$ ceramic	69
		exhibiting (a) Average size (b) Diameter of grains (c) Area	
		of grains and (d) Average 3- dimensional roughness.	
3.7	:	 (a) Bright field TEM micrographs (b) Corresponding Selected Area Electron diffraction Pattern of sintered 	71
3.8	•	P-E hysteresis loop of $Y_{2/2}Cu_2Ti_4O_{12}$ ceramic at 308 K	72
3.9	:	Variation of dielectric constant (ϵ') and loss tangent	74
		(tan δ) with temperature at different frequency for	
		sintered YCTO ceramic.	
3.10	:	Variation of (a) real part of dielectric constant (ε') and (b)	76
		imaginary part of dielectric constant (ε'') with frequency	
		at different temperature for sintered YCTO ceramic.	
3.11	:	Variation of $tan\delta$ with frequency at different temperature for	76
		sintered YCTO ceramic.	
3.12	:	The simplest equivalent circuit is a series of network of three parallel RC elements.	78
3.13	:	(a) Complex impedance plane plots (Z' vs Z'') (b) Variation of	78
		Z'' vs frequency at a few selected temperatures for	
		sintered YCTO ceramic.	
3.14	:	(a) Electric modulus plots (M' vs M") (b) Variation of M"	82
		with frequency at a few selected temperature for sintered	
		YCTO ceramic.	
4.1	:	DTA/TGA curves for $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO) precursor	85
		powder.	
4.2	:	XRD patterns of YLCTO ceramic sintered at 950 °C for 12h.	86

4.3	:	SEM micrographs of $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO) sintered at 950 °C for 12h.	88
4.4	:	EDX spectra of $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO) sintered at 950 °C for 12h.	88
4.5	:	(a) 2- dimensional AFM micrograph of thin film	91
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered Y _{1/3} La _{1/3} Cu ₃ Ti ₄ O ₁₂ ceramic	
4.6	:	Different histograms for sintered $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ ceramic	92
		exhibiting (a) Average size (b) Diameter of grains (c) Area	
		$Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ ceramic	
4.7	:	Bright Field TEM image of YLCTO ceramic sintered at 950 $^{\circ}$ C	93
		for 12h.	
4.8	:	Variation of dielectric constant (ε') and tangent loss (tan δ)	94
		with temperature at a different frequency for sintered	
		YLCTO ceramic.	
4.9	:	Plots of the real part of dielectric constant (ϵ') with	95
		the variation of frequency at a few selected temperatures	
		for sintered YLCTO ceramic.	
4.10	:	Variation of the imaginary part of dielectric constant (ϵ'')	96
		with frequency at a few selected temperatures for	
		sintered YLCTO ceramic.	
4.11	:	Variation of tangent loss (tan δ) with frequency at few selected	97
		temperature for sintered YLCTO ceramic.	
4.12	:	Impedance plane plots (Z' vs Z") of sintered YLCTO ceramic	99
		at a few selected temperatures (a) 308-348 K (b) 368-408 K	
		(c) 428-500 K.	
4.13	:	Extrapolation of Z' vs Z'' plot in the lower frequency range at	100
		room temperature (308 K) to get resistance of grain for	
		YLCTO ceramic.	

4.14	:	Variation of Z" with frequency at few selected temperatures	102
		(a) 308-348 K (b) 368-408 K (c) 428-500 K for sintered	
		YLCTO ceramic.	
5.1	:	Plots of TG/DTA/DTG curve for the precursor powder of	107
		$Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10) ceramic.	
5.2	:	X-ray diffraction patterns of $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ ceramic where (x	107
		$=0.10,0.20$ and 0.30) sintered at 950 $^\circ$ C for 12h.	
5.3	:	SEM micrographs of $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (<i>x</i> = 0.00, 0.10, 0.20	110
		and 0.30) ceramic sintered at 950 $^{\circ}$ C for 12h.	
5.4	:	EDX spectra of $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.00, 0.10, and 0.20)	111
		sintered at 950 °C for 12h	
5.5	:	(a) 2- dimensional AFM micrograph of thin film	114
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (<i>x</i> = 0.10) ceramic.	
5.6	:	Different histograms for sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10)	115
		ceramic exhibiting (a) Average size (b) Diameter of grains (c) Are	ea
		of grains and (d) Average 3 - dimensional roughness.	
5.7	:	Bright Field TEM images of Y _{2/3} Cu _{3-x} Zn _x Ti ₄ O ₁₂ ceramic	117
		with $x = 0.00, 0.10, 0.20$ and 0.30 sintered at 950 °C for 12h	
5.8	:	Polarization hysteresis loop of sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	118
		ceramic ($x = 0.10$).	
5.9(I)	:	Variation of dielectric constant (ϵ') and loss tangent (tan δ) vs	120
		temperature at few selected frequencies for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.00$ and 0.10) sintered at 950 °C for 12h.	
5.9(II)):	Plots of dielectric constant (ϵ') and loss tangent (tan δ) vs	121
		temperature at few selected frequencies for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.20$ and 0.30) sintered at 950 °C for 12h.	
5.10(I):	Variation of the real part of dielectric constant (ϵ') with	125
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.00$ and 0.10) sintered at 950 °C for 12h.	

5.10()	II):	Variation of the real part of dielectric constant (ϵ') with	126
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.20$ and 0.30) sintered at 950 °C for 12h.	
5.11(I):	Variation of imaginary part of dielectric constant (ϵ'') with	137
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.00$ and 0.10) sintered at 950 °C for 12h.	
5.11(II):	Variation of imaginary part of dielectric constant (ϵ'') with	128
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.20$ and 0.30) sintered at 950°C for 12h.	
5.12(1	I) :	Variation of tangent loss (tan δ) with frequency at few	129
		selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ ceramic	
		(x = 0.00 and 0.10) sintered at 950 °C for 12h.	
5.12(II) :	Variation of tangent loss (tan δ) with frequency at few	130
		selected Temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ ceramic	
		(x = 0.20 and 0.30) sintered at 950 °C for 12h.	
5.13	:	Complex impedance plane plots (Z' vs Z'') for $Y_{2/3}Cu_{3-}$	132
		$_{x}$ Zn _x Ti ₄ O ₁₂ (x = 0.10) ceramic at few selected temperature	
		for sintered YCZTO ceramic.	
5.14	:	Variation of Z" with frequency for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x =	132
		0.10) ceramic at few selected temperatures for sintered	
		YCZTO ceramic.	
5.15	:	Electric modulus plots for sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	136
		(x = 0.10) ceramic at a few selected temperature.	
5.16	:	Variation of M" vs frequency for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10)	136
		ceramic at a few selected temperatures.	
6.1	:	TG/DTA/DTG plots of precursor dry powder of	140
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.2	:	Powder X-ray diffraction patterns of Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂	142
		(x = 0.00, 0.05, 0.10, 0.15, 0.20) sintered at 1000 °C for 12h.	
6.3	:	Williamson-Hall Plot for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 10)	143
		ceramic.	
6.4	:	SEM micrographs of pure $Y_{2/3}Cu_3Ti_4O_{12}$ and	147
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ with $x = 0.00, 0.05, 0.10, 0.15, 0.20$	
		sintered at 1000 °C for 12h.	

6.5	:	EDX spectra of $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (a) $x = 0.00$, (b) $x = 0.05$, (c) $x = 0.10$, (d) $x = 0.15$ And (e) $x = 0.20$ sintered at 1000 °C for 12h.	148
6.6	:	(a) 2- dimensional AFM micrograph of thin film	151
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (<i>x</i> = 0.10) ceramic.	
6.7	:	Different histograms for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10)	152
		ceramic exhibiting (a) Average size (b) Diameter of grains (c) Are	a
		of grains and (d) Average 3 - dimensional roughness.	
6.8	:	Bright field TEM micrographs of sintered Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂	153
		ceramic (a) $x = 0.00$ (b) $x = 0.05$ (c) $x = 0.10$ (d) SEAD pattern	
		for $x = 0.10$.	
6.9	:	P-E hysteresis loop of $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ($x = 0.10$) ceramic at	155
		308 K.	
6.10	:	Variation of dielectric constant (ε') and loss tangent (tan δ)	157
		with temperature at 100 Hz frequency for sintered	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ceramic (x = 0.00, 0.05, 0.10, 0.15, 0.20).	
6.11	:	Variation of (a) real dielectric constant (ϵ ') and (b) imaginary	157
		dielectric constant (ϵ'') with frequency at 308 K for	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic.	
6.12	:	Variation of tand vs frequency at 308 K for Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂	158
		(x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic.	
6.13	:	Complex impedance plane plots (Z' vs Z'') at room	163
		Temperature (308 K) for sintered Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂ ceramic	
		(x = 0.00, 0.05, 0.10, 0.15, 0.20).	
6.14	:	Extrapolation of Z' vs Z'' plot in the lower frequency range at	164
		room temperature (308 K) to get resistance of grain for	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic.	
6.15	:	Variation of Z" with frequency at room temperature (308 K)	165
		for $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ceramic (x = 0.00, 0.05, 0.10, 0.15, 0.20).	

6.16	:	(a) Electric modulus plots (M' vs M") (b) Variation of M"	166
		with frequency selected temperature for sintered	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.17	:	Variation of conductivity with frequency at a few selected	168
		temperatures for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.18	:	Variation of frequency exponents $(s_1 \text{ and } s_2)$ with temperature	171
		for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.19	:	Plot of dc conductivity with inverse of temperature for	171
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic sintered at 1000 °C	
		for 12h.	

List of Tables

Table No.		Description Pag	
1.1	:	Perovskites and their dielectric constant	26
1.2	:	Few important applications of perovskite materials	27
2.1	:	Specification of the materials used	46
2.2	:	List of single-phase compositions prepared in various systems	52
		and their firing schedules	
3.1	:	Crystal structure, lattice parameter and unit cell volume of	64
		$Y_{2/3}Cu_3Ti_4O_{12}$ ceramic	
3.2	:	Percentage of elements in $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO) sintered	65
		ceramic.	
3.3	:	The surface roughness parameters of YCTO thin film obtained	70
		by 2D- and 3D- AFM-image mapping.	
3.4	:	The curve fitting results of variable power law for $Y_{2/3}Cu_3Ti_4O_{12}$. 75
		ceramic	
3.5	:	Calculated values of resistances and capacitances of grain and	79
		grain boundary at a few temperatures for sintered	
		Y _{2/3} Cu ₃ Ti ₄ O ₁₂ nano-ceramic.	
4.1	:	Crystal structure, lattice parameter and unit cell volume of	87
		Y _{1/3} La _{1/3} Cu ₃ Ti ₄ O ₁₂ ceramic	
4.2	:	The surface roughness parameters of $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ thin	92
		film obtained by 2D- and 3D- AFM-image mapping.	

5.1	:	Lattice parameter, unit cell volume and particle size obtained	108
		from XRD for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ where $(x = 0.00, 0.10, 0.20)$	
		and 0.30) ceramic	
5.2	:	The surface roughness parameters of YLCTO thin film	113
		obtained by 2D- and 3D- AFM-image mapping.	
5.3	:	Calculated values of resistances and capacitances of grain and	134
		grain boundary at a few temperatures for sintered	
		Y _{2/3} Cu ₃ Ti ₄ O ₁₂ nano-ceramic.	
6.1	:	Crystal structure, lattice parameter and unit cell volume of	144
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic	
6.2	:	Pellet Dimension, density and Porosity characteristic for	146
		different $Y_{2/3}Cu_{3-x}Ti_{4-x}Fe_xO_{12}$ ceramic sintered at 1000 °C for 12h.	
6.3	:	Atomic percentage and weight percentage of elements for	149
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ceramic (x = 0.00, 0.05, 0.10, 0.15, 0.20)	
		sintered at 1000 °C for 12 h.	
6.4	:	The surface roughness parameters of $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x =	152
		0.10) thin film obtained by 2D- and 3D- AFM-image mapping.	
6.5	:	Calculated values of resistances of grain and grain boundary at	162
		room temperature (308 K) for $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$	
		(where <i>x</i> = 0.00, 0.50, 0.10, 0.15, 0.20) nano-ceramic sintered	
		at 1000 °C for 12h.	
6.6	:	Strength of polarizability (A & B) and frequency exponent (s_1	170
		and s ₂) of sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	