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PREFACE 

Electronic industries are in constant search of high performance dielectric 

materials exhibiting temperature and frequency-stability, colossal permittivity (εr > 

1000) and sufficiently low dielectric loss. It facilitates miniaturization of high-energy-

density storage devices such as Dynamic Random Access Memory (DRAM) devices, 

Multi Layer Ceramic Capacitors (MLCC) and many other electronic devices in 

automobile and aircraft. Traditional Pb(ZrxTi1-x)O3 and BaTiO3-based ferroelectric 

materials exhibit high dielectric properties. However, their dielectric properties are 

strongly temperature-dependent due to phase transition at Curie temperature (Tc). 

Furthermore, lead-based materials are eco-unfriendly and harmful to health. Hence, it 

is necessary to find some non-ferroelectric materials with high dielectric constant to 

substitute these traditional materials.  

 ACu3Ti4O12 family of compounds, discovered in 1967 and their crystal 

structure well established in 1979, could be considered as a substitute. In the tear 

2000, it was reported for the first time that that CaCu3Ti4O12 (CCTO) ceramic exhibits 

giant dielectric response. CCTO has a body-centred cubic perovskite-related structure 

having lattice parameter a =7.391Å. It shows typically high static dielectric constant 

value (ε ~10
4
 for bulk and 10

5
 for single crystals) and moderately low dielectric loss 

(~ 0.10). This property remains practically independent of frequency (10
2
-10

6
Hz) and 

shows good thermal stability without any phase transition in a wide range of 

temperature (100-600K) well as noteworthy nonlinear characteristics. These 

properties make it applicable in the fields of varistor devices, especially for 

miniaturized components. However, compared to commercial varistor ceramics, for 

e.g. ZnO varistors which is widely used, the nonlinear coefficient of CCTO is too low 
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and the dielectric loss is too high for miniaturized components. So far, the internal 

barrier layer capacitor (IBLC) model of Schottky-type potential barriers has been 

widely accepted to explain its admirable properties. Recently, the scientists have been 

carrying out researches to improve the performance of CCTO ceramics via tuning the 

microstructure, especially the grain boundary structure and its effective contribution 

towards the admirable response. The secondary phase addition has been established to 

be an effective method to control grain growth and grain boundary barrier of CCTO 

ceramics.  

During the last decade, the studies on CCTO were focused mainly on two 

aspects: to optimize the dielectric properties and lower the dielectric loss of CCTO 

ceramics to realize practical application through doping as the first one and 

introducing a binary phase, using new preparation methods and so on as the second. 

The stoichiometry of constituents plays an important role in obtaining giant 

permittivity. Deviation from stoichiometry can result in the decrease of dielectric 

constant at lower frequencies. To discuss the effect of stoichiometry on dielectric 

properties, some dopants have been introduced into the CCTO structure. The B-site 

doping with donors like Nb
5+

 or acceptors like Fe
3+

 cations could decrease the value 

of the dielectric plateau due to an increase in grain boundary layer thickness, resulting 

in a lower grain boundary capacitance. The other aspect is to study the origin of giant 

dielectric properties. To explain the nature of the giant dielectric permittivity for 

CCTO, several interpretations have been proposed so far from both intrinsic and 

extrinsic viewpoints, and there still remain some controversies. The interpretations 

include  fluctuations of lattice-distortion-induced dipoles in nanosize domains, 

electrode polarization effects due to different work functions of electrode and the 

sample, inhomogeneous conduction within the crystal due to the occurrence of defects 
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in the grains, internal barrier layer capacitor (IBLC) effects originating from the 

insulating grain boundaries surrounding semiconducting grains, and intragrain 

insulating barrier effects. Among these, the IBLC effect has been widely used to 

interpret the giant dielectric constant of CCTO ceramics. The oxygen vacancies, CuO 

segregation and aliovalences of Ti and Cu ions were suggested to play important roles 

in the IBLC formation in CCTO ceramics. 

In recent years, Y2/3Cu3Ti4O12 (YCTO) ceramics, as a member of the 

ACu3Ti4O12 family, have been reported to exhibit a giant dielectric constant (εr > 

1000) with a relatively low dielectric loss (0.033 at 1 kHz) and a good temperature 

stability. It seems that this material could be a promising candidate for commercial 

application in the future. Furthermore, it is quite interesting that YCTO with 1/3 

vacancy at Y site represents a unique type of CaCu3Ti4O12 (CCTO)-like oxides. 

Owing to the occurrence of 1/3 vacancy at Y site, the electrical properties of YCTO 

ceramics can be modulated more easily by impurity substitution. Based on the 

electrical neutrality, this 1/3 vacancy at Y site is suppressed gradually through the low 

valence ions doping. This will substantially affect the dielectric and electric behavior, 

rendering the study of this system more interesting. Unfortunately, till date, there are 

very few works concentrated on impurity substitution effects on the dielectric 

properties of YCTO ceramics. On the basis of the IBLC model, without the 

semiconducting grains there would be no high dielectric constant, and the increase of 

grain boundary resistance will induce an obvious decrease in the low-frequency 

dielectric loss. The insulating grain boundary and semiconducting grain of CCTO 

ceramics have been verified to be Cu-rich and Cu-deficient phase, respectively. As 

CCTO-like oxides, YCTO ceramics should also exhibit similar composition at grain 
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and grain boundary. An elemental substitution could effectively modify the electric 

properties both in grain and at grain boundary. The lattice distortion caused by the 

substitution ions with larger radius may improve the formation of Cu-rich and Ti-poor 

grain-boundary layer which can enhance the resistance of the grain boundaries. It is 

anticipated that the introduction of the doping of desired ions on different Y sites in 

YCTO ceramics would tune the resistance of grain and grain boundary at the same 

time it may decrease the dielectric loss. In fact, studies on YCTO system regarding 

methods of processing, sintering times, sintering temperatures, doping schemes as 

well as nature of dopants and their stoichiometric variations and its impact on various 

material properties has yet to be disclosed.  

In the present exploratory work an attempt has been made to synthesize 

undoped and a few doped samples of Y2/3Cu3Ti4O12 (YCTO) material by semi-wet 

route which is in fact auto-combustion glycine-nitrate route. In semi wet route, 

solution of nitrates of all ions is taken except titanium which is used in solid form as 

TiO2. The calculated amount of glycine, equivalent to metal ions, was added to the 

solution and heated. This method facilitates the synthesis of ceramic at relatively 

lower temperature and short duration. The mixing process is performed in a sol state. 

Each constituent ion is uniformly dispersed in the resulting mixture after removing 

organic matter by heating in air. 

The aim of the present exploratory research work is to investigate (a) crystal 

structure (b) microstructure, (c) elemental analysis, (d) particle size and (e) dielectric 

characteristic of materials prepared by the semi-wet route in the following systems: 

(i) Y2/3Cu3Ti4O12 (YCTO) 

(ii) Y1/3La1/3Cu3Ti4O12 (YLCTO) 

(iii) Y2/3Cu3-xZnxTi4O12 (YCZTO) (x = 0.10, 0.20, 0.30) 
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(iv) Y2/3Cu3Ti4-xFexO12 (YCTFO) (x = 0.05, 0.10, 0.15, 0.20) 

The present thesis discusses the results of investigation on the above systems and it 

has been divided in to six chapters  

 Chapter I contains a brief introduction of the subject describing technical 

investigations reported in the field of perovskite oxides. This includes the effect of 

isovalent, heterovalent and valence compensated substitutions on the dielectric 

properties.  

 Chapter II describes the experimental techniques used for preparation and 

characterization of these perovskite oxide ceramics. The semi-wet route used for 

preparation of these materials has been described with the help of a flow chart. 

DTA/TGA has been used to characterize the materials that exhibit a weight change due 

to decomposition or dehydration. Thermo-grams of the precursor powder materials 

carried out in static air from room temperature to 1000 
º
C at a heating rate of 10 

º
C min

-

1
 are given. Powder X-ray diffraction and scanning electron microscopy have been used 

for study of crystal structure and microstructure of these materials respectively. 

Methods for density and porosity measurements have been described. Energy 

Dispersive X-ray spectroscopy (EDX) technique has been used for elemental analysis of 

the materials. Transmission Electron Microscopy (TEM) has been used for 

determination of particle size in the samples. Dielectric characteristics of all the samples 

were measured as a function of temperature (300-500 K) in the frequency range 100Hz-

1MHz with the help of PSM 1735 (Newton’s 4
th
 limited U.K.) LCR Meter. 

Chapter III contains the synthesis and characterization of the parent 

composition Y2/3Cu3Ti4O12 (YCTO). Pellets have been sintered at 950 
º
C for 12 hrs. 

Single-phase formation along with CuO as a minor secondary phase was confirmed 

by XRD. SEM micrograph exhibited the presence of bimodal grains of size ranging 
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from 1-2 µm. The stoichiometry of synthesized samples was confirmed by EDX 

studies. Bright field TEM image clearly displays nano-crystalline particle which is 

supported by the presence of a few clear rings in the corresponding selected area 

electron diffraction pattern. The dielectric study of pure Y2/3Cu3Ti4O12 ceramic has 

been described in this chapter along with its rationalization with help of Impedance 

and modulus studies.   

Chapter IV describes the microstructure and dielectric properties of the 

valence compensated YCTO ceramic obtained by partial substitution of lanthanum at 

yttrium site. A sample with composition Y1/3La1/3Cu3Ti4O12(YLCTO) was 

synthesized by the semi-wet route as the ionic radius of lanthanum (1.15 Å) is very 

close to that of ionic radius Y
3+

 (1.04 Å). X-ray diffraction studies confirmed the 

single-phase formation at 950 
º
C for 12 h. Scanning electron microscopy showed the 

grain size in the range of 1-2 μm. The particle size was also established by TEM 

analysis. The stoichiometry of the samples is confirmed by EDX studies. With 

increasing La
3+ 

concentration in YCTO, dielectric constant of the samples decreases. 

A comparative dielectric study of YCTO and YLCTO has been described in this 

chapter.  

Chapter V discusses the synthesis and characterization of valence compensated zinc  

doped Y2/3Cu3-xZnxTi4O12 (YCZTO) with x = 0.10, 0.20, 0.30 compositions as ionic 

radius of Zn
2+

 (0.74 Å) is very close to that of ionic radius of Cu
2+

 (0.73 Å). Intrinsic 

dielectric properties of this unusual cubic perovskite ceramic was rationalised with the 

help of impedance and modulus spectroscopic measurements. A logical correlation of 

dependence of dielectric properties on microstructure of YCZTO ceramic was 

investigated. TG/DTA, XRD, SEM, TEM were employed to disclose its 

microstructural details. YCZTO ceramic exhibits high dielectric constant (ε~18522) at 
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308 K. Dielectric loss (tan δ) decreases exponentially with increases in temperature 

due to the thermally activated grain boundary electrical conduction. Grain and grain 

boundary resistance of YCZTO ceramic at room temperature was found to be 347 Ω 

and 1.70 MΩ, respectively. The grain boundary resistance decreases with temperature 

while grain resistance is almost independent of temperature.  

Chapter VI focuses on the study of effect of iron doping on Ti
4+

 site in YCTO 

ceramic. A few samples with composition Y2/3Cu3Ti4-xFexO12 (where x = 0.00, 0.05, 

0.10, 0.15, 0.20) were synthesized by semi-wet route. Scanning electron micrographs 

shows bimodal non-uniform grain size distribution consisting of small smooth 

surfaced grains with some pores. Anomalous grain growth is observed in these 

samples. This is due to partial melting of CuO, which promotes anomalous grain 

growth. The stoichiometry of the samples is confirmed by EDX studies. The particle 

sizes were determined by TEM technique. The dielectric behaviour of these materials 

was systematically studied as a function of temperature and frequency. Its 

rationalization with the help of impedance analysis has been discussed in detail. The 

effects of concentration of heterovalent dopent on microstructure, dielectric properties 

and conduction behaviour of Y2/3Cu3Ti4-xFexO12 ceramics have been studied over the 

frequency range 2Hz-5MHz. The impact of acceptor type of hetero-valent doping of 

Ti
4+

 site by Fe
3+

 on Y2/3Cu3Ti4O12 (YCTO) ceramic is reflected in a decrease in the 

grain size with a significant lowering of dielectric loss as compared with the pure 

YCTO ceramic. The origin of high dielectric constant in different samples of Fe
3+

-

doped YCTO ceramics along with its rationalization with the help of impedance 

analysis has been discussed in detail. All compositions were found to be electrically 

heterogeneous with semiconducting grains and insulating grain boundaries, 

supporting IBLC mechanism. 
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Chapter VII describes the key findings as summary of the present work and 

suggestions for the future Scope.  

A consolidated list of books and journals consulted during the present study 

has been given at the end of the thesis under the heading ‘References’. 
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ULSI   :   Ultra-large scale integration 

 BT   :  BaTiO3 

 PMN   : PbMg1/3Nb2/3O3-x 

PZN   :   PbZn1/3Nb2/3O3-x 
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
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