Copyright © Indian Institute of Technology (Banaras Hindu University) Varanasi-221005, India. 2016 All rights reserved.

Forwarded

Prof. M. M. Síngh

Co-supervísor

Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi – 221005, India.

Prof. K.D. Mandal

Supervísor

Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi – 221005, India.

Prof. R. B. Rastogí

Head

Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi – 221005, India.

I, Mrs. Sunita Sharma, research scholar under the supervision of Prof. K. D. Mandal, Department of Chemistry, Indian Institute of Technology (BHU) Varanasi give undertaking that the thesis entitled "Dielectric Properties of $Y_{2/3}Cu_3Ti_4O_{12}$ and Effect of Doping at its Different sites" submitted by me for the degree of Doctor of Philosophy is a record of first-hand research work carried out by me during the period of study.

I avail myself to responsibility such as an act will be taken on the behalf of me, mistakes, errors of facts, and misinterpretation are of course entirely my own.

Date.....

Place: Varanasi

(Mrs. Sunita Sharma)

I, Mrs. Sunita Sharma certify that the work embodies in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of Prof. K D. Mandal and co-supervision of Prof. M. M. Singh, Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi for a period of approximately 4 years and 10 months from August, 2011 to June, 2016. The matter embodied in this Ph.D. thesis has not been submitted for the award of any other degree / diploma.

I declare that I have faithfully acknowledged, given credit to and referred to the research workers wherever their works have been cited in the text and the body of the thesis. I further certify that I have not wilfully lifted up some other's works, para, text, data, results, etc. reported in the journals, books, magazines, reports, dissertations, thesis, etc., or available at websites and included them in this Ph.D. thesis and cited as my own work.

Date:

Place : Varanasi

(Mrs. Sunita Sharma)

Certificate from the Supervisor/Co-supervisor

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

(Prof. M. M. Singh)

(Prof. K, D. Mandal)

Co-supervisor

Supervisor

(Prof. R. B. Rastogi)

Head

This is to certify that Mrs. Sunita Sharma, a bonafide research scholar of Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi has successfully completed the course work / comprehensive examination requirement which is a part of her Ph.D. programme.

Date: Place: Varanasi

Head Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi

This is to certify that Mrs. Sunita Sharma, a bonafide research scholar of Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, has successfully completed the pre-submission seminar requirement on the topic "Dielectric Properties of $Y_{2/3}Cu_3Ti_4O_{12}$ and Effect of Doping at its Different sites" on dated 23-02-2016 which is a part of this Ph.D. programme.

Date: Place: Varanasi (Prof. K, D. Mandal) Supervisor (Prof. M. M. Singh) Co-Supervisor

(Prof. R. B. Rastogi) Head

Copyright Transfer Certificate

Title of the Thesis:"Dielectric Properties of $Y_{2/3}Cu_3Ti_4O_{12}$ and
Effect of Doping at its Different Sites".

Candidate's Name: Mrs. Sunita Sharma

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

(Mrs. Sunita Sharma)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and Institute's / University's copyright notice are indicated.

Contents

List of Abbreviations List of Figures List of Table Preface			vi-vii viii-xiv xv-xvi xvii-xxiv	
Chapter-1	INTRODUCTION AND LITERATURE REVIEW	1-44		
1.1SEMICO	NDUCTOR TECHNOLOGY		1	
1.2 DIELEC	TRICS : OPTIONS FOR EMBEDDED CAPACITO	ORS	3	
1.2.1 Diele	ectric Ceramic Material: An Overview		4	
1.2.1	.1 Dielectric Loss		7	
1.2.1	.2 Dielectric Strength		8	
1.2.1	.3 Polarization		8	
1.2.1	.4 Debye Relations		10	
1.2.2 Cond	luction Losses and Degradation		12	
1.3 PEROVSE	KITE OXIDES: A GENERAL OVERVIEW		13	
1.3.1 Differe	ent Types of Perovskite Oxides		17	
1.3.2 Substit	tution in Perovskites		18	
1.3.2.1	Independent Isovalent substitution		19	
1.3.2.2	Independent Heterovalent substitutions		19	
1.3.2.3	Valence compensated substitutions		20	
1.3.3 Differ	ent Synthesis Routes for preparation of Perovskites		20	
1.3.4 Some]	Important Perovskites Exhibiting High Dielectric Constant		23	
1.3.4.1	Barium Titanate (BaTiO ₃)		23	
1.3.4.2	Calcium-Titanate (CaTiO ₃)		24	
1.3.4.3	Strontium Titanate (SrTiO ₃),		24	
1.3.5 Applica	ation of Perovskite		25	
1.4 ACu ₃ Ti ₄ O	12 TYPES OF MATERIALS		28	
1.5 <u>CALCIUN</u>	<u>A COPPER TITANATE</u> (CaCu ₃ Ti ₄ O ₁₂)		28	

1.6 LITERATURE REVIEW	29
1.6.1 Advantage of CaCu ₃ Ti ₄ O ₁₂ over BaTiO ₃	29
1.6.2 Crystal Structure of CaCu ₃ Ti ₄ O ₁₂ (CCTO)	30
1.6.3 Origin of High Dielectric Constant in CaCu ₃ Ti ₄ O ₁₂	31
1.6.3.1 Intrinsic factors: atomic structure aspects	32
1.6.3.2 Extrinsic factors: Microstructure aspects	33
1.6.3.2 (A) Single crystal of $CaCu_3Ti_4O_{12}$	33
1.6.3.2 (B) Internal barrier layer capacitor (IBLC) model	34
1.6.3.2 (C) Electrode and sample contact effects	35
1.6.3.2 (D) Interfacial polarization effect: Maxwell- Wagner model	35
1.6.4 HOW TO GET HIGH DIELECTRIC CONSTANT AND LOW	
LOSS IN CCTO	37
1.6.4.1 By Using Different Synthetic Routes	37
1.6.4.2 Processing Conditions	38
1.6.4.3 Substitutions Effects on CCTO Electro-ceramic	39
1.7 AIM OF THE PRESENT STUDY	42

Chapter-2 MATERIALS AND METHODS

45-58

2.1 INTRODUCTION	45
2.2 MATERIALS USED	45
2.3 PREPARATION OF VARIOUS RAW MATERIALS	46
2.3.1 Preparation of Ethylenadiaminetetraacetic Acid (EDTA)	
Solution	46
2.3.2 Preparation of Buffer Solution of pH 10	46
2.3.3 Preparation of Indicator (Eriochrome Black T) Solution	47
2.3.4 Preparation of Metal Nitrate Solution	47
2.4 ESTIMATION VARIOUS RAW MATERIALS	47
2 .4.1 Estimation of calcium ions in calcium nitrate solution	47
2.4.2 Estimation of copper ions in copper nitrate solution	48
2.4.3 Estimation of ferric ions in ferric nitrate solution	48
2.4.4 Estimation of magnesium ions in magnesium nitrate solution	48

2.4.5 Estimation of zinc ions in zinc nitrate solution	48
2.5 SYNTHESIS OF MATERIALS	49
2.5.1 Synthesis of Samples by Semi-wet Route	49
2.5.2 Calcination Process	51
2.5.3 Pressing and Sintering of Samples	51
2.6 CHARACTERIZATION OF MATERIALS	53
2.6.1 Thermal Analysis	53
2.6.2 X-Ray Diffraction Analysis (XRD)	53
2.6.3 Density and Porosity Measurements	54
2.6.4 Scanning Electron Microscopy (SEM) Analysis	54
2.6.5 Energy Dispersive X-ray Analysis (EDXS)	55
2.6.6 Atomic Force Microscopic Analysis	55
2.6.7 Transmission Electron Microscopy (TEM) Analysis	56
2.6.8 Dielectric and electrical Measurement	57

Chapter-3DIELECTRIC PROPERTIES OF Y2/3Cu3Ti4O12 CERAMICSYNTHESIZEDBY SEMI -WET ROUTE59-82

3.1	INTRODUCTION	59
3.2	RESULTD AND DISCUSSION	61
	3.2.1 Thermal Analysis	61
	3.2.2 X-Ray Diffraction Analysis	63
	3.2.3 Scanning Electron Microscopic and Energy Dispersive	
	X-ray Spectroscopic Studies	64
	3.2.4 Atomic Force Microscopic Study	66
	3.2.5 Transmission Electron Microscopic (TEM) Study	70
	3.2.6 P-E Loop measurement	72
	3.2.7 Dielectric and Electric Behavior	73
	3.2.8 Impedance Spectroscopic studies	77
	3.2.9 Modulus Spectroscopic studies	80
3.3 (CONCLUSION	82

Chapter-4DIELECTRIC PROPERTIES OF Y1/3La1/3Cu3Ti4O12CERAMIC SYNTHESIZED BY SEMI-WET ROUTE83-103

4.1	INTRODUCTION	83
4.2	RESULTS AND DISCUSSION	84
	4.2.1 Thermal Analysis	84
	4.2.2 X-Ray Diffraction Analysis	86
	4.2.3 Scanning Electron Microscopic and Energy Dispersive	87
	X-ray Spectroscopic (EDX) Studies	
	4.2.4 Atomic Force Microscopic Study	89
	4.2.5 Transmission Electron Microscopy	93
	4.2.6 Dielectric and Electric Behavior	93
	4.2.7 Impedance spectroscopic studies	98
4.3	CONCLUSION	103

Chapter-5 DIELECTRIC PROPERTIES OF $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10, 0.20 and 0.30) SYNTHESIZED BY SEMI-WET ROUTE 104-137

5.1 INTRODUCTION	104
5.2 RESULTS AND DISCUSSION	105
5.2.1 Thermal Analysis	105
5.2.2 X-Ray Diffraction Analysis	106
5.2.3 Scanning Electron Microscopic and Energy Dispersive	108
X-ray Spectroscopic (EDX) Studies	
5.2.4 Atomic Force Microscopic (AFM) Studies	112
5.2.5 Transmission Electron Microscopy	116
5.2.6 P.E. Loop measurement	118
5.2.7 Dielectric and Electric Behavior	119
5.2.8 Impedance spectroscopic studies	131
5.2.9 Modulus spectroscopic studies	135
5.2 CONCLUSION	137

Chapter-6 DIELECTRIC PROPERTIES OF Y_{2/3}Cu₃Ti_{4-x}Fe_xO₁₂ (x = 0.0.5, 0.10, 0.15, 0.20) SYNTHESIZED BY SEMI-WET ROUTE

6.1 INTRODUCTION	138
6.2 RESULTS AND DISCUSSION	140
6.2.1 Thermal analysis	140
6.2.2 X-Ray Diffraction Analysis	141
6.2.3 Scanning Electron Microscopic and Energy Dispersive	144
X-ray Spectroscopic (EDX) Studies	
6.2.4 Atomic Force Microscopic Study	149
6.2.5 Transmission Electron Microscopy	153
6.2.6 P.E. Loop measurement	154
6.2.7 Dielectric and Electric Behavior	155
6.2.8 Impedance Spectroscopic Studies	161
6.2.10 Modulus spectroscopic studies	165
6.2.10 Study of AC Conductivity	167
6.3 CONCLUSION	172

Chapter-7 CONCLUSIONS AND FUTURE SCOPE	173-176
7.1. CONCLUSIONS	173
7.2. FUTURE SCOPE	175
REFERENCES	206
List of Publications	

List of Papers Presented in Conferences

Curriculum Vitae

138-172

List of abbreviations	List	of	abb	revia	tions
-----------------------	------	----	-----	-------	-------

Ξ

IC	:	Integrated Circuits
VLSI	:	Very Large-scale Integration
ULSI	:	Ultra-large scale integration
BT	:	BaTiO ₃
PMN	:	$PbMg_{1/3}Nb_{2/3}O_{3-x}$
PZN	:	$PbZn_{1/3}Nb_{2/3}O_{3-x}$
PLZT	:	$Pb_{1-x}La_x(Zr_{1-y}Ti_y)O_3$
ССТО	:	Calcium Cooper Titanate (CaCu ₃ Ti ₄ O ₁₂)
YCYO	:	Yttrium Copper Titanate (Y _{2/3} Cu ₃ Ti ₄ O ₁₂)
YLCTO	:	Yttrium Lanthanum Copper Titanate (Y _{1/3} La _{1/3} Cu ₃ Ti ₄ O ₁₂)
YCZTO	:	Yttrium Copper Titanate ($Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$)
YCTFO	:	Yttrium Copper Titanate ($Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$)
3	:	permittivity or dielectric constant
*33	:	Complex Quantity of dielectric constant
ϵ'	:	real components of dielectric constant
ϵ''	:	imaginary components of dielectric constant
i	:	an imaginary number such that $i=\sqrt{-1}$
εο	:	permittivity or dielectric constant of free space
		$(\epsilon_o = 8.854 \times 10^{-12} \text{ F/m})$
ε _r	:	relative permittivity or dielectric constant of the material.
С	:	capacitance
F	:	Farad, a unit of capacitance.
$\tan\delta$:	dissipation factor or tangent loss
σ	:	electrical conductivity of a materials
f	:	frequency
DC	:	Direct Current
AC	:	Alternating Current
Р	:	Net polarization
Pelectronic	:	Electronic Polarization
Pionic	:	Ionic Polarization
P _{molecular}	:	Molecular Polarization

Pinterfacial	:	Interfacial Polarization
Hz	:	hertz, a unit of frequency
f	:	frequency
ω	:	angular frequency, $\omega = 2\pi f$
τ	:	Relaxation time
t	:	tolerance factor,
Å	:	angstrom, a unit of smallest length
R	:	Resistance
С	:	Capacitance
R _b	:	Resistance of bulk
C_{b}	:	Capacitance of bulk
$R_{\rm gb}$:	Resistance of grain boundary
$C_{\rm gb}$:	Capacitance of grain boundary
eV	:	electron Volt
TG A	:	Thermo-gravimetric Analysis
DTA	:	Differential Thermal Analysis
DTG	:	Differential Thermo-gravimetry
XRD	:	X-Ray Diffreaction
SEM	:	Scanning Electron Microscopy
EDX	:	Energy Dispersive X-Ray
TEM	:	Transmission Electron Microscopy
AFM	:	Atomic Force Microscopy

List of Figures

Figures No.		Description Pag	Page No.	
1.1	:	Some Ceramic capacitors	4	
1.2	:	A parallel plate capacitor with an inserted dielectric	6	
1.3	:	Typical response of the total polarizability of a crystal as a	9	
		function of crystal as a function of electric field frequency		
		(Lasaga and Cygan, 1982)		
1.4	:	Relaxation spectra of dielectric constant (ϵ), conductivity,	12	
		loss factor (ε ") simple relaxation process with a single		
		relaxation time.		
1.5	:	(a) A unit cell of ABO ₃ type cubic perovskite oxide	14	
		(b) Corner sharing of [BO ₆] octahedra in perovskite		
		structure		
1.6	:	Zwitter ion of glycine molecule complexed with M^{n+}	22	
1.7	:	Structural changes occurring at the three ferroelectric phase	23	
		Transformations in BaTiO ₃ (Newnham, 1983)		
1.8	:	Crystal structure of CaCu ₃ Ti ₄ O ₁₂ (Subramanian et al., 2000).	31	
1.9	:	An equivalent circuit of the Cole-Cole plots.	35	
2.1	:	Flow chart for the synthesis of materials by semi-wet route	50	
2.2	:	Schematic steps of processing and analysis of electro-		
		ceramic.	51	
2.3	:	Schematic diagram of sample holder assembly used for	58	
		measurement of dielectric parameters		
3.1	:	DTA/TGA curves for $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO) precursor	62	
		powder.		
3.2	:	XRD patterns of YCTO ceramic sintered at 950 °C for 12h.	62	
3.3	:	SEM micrographs of fractured surface of sintered	65	
		$Y_{2/3}Cu_3Ti_4O_{12}$ ceramic.		
3.4	:	EDX spectra of pure $Y_{2/3}Cu_3Ti_4O_{12}$ ceramic sintered at 950 °C	66	
		for 12h.		

3.5	:	(a) 2- dimensional AFM micrograph of thin film	68
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered Y _{2/3} Cu ₃ Ti ₄ O ₁₂ ceramic	
3.6	:	Different histograms for sintered $Y_{2/3}Cu_3Ti_4O_{12}$ ceramic	69
		exhibiting (a) Average size (b) Diameter of grains (c) Area	
		of grains and (d) Average 3- dimensional roughness.	
3.7	:	 (a) Bright field TEM micrographs (b) Corresponding Selected Area Electron diffraction Pattern of sintered 	71
3.8	•	P-E hysteresis loop of $Y_{2/2}Cu_2Ti_4O_{12}$ ceramic at 308 K	72
3.9	:	Variation of dielectric constant (ϵ') and loss tangent	74
		(tan δ) with temperature at different frequency for	
		sintered YCTO ceramic.	
3.10	:	Variation of (a) real part of dielectric constant (ε') and (b)	76
		imaginary part of dielectric constant (ε'') with frequency	
		at different temperature for sintered YCTO ceramic.	
3.11	:	Variation of $tan\delta$ with frequency at different temperature for	76
		sintered YCTO ceramic.	
3.12	:	The simplest equivalent circuit is a series of network of three parallel RC elements.	78
3.13	:	(a) Complex impedance plane plots (Z' vs Z'') (b) Variation of	78
		Z'' vs frequency at a few selected temperatures for	
		sintered YCTO ceramic.	
3.14	:	(a) Electric modulus plots (M' vs M") (b) Variation of M"	82
		with frequency at a few selected temperature for sintered	
		YCTO ceramic.	
4.1	:	DTA/TGA curves for $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO) precursor	85
		powder.	
4.2	:	XRD patterns of YLCTO ceramic sintered at 950 °C for 12h.	86

4.3	:	SEM micrographs of $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO) sintered at 950 °C for 12h.	88
4.4	:	EDX spectra of $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO) sintered at 950 °C for 12h.	88
4.5	:	(a) 2- dimensional AFM micrograph of thin film	91
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered Y _{1/3} La _{1/3} Cu ₃ Ti ₄ O ₁₂ ceramic	
4.6	:	Different histograms for sintered $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ ceramic	92
		exhibiting (a) Average size (b) Diameter of grains (c) Area	
		$Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ ceramic	
4.7	:	Bright Field TEM image of YLCTO ceramic sintered at 950 $^{\circ}$ C	93
		for 12h.	
4.8	:	Variation of dielectric constant (ε') and tangent loss (tan δ)	94
		with temperature at a different frequency for sintered	
		YLCTO ceramic.	
4.9	:	Plots of the real part of dielectric constant (ϵ') with	95
		the variation of frequency at a few selected temperatures	
		for sintered YLCTO ceramic.	
4.10	:	Variation of the imaginary part of dielectric constant (ϵ'')	96
		with frequency at a few selected temperatures for	
		sintered YLCTO ceramic.	
4.11	:	Variation of tangent loss (tan δ) with frequency at few selected	97
		temperature for sintered YLCTO ceramic.	
4.12	:	Impedance plane plots (Z' vs Z") of sintered YLCTO ceramic	99
		at a few selected temperatures (a) 308-348 K (b) 368-408 K	
		(c) 428-500 K.	
4.13	:	Extrapolation of Z' vs Z'' plot in the lower frequency range at	100
		room temperature (308 K) to get resistance of grain for	
		YLCTO ceramic.	

4.14	:	Variation of Z" with frequency at few selected temperatures	102
		(a) 308-348 K (b) 368-408 K (c) 428-500 K for sintered	
		YLCTO ceramic.	
5.1	:	Plots of TG/DTA/DTG curve for the precursor powder of	107
		$Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10) ceramic.	
5.2	:	X-ray diffraction patterns of $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ ceramic where (x	107
		$=0.10,0.20$ and 0.30) sintered at 950 $^\circ$ C for 12h.	
5.3	:	SEM micrographs of $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (<i>x</i> = 0.00, 0.10, 0.20	110
		and 0.30) ceramic sintered at 950 $^{\circ}$ C for 12h.	
5.4	:	EDX spectra of $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.00, 0.10, and 0.20)	111
		sintered at 950 °C for 12h	
5.5	:	(a) 2- dimensional AFM micrograph of thin film	114
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (<i>x</i> = 0.10) ceramic.	
5.6	:	Different histograms for sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10)	115
		ceramic exhibiting (a) Average size (b) Diameter of grains (c) Are	ea
		of grains and (d) Average 3 - dimensional roughness.	
5.7	:	Bright Field TEM images of Y _{2/3} Cu _{3-x} Zn _x Ti ₄ O ₁₂ ceramic	117
		with $x = 0.00, 0.10, 0.20$ and 0.30 sintered at 950 °C for 12h	
5.8	:	Polarization hysteresis loop of sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	118
		ceramic ($x = 0.10$).	
5.9(I)	:	Variation of dielectric constant (ϵ') and loss tangent (tan δ) vs	120
		temperature at few selected frequencies for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.00$ and 0.10) sintered at 950 °C for 12h.	
5.9(II)):	Plots of dielectric constant (ϵ') and loss tangent (tan δ) vs	121
		temperature at few selected frequencies for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.20$ and 0.30) sintered at 950 °C for 12h.	
5.10(I):	Variation of the real part of dielectric constant (ϵ') with	125
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.00$ and 0.10) sintered at 950 °C for 12h.	

5.10()	II):	Variation of the real part of dielectric constant (ϵ') with	126
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.20$ and 0.30) sintered at 950 °C for 12h.	
5.11(I):	Variation of imaginary part of dielectric constant (ϵ'') with	137
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.00$ and 0.10) sintered at 950 °C for 12h.	
5.11(II):	Variation of imaginary part of dielectric constant (ϵ'') with	128
		frequency at few selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	
		ceramic ($x = 0.20$ and 0.30) sintered at 950°C for 12h.	
5.12(1	I) :	Variation of tangent loss (tan δ) with frequency at few	129
		selected temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ ceramic	
		(x = 0.00 and 0.10) sintered at 950 °C for 12h.	
5.12(II) :	Variation of tangent loss (tan δ) with frequency at few	130
		selected Temperatures for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ ceramic	
		(x = 0.20 and 0.30) sintered at 950 °C for 12h.	
5.13	:	Complex impedance plane plots (Z' vs Z'') for $Y_{2/3}Cu_{3-}$	132
		$_{x}$ Zn _x Ti ₄ O ₁₂ (x = 0.10) ceramic at few selected temperature	
		for sintered YCZTO ceramic.	
5.14	:	Variation of Z" with frequency for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x =	132
		0.10) ceramic at few selected temperatures for sintered	
		YCZTO ceramic.	
5.15	:	Electric modulus plots for sintered $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$	136
		(x = 0.10) ceramic at a few selected temperature.	
5.16	:	Variation of M" vs frequency for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (x = 0.10)	136
		ceramic at a few selected temperatures.	
6.1	:	TG/DTA/DTG plots of precursor dry powder of	140
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.2	:	Powder X-ray diffraction patterns of Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂	142
		(x = 0.00, 0.05, 0.10, 0.15, 0.20) sintered at 1000 °C for 12h.	
6.3	:	Williamson-Hall Plot for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 10)	143
		ceramic.	
6.4	:	SEM micrographs of pure $Y_{2/3}Cu_3Ti_4O_{12}$ and	147
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ with $x = 0.00, 0.05, 0.10, 0.15, 0.20$	
		sintered at 1000 °C for 12h.	

6.5	:	EDX spectra of $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (a) $x = 0.00$, (b) $x = 0.05$,	148
		(c) $x = 0.10$, (d) $x = 0.15$ And (e) $x = 0.20$ sintered at	
		1000 °C for 12h.	
6.6	:	(a) 2- dimensional AFM micrograph of thin film	151
		(b) 2-dimensional AFM micrograph showing grain	
		boundary (c) 3- dimensional AFM micrograph of	
		sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (<i>x</i> = 0.10) ceramic.	
6.7	:	Different histograms for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10)	152
		ceramic exhibiting (a) Average size (b) Diameter of grains (c) Are	a
		of grains and (d) Average 3 - dimensional roughness.	
6.8	:	Bright field TEM micrographs of sintered Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂	153
		ceramic (a) $x = 0.00$ (b) $x = 0.05$ (c) $x = 0.10$ (d) SEAD pattern	
		for $x = 0.10$.	
6.9	:	P-E hysteresis loop of $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ($x = 0.10$) ceramic at	155
		308 K.	
6.10	:	Variation of dielectric constant (ϵ') and loss tangent (tan δ)	157
		with temperature at 100 Hz frequency for sintered	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ceramic (x = 0.00, 0.05, 0.10, 0.15, 0.20).	
6.11	:	Variation of (a) real dielectric constant (ϵ) and (b) imaginary	157
		dielectric constant (ϵ'') with frequency at 308 K for	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic.	
6.12	:	Variation of tand vs frequency at 308 K for Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂	158
		(x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic.	
6.13	:	Complex impedance plane plots (Z' vs Z") at room	163
		Temperature (308 K) for sintered Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂ ceramic	
		(x = 0.00, 0.05, 0.10, 0.15, 0.20).	
6.14	:	Extrapolation of Z' vs Z'' plot in the lower frequency range at	164
		room temperature (308 K) to get resistance of grain for	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic.	
6.15	:	Variation of Z" with frequency at room temperature (308 K)	165
		for $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ceramic (x = 0.00, 0.05, 0.10, 0.15, 0.20).	

6.16	:	(a) Electric modulus plots (M' vs M") (b) Variation of M"	166
		with frequency selected temperature for sintered	
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.17	:	Variation of conductivity with frequency at a few selected	168
		temperatures for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.18	:	Variation of frequency exponents $(s_1 \text{ and } s_2)$ with temperature	171
		for sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	
6.19	:	Plot of dc conductivity with inverse of temperature for	171
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic sintered at 1000 °C	
		for 12h.	

List of Tables

Table No.		Description Pa	
1.1	:	Perovskites and their dielectric constant	26
1.2	:	Few important applications of perovskite materials	27
2.1	:	Specification of the materials used	46
2.2	:	List of single-phase compositions prepared in various systems	52
		and their firing schedules	
3.1	:	Crystal structure, lattice parameter and unit cell volume of	64
		$Y_{2/3}Cu_3Ti_4O_{12}$ ceramic	
3.2	:	Percentage of elements in $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO) sintered	65
		ceramic.	
3.3	:	The surface roughness parameters of YCTO thin film obtained	70
		by 2D- and 3D- AFM-image mapping.	
3.4	:	The curve fitting results of variable power law for $Y_{2/3}Cu_3Ti_4O_{12}$. 75
		ceramic	
3.5	:	Calculated values of resistances and capacitances of grain and	79
		grain boundary at a few temperatures for sintered	
		Y _{2/3} Cu ₃ Ti ₄ O ₁₂ nano-ceramic.	
4.1	:	Crystal structure, lattice parameter and unit cell volume of	87
		Y _{1/3} La _{1/3} Cu ₃ Ti ₄ O ₁₂ ceramic	
4.2	:	The surface roughness parameters of $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ thin	92
		film obtained by 2D- and 3D- AFM-image mapping.	

5.1	:	Lattice parameter, unit cell volume and particle size obtained	108
		from XRD for $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ where $(x = 0.00, 0.10, 0.20)$	
		and 0.30) ceramic	
5.2	:	The surface roughness parameters of YLCTO thin film	113
		obtained by 2D- and 3D- AFM-image mapping.	
5.3	:	Calculated values of resistances and capacitances of grain and	134
		grain boundary at a few temperatures for sintered	
		Y _{2/3} Cu ₃ Ti ₄ O ₁₂ nano-ceramic.	
6.1	:	Crystal structure, lattice parameter and unit cell volume of	144
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic	
6.2	:	Pellet Dimension, density and Porosity characteristic for	146
		different $Y_{2/3}Cu_{3-x}Ti_{4-x}Fe_xO_{12}$ ceramic sintered at 1000 °C for 12h.	
6.3	:	Atomic percentage and weight percentage of elements for	149
		$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ ceramic (x = 0.00, 0.05, 0.10, 0.15, 0.20)	
		sintered at 1000 °C for 12 h.	
6.4	:	The surface roughness parameters of $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x =	152
		0.10) thin film obtained by 2D- and 3D- AFM-image mapping.	
6.5	:	Calculated values of resistances of grain and grain boundary at	162
		room temperature (308 K) for $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$	
		(where <i>x</i> = 0.00, 0.50, 0.10, 0.15, 0.20) nano-ceramic sintered	
		at 1000 °C for 12h.	
6.6	:	Strength of polarizability (A & B) and frequency exponent (s_1	170
		and s ₂) of sintered $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (x = 0.10) ceramic.	

PREFACE

Electronic industries are in constant search of high performance dielectric materials exhibiting temperature and frequency-stability, colossal permittivity (ε_r > 1000) and sufficiently low dielectric loss. It facilitates miniaturization of high-energy-density storage devices such as Dynamic Random Access Memory (DRAM) devices, Multi Layer Ceramic Capacitors (MLCC) and many other electronic devices in automobile and aircraft. Traditional Pb(Zr_xTi_{1-x})O₃ and BaTiO₃-based ferroelectric materials exhibit high dielectric properties. However, their dielectric properties are strongly temperature-dependent due to phase transition at Curie temperature (Tc). Furthermore, lead-based materials are eco-unfriendly and harmful to health. Hence, it is necessary to find some non-ferroelectric materials with high dielectric constant to substitute these traditional materials.

ACu₃Ti₄O₁₂ family of compounds, discovered in 1967 and their crystal structure well established in 1979, could be considered as a substitute. In the tear 2000, it was reported for the first time that that CaCu₃Ti₄O₁₂ (CCTO) ceramic exhibits giant dielectric response. CCTO has a body-centred cubic perovskite-related structure having lattice parameter a =7.391Å. It shows typically high static dielectric constant value ($\varepsilon \sim 10^4$ for bulk and 10⁵ for single crystals) and moderately low dielectric loss (~ 0.10). This property remains practically independent of frequency (10^2 - 10^6 Hz) and shows good thermal stability without any phase transition in a wide range of temperature (100-600K) well as noteworthy nonlinear characteristics. These properties make it applicable in the fields of varistor devices, especially for miniaturized components. However, compared to commercial varistor ceramics, for e.g. ZnO varistors which is widely used, the nonlinear coefficient of CCTO is too low

and the dielectric loss is too high for miniaturized components. So far, the internal barrier layer capacitor (IBLC) model of Schottky-type potential barriers has been widely accepted to explain its admirable properties. Recently, the scientists have been carrying out researches to improve the performance of CCTO ceramics via tuning the microstructure, especially the grain boundary structure and its effective contribution towards the admirable response. The secondary phase addition has been established to be an effective method to control grain growth and grain boundary barrier of CCTO ceramics.

During the last decade, the studies on CCTO were focused mainly on two aspects: to optimize the dielectric properties and lower the dielectric loss of CCTO ceramics to realize practical application through doping as the first one and introducing a binary phase, using new preparation methods and so on as the second. The stoichiometry of constituents plays an important role in obtaining giant permittivity. Deviation from stoichiometry can result in the decrease of dielectric constant at lower frequencies. To discuss the effect of stoichiometry on dielectric properties, some dopants have been introduced into the CCTO structure. The B-site doping with donors like Nb⁵⁺ or acceptors like Fe³⁺ cations could decrease the value of the dielectric plateau due to an increase in grain boundary layer thickness, resulting in a lower grain boundary capacitance. The other aspect is to study the origin of giant dielectric properties. To explain the nature of the giant dielectric permittivity for CCTO, several interpretations have been proposed so far from both intrinsic and extrinsic viewpoints, and there still remain some controversies. The interpretations include fluctuations of lattice-distortion-induced dipoles in nanosize domains, electrode polarization effects due to different work functions of electrode and the sample, inhomogeneous conduction within the crystal due to the occurrence of defects in the grains, internal barrier layer capacitor (IBLC) effects originating from the insulating grain boundaries surrounding semiconducting grains, and intragrain insulating barrier effects. Among these, the IBLC effect has been widely used to interpret the giant dielectric constant of CCTO ceramics. The oxygen vacancies, CuO segregation and aliovalences of Ti and Cu ions were suggested to play important roles in the IBLC formation in CCTO ceramics.

In recent years, Y_{2/3}Cu₃Ti₄O₁₂ (YCTO) ceramics, as a member of the ACu₃Ti₄O₁₂ family, have been reported to exhibit a giant dielectric constant (ε_r > 1000) with a relatively low dielectric loss (0.033 at 1 kHz) and a good temperature stability. It seems that this material could be a promising candidate for commercial application in the future. Furthermore, it is quite interesting that YCTO with 1/3 vacancy at Y site represents a unique type of CaCu₃Ti₄O₁₂ (CCTO)-like oxides. Owing to the occurrence of 1/3 vacancy at Y site, the electrical properties of YCTO ceramics can be modulated more easily by impurity substitution. Based on the electrical neutrality, this 1/3 vacancy at Y site is suppressed gradually through the low valence ions doping. This will substantially affect the dielectric and electric behavior, rendering the study of this system more interesting. Unfortunately, till date, there are very few works concentrated on impurity substitution effects on the dielectric properties of YCTO ceramics. On the basis of the IBLC model, without the semiconducting grains there would be no high dielectric constant, and the increase of grain boundary resistance will induce an obvious decrease in the low-frequency dielectric loss. The insulating grain boundary and semiconducting grain of CCTO ceramics have been verified to be Cu-rich and Cu-deficient phase, respectively. As CCTO-like oxides, YCTO ceramics should also exhibit similar composition at grain

and grain boundary. An elemental substitution could effectively modify the electric properties both in grain and at grain boundary. The lattice distortion caused by the substitution ions with larger radius may improve the formation of Cu-rich and Ti-poor grain-boundary layer which can enhance the resistance of the grain boundaries. It is anticipated that the introduction of the doping of desired ions on different Y sites in YCTO ceramics would tune the resistance of grain and grain boundary at the same time it may decrease the dielectric loss. In fact, studies on YCTO system regarding methods of processing, sintering times, sintering temperatures, doping schemes as well as nature of dopants and their stoichiometric variations and its impact on various material properties has yet to be disclosed.

In the present exploratory work an attempt has been made to synthesize undoped and a few doped samples of $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO) material by semi-wet route which is in fact auto-combustion glycine-nitrate route. In semi wet route, solution of nitrates of all ions is taken except titanium which is used in solid form as TiO₂. The calculated amount of glycine, equivalent to metal ions, was added to the solution and heated. This method facilitates the synthesis of ceramic at relatively lower temperature and short duration. The mixing process is performed in a sol state. Each constituent ion is uniformly dispersed in the resulting mixture after removing organic matter by heating in air.

The aim of the present exploratory research work is to investigate (a) crystal structure (b) microstructure, (c) elemental analysis, (d) particle size and (e) dielectric characteristic of materials prepared by the semi-wet route in the following systems:

- (i) $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO)
- (ii) $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}$ (YLCTO)
- (iii) $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (YCZTO) (x = 0.10, 0.20, 0.30)

XX

(iv)
$$Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$$
 (YCTFO) (x = 0.05, 0.10, 0.15, 0.20)

The present thesis discusses the results of investigation on the above systems and it has been divided in to six chapters

Chapter I contains a brief introduction of the subject describing technical investigations reported in the field of perovskite oxides. This includes the effect of isovalent, heterovalent and valence compensated substitutions on the dielectric properties.

Chapter II describes the experimental techniques used for preparation and characterization of these perovskite oxide ceramics. The semi-wet route used for preparation of these materials has been described with the help of a flow chart. DTA/TGA has been used to characterize the materials that exhibit a weight change due to decomposition or dehydration. Thermo-grams of the precursor powder materials carried out in static air from room temperature to 1000 °C at a heating rate of 10 °C min⁻¹ are given. Powder X-ray diffraction and scanning electron microscopy have been used for study of crystal structure and microstructure of these materials respectively. Methods for density and porosity measurements have been described. Energy Dispersive X-ray spectroscopy (EDX) technique has been used for elemental analysis of the materials. Transmission Electron Microscopy (TEM) has been used for determination of particle size in the samples. Dielectric characteristics of all the samples were measured as a function of temperature (300-500 K) in the frequency range 100Hz-1MHz with the help of PSM 1735 (Newton's 4th limited U.K.) LCR Meter.

Chapter III contains the synthesis and characterization of the parent composition $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO). Pellets have been sintered at 950 °C for 12 hrs. Single-phase formation along with CuO as a minor secondary phase was confirmed by XRD. SEM micrograph exhibited the presence of bimodal grains of size ranging

from 1-2 μ m. The stoichiometry of synthesized samples was confirmed by EDX studies. Bright field TEM image clearly displays nano-crystalline particle which is supported by the presence of a few clear rings in the corresponding selected area electron diffraction pattern. The dielectric study of pure Y_{2/3}Cu₃Ti₄O₁₂ ceramic has been described in this chapter along with its rationalization with help of Impedance and modulus studies.

Chapter IV describes the microstructure and dielectric properties of the valence compensated YCTO ceramic obtained by partial substitution of lanthanum at yttrium site. A sample with composition $Y_{1/3}La_{1/3}Cu_3Ti_4O_{12}(YLCTO)$ was synthesized by the semi-wet route as the ionic radius of lanthanum (1.15 Å) is very close to that of ionic radius Y^{3+} (1.04 Å). X-ray diffraction studies confirmed the single-phase formation at 950 °C for 12 h. Scanning electron microscopy showed the grain size in the range of 1-2 µm. The particle size was also established by TEM analysis. The stoichiometry of the samples is confirmed by EDX studies. With increasing La^{3+} concentration in YCTO, dielectric constant of the samples decreases. A comparative dielectric study of YCTO and YLCTO has been described in this chapter.

Chapter V discusses the synthesis and characterization of valence compensated zinc doped $Y_{2/3}Cu_{3-x}Zn_xTi_4O_{12}$ (YCZTO) with x = 0.10, 0.20, 0.30 compositions as ionic radius of Zn²⁺ (0.74 Å) is very close to that of ionic radius of Cu²⁺ (0.73 Å). Intrinsic dielectric properties of this unusual cubic perovskite ceramic was rationalised with the help of impedance and modulus spectroscopic measurements. A logical correlation of dependence of dielectric properties on microstructure of YCZTO ceramic was investigated. TG/DTA, XRD, SEM, TEM were employed to disclose its microstructural details. YCZTO ceramic exhibits high dielectric constant (ϵ ~18522) at 308 K. Dielectric loss (tan δ) decreases exponentially with increases in temperature due to the thermally activated grain boundary electrical conduction. Grain and grain boundary resistance of YCZTO ceramic at room temperature was found to be 347 Ω and 1.70 M Ω , respectively. The grain boundary resistance decreases with temperature while grain resistance is almost independent of temperature.

Chapter VI focuses on the study of effect of iron doping on Ti⁴⁺ site in YCTO ceramic. A few samples with composition $Y_{2/3}Cu_3Ti_{4-x}Fe_xO_{12}$ (where x = 0.00, 0.05, 0.10, 0.15, 0.20) were synthesized by semi-wet route. Scanning electron micrographs shows bimodal non-uniform grain size distribution consisting of small smooth surfaced grains with some pores. Anomalous grain growth is observed in these samples. This is due to partial melting of CuO, which promotes anomalous grain growth. The stoichiometry of the samples is confirmed by EDX studies. The particle sizes were determined by TEM technique. The dielectric behaviour of these materials was systematically studied as a function of temperature and frequency. Its rationalization with the help of impedance analysis has been discussed in detail. The effects of concentration of heterovalent dopent on microstructure, dielectric properties and conduction behaviour of Y_{2/3}Cu₃Ti_{4-x}Fe_xO₁₂ ceramics have been studied over the frequency range 2Hz-5MHz. The impact of acceptor type of hetero-valent doping of Ti^{4+} site by Fe^{3+} on $Y_{2/3}Cu_3Ti_4O_{12}$ (YCTO) ceramic is reflected in a decrease in the grain size with a significant lowering of dielectric loss as compared with the pure YCTO ceramic. The origin of high dielectric constant in different samples of Fe³⁺doped YCTO ceramics along with its rationalization with the help of impedance analysis has been discussed in detail. All compositions were found to be electrically heterogeneous with semiconducting grains and insulating grain boundaries, supporting IBLC mechanism.

Chapter VII describes the key findings as summary of the present work and suggestions for the future Scope.

A consolidated list of books and journals consulted during the present study has been given at the end of the thesis under the heading 'References'.

List of abbreviations

IC	:	Integrated Circuits
VLSI	:	Very Large-scale Integration
ULSI	:	Ultra-large scale integration
ВТ	:	BaTiO ₃
PMN	:	$PbMg_{1/3}Nb_{2/3}O_{3-x}$
PZN	:	$PbZn_{1/3}Nb_{2/3}O_{3-x}$
PLZT	:	$Pb_{1-x}La_x(Zr_{1-y}Ti_y)O_3$
ССТО	:	Calcium Cooper Titanate (CaCu ₃ Ti ₄ O ₁₂)
YCYO	:	Yttrium Copper Titanate (Y _{2/3} Cu ₃ Ti ₄ O ₁₂)
YLCTO	:	Yttrium Lanthanum Copper Titanate $(Y_{1/3}La_{1/3}Cu_3Ti_4O_{12})$
YCZTO	:	Yttrium Copper Titanate (Y _{2/3} Cu _{3-x} Zn _x Ti ₄ O ₁₂)
YCTFO	:	Yttrium Copper Titanate (Y _{2/3} Cu ₃ Ti _{4-x} Fe _x O ₁₂)
3	:	permittivity or dielectric constant
* 3	:	Complex Quantity of dielectric constant
ϵ'	:	real components of dielectric constant
ϵ''	:	imaginary components of dielectric constant
i	:	an imaginary number such that $i=\sqrt{-1}$
εο	:	permittivity or dielectric constant of free space
		$(\epsilon_o = 8.854 \times 10^{-12} \text{ F/m})$
ε _r	:	relative permittivity or dielectric constant of the material.
С	:	capacitance
F	:	Farad, a unit of capacitance.
$\tan \delta$:	dissipation factor or tangent loss
σ	:	electrical conductivity of a materials
f	:	frequency

DC	:	Direct Current
AC	:	Alternating Current
Р	:	Net polarization
Pelectronic	:	Electronic Polarization
Pionic	:	Ionic Polarization
P _{molecular}	:	Molecular Polarization
Pinterfacial	:	Interfacial Polarization
Hz	:	hertz, a unit of frequency
f	:	frequency
ω	:	angular frequency, $\omega = 2\pi f$
τ	:	Relaxation time
t	:	tolerance factor,
Å	:	angstrom, a unit of smallest length
R	:	Resistance
С	:	Capacitance
R _b	:	Resistance of bulk
C_{b}	:	Capacitance of bulk
$R_{\rm gb}$:	Resistance of grain boundary
$C_{ m gb}$:	Capacitance of grain boundary
eV	:	electron Volt
TG A	:	Thermo-gravimetric Analysis
DTA	:	Differential Thermal Analysis
DTG	:	Differential Thermo-gravimetry
XRD	:	X-Ray Diffreaction
SEM	:	Scanning Electron Microscopy
EDX	:	Energy Dispersive X-Ray
TEM	:	Transmission Electron Microscopy
AFM	:	Atomic Force Microscopy

ACKNOWLEDGMENT

It is the blessing of the almighty God Kashi Vishwanath that provided me an opportunity to acknowledge my heartiest thanks towards the significant contribution of the following people for their kind cooperation, numerous helpful suggestions and inspiration.

It's my great pleasure to thank my supervisor **Prof. K,D. Mandal**, Department of Chemistry, IIT, (B.H.U.) for allowing me to join his research group and for providing the knowledge base for my future. Prof. Mandal is an excellent advisor and good friend. He was always available for discussions and regularly took the time to answer my questions. As a supervisor, he was very active in my continuing education and scientific growth, allowing me to explore different aspects of materials science independently and with guidance. In addition, he continually provided opportunities for collaborations with other scientists, which allowed me to learn more about related fields.

I would like to thank from the bottom of my heart to my Co-Supervisor **Prof. M. M.** Singh, Department of Chemistry, IIT, (B.H.U.) for his keen interest in research and guiding me in a very systematic way. Also, I extend my heartfelt thanks to him for his noble behavior towards me and also towards other students. This thesis wouldn't have taken its present shape without his co-operation and support.

It's my great pleasure to thank **Prof. R. B. Rastogi (Head), Prof. P.C. Pandey (Ex-Head), Prof. M.A. Quraishi (Ex-Head),** Department of Chemistry, I.I.T. (B.H.U.) for helping and allowing me to use the reaseach facilities of this department thought my Ph.D. program.

I am very much thankful and grateful to all faculty members of the Department for their encouragement and support.

I take this opportunity to express my heartfelt thanks and respect to **Dr. P. Maiti**, School of Material Science and Technology, I I.I.T. (B.H.U.) for his excellent guidance, constant help and suggestions during my Ph.D work.

My special thanks go to my senior and friend **Mr. Laxman Singh** Department of Chemistry, I.I.T. (B.H.U.) for all the discussions and helps throughout my research.

Some of the results described in this thesis would not have been obtained without the collaboration with some laboratories. I would like to express my sincere thanks to **Prof. Om Prakash**, Department of Ceramic Engineering, I.I.T. (B.H.U.) for providing XRD and SEM facilities for some samples. I am highly obliged to **Prof. R.K, Mandal and Prof. P. Manna**, Department of Metallurgical Engineering, I.I.T. (B.H.U.) for providing TEM, SEM and EDX

facilities for some samples. I am highly obliged to **Prof. K,K, Upadhyaya**, Department of Chemistry, Institute of Science, (B.H.U.) for their help in TG/D.T.A, facility for a few samples.

I take great pleasure in thanking my friend Ms. Punita Maurya, Mr. Digvijay Pandey, Mr. Deepak Gusain and my junior Mr. Shiv sunder Yadav, Ms. Shashi Kala, Mr. Anil Kumar Maurya, Mr. Ankur Khare, Ms. Pooja Gautam and Mr. Atendra Kumar for sharing with me all the happiness and difficulties throughout my research work.

I also, owe to all the non-teaching staff of the IIT B.H.U. department, especially Mr. I. A. Khan, Department of Ceramic Engineering, Mr. Ashok, Vishwakarma and Mr. Lalit Department of Metallurgical Engineering, Mr. Nirmal, Central Instrumentation facility Centre, I.I.T. B.H.U. for their technical assistance and co-operation during my work.

Particularly, I would like to give special thanks and heartily acknowledgement my friend, apart from my own research field **Ms. Manisha Mishra**, P.G.T. Chemistry, C.H.G.S. Kamachha for his continuous inspiration, encouragement and involvement in each step of my research work.

No amounts of thanks shall be enough for my beloved husband Mr. R. K. Sharma and my lovely son Anushk Raj for their constant inspiration, encouragement and support in each step of my research work.

Parents are the God on earth and I am very lucky to have a very affectionate and caring parents. I would like to put in words my gratitude to them for all they have been to me. I am also thankful to my sisters Mrs. Sumitra Sharma and Mrs. Renu Sharma, my brother Mr. Vinod Kumar and Mr.Sunil Kumar and Bhabhi Mrs. Neha Ranjan and Mrs. Pragya Priyadarshini for their constant love and support.

I wish to thank all persons whose name have not been included on this piece of paper for extending their cooperation, directly or indirectly.

Last but not least, I thank almighty God for providing me strength and courage to do this work.

Date: Place: Varanasi

(Mrs. Sunita Sharma)