CONTENTS

	Pa	ige No.
List of 7	Tables	ix
List of H	Figures	xii
List of A	Abbreviations	xvii
Preface	of the Thesis	xix
1. INTR	ODUCTION	1-10
1.1	Background	1
1.2	Problem statement and Research motivation	1
1.3	Aim and Objective of the present thesis work	6
1.4	Research Contributions of the present thesis work	7
1.5	Outcome of the present thesis work	7
1.6	Thesis Organization	8
2. LITE	RATURE REVIEW	11-51
2.1	Overview	12
2.2	Classification of Diabetes Mellitus (DM)	12
2.2.1	Pre-diabetics with Impaired Glucose Tolerance (IGT) and Impaired	d 12
	Fasting Glucose (IFG) Conditions	
2.3	Complications associated with Diabetes Mellitus (DM)	13
2.4	Monitoring Blood Glucose Levels	13
2.4.1	Invasive technique based approach	13
2.4.1.2	User-Friendly Invasive Blood Glucose Meters	14
2.4.2	Semi-invasive technique based approach	16
2.4.3	Non-invasive technique based approaches	17
2.5	Noninvasive optical and other technologies for blood glucose level	17
2.5.1	measurements Fluorescent Spectroscopy	17
2.5.1	Significance	17
2.5.1.1	Limitations	18
2.5.1.2	Photo Acoustic (PA) Spectroscopy	10 19
2.5.2	Significance	1 9 20
2.5.2.1	Limitations	20 20
2.5.2	Optical Coherence Tomography (OCT)	20 20
2.5.3	Significance	20 21
4.3.3.1	Digititeatee	<i>4</i> 1

2.5.3.2	Limitations	21
2.5.4	Polarization Spectroscopy	21
2.5.4.1	Significance	22
2.5.4.2	Limitations	23
2.5.5	Ocular Spectroscopy	23
2.5.5.1	Significance	23
2.5.5.2	Limitations	23
2.5.6	Raman Spectroscopy	23
2.5.6.1	Significance	24
2.5.6.2	Limitations	24
2.5.7	Occlusion Spectroscopy	25
2.5.7.1	Significance	25
2.5.7.2	Limitations	25
2.5.8	Bio-impedance Spectroscopy	25
2.5.8.1	Significance	26
2.5.8.2	Limitations	26
2.5.9	Electromagnetic Sensing	26
2.5.9.1	Significance	27
2.5.9.2	Limitations	27
2.5.10	Reverse Iontophoresis	27
2.5.10.1	Significance	27
2.5.10.1	Limitations	27
2.5.11	Mid-Infrared (MIR) Spectroscopy	28
2.5.11.1	Significance	29
2.5.11.2	Limitations	29
	Near Infrared (NIR) Spectroscopy	29
2.5.12.1	Significance	30
	Limitations	31
2.5.13	Thermal Spectroscopy	31
2.5.13.1	Significance	31
2.5.13.2	Limitations	31
2.5.14	Ultrasound Modulated Optical Technique	31
2.5.14.1	Significance	32
2.5.14.2	Limitations	32
2.6	Various developing Noninvasive Glucometers and their respective Approval status	36
2.6.1	Gluco-Track TM by Integrity Applications Ltd., Ashkelon, Israel	36
2.6.2	Portable Blood Glucose meter by Glove Instruments, USA	36
2.6.3	Noninvasive Glucometer based on Microwave Technology by Baylor University, Texas, USA	36

2.6.4	Noninvasive Glucometer based on Near Infrared Optical Spectroscopy and Multivariate Tools by InLight Solutions, Albuquerque, New Mexico, USA	36
2.6.5	Noninvasive Glucometer by LighTouch Medical Inc., Pennsylvania, USA	37
2.6.6	I-Sugar-X Noninvasive Glucometer by Freedom Meditech Inc., California, USA	37
2.6.7	Contact Lens based Continuous Glucose Monitoring by University of Washington, USA	37
2.6.8	Symphony tCGM by Echo Therapeutics Inc., Philadelphia, USA	37
2.6.9	Multisensory Glucose Monitoring System by Biovotion AG, Zürich, Switzerland	38
2.6.10	TensorTip CoG-Combo Glucometer by Cnoga Medical ltd., Akiva, Israel	38
2.6.11	Noninvasive Glucometer by C8 Medisensors by California-based Company, USA	38
2.6.12	Easy Check Positive ID (Identification) Noninvasive Glucometer by	38
	Positive ID Corporation, the Israel-based Company	
2.6.13	Eye sense Noninvasive Glucometer by EyeSense GmbH, Großostheim, Germany	39
2.6.14	Glucoband Noninvasive Glucometer by Calisto Medical Inc., Texas, USA	39
2.6.15	Occlusion Spectroscopy based Noninvasive Glucometer by OrSense Ltd., Petah-Tikva, Israel	39
2.6.16	Noninvasive Glucose monitoring device by Biosensor Inc., Newyork, USA	39
2.6.17	ClearPath DS-120 by Freedom Meditech, Inc., California, USA	40
2.6.18	TANGTEST Blood Glucose Meter based on Optical Technology, USA	40
2.6.19	Reverse Iontophoresis based Glucose Monitoring Device (RIGMD), Seoul, Korea	40
2.6.20	Aprise by Glucon Inc., Colorado, USA	41
2.6.21	Sentris-100 by GlucoLight Corporation, Pennsylvania, USA	41
2.7	Noninvasive Glucometer Devices that received Regulatory Approvals	41
2.7.1	Diasensor, BICO Inc., Pittsburgh, USA	41
2.7.2	Pendra by Pendragon Medical Ltd., Zurich, Switzerland	42
2.7.3	GlucoWatch by Cygnus Inc., California, USA	42
2.7.4	SCOUT DS system by Vera Light Inc., Manitoba, Canada	43
2.8	Blood glucose	43
2.8.1	Nutritional carbohydrates	43

2.8.2	Physiological regulation of blood glucose levels	44
2.8.3	Glucose	44
2.9	Human skin tissue	45
2.10	Human fingertip	46
2.11	Optical clearing effect related studies	46
2.12	In-vitro experiments	46
2.13	In-vivo experiments	47
2.13.1	OGTT (Oral Glucose Tolerance Test)	47
2.13.2	HbA1c (Glycated Hemoglobin) levels impact over the blood glucose	47
	levels	
2.13.3	Blood glucose level and blood pressure related studies	48
2.14	Additional effects	49
2.14.1	Machine and Time drift effects	49
2.14.2	Temperature effect	49
2.14.3	Contact interface	50
2.14.4	Location of the body	50
2.15	Conclusion	51

3. CONCEPT, PROTOTYPE FABRICATION, AND METHODOLOGY 52-98

3.1	Concept for noninvasive blood glucose measurement	53
3.1.1	Absorption spectral analysis	54
3.2	Prototype fabrication	55
3.2.1	Ultrasound frequency selection	55
3.2.2	Light wavelength selection	56
3.3	In-vitro analysis	61
3.3.1	Glucose molecule specificity analysis	61
3.3.2	Glucose molecule sensitivity analysis at 940 nm	62
3.4	Amplitude Modulation (AM) concept and its application in our work	63
3.5	Fabricated prototype descriptions	67
3.5.1	Modulating signal	68
3.5.2	Carrier wave	70
3.5.3	Modulator unit	72
3.5.3.1	Functional descriptions	72
3.5.4	Ultra Sound Transmitter (UST) and Ultra Sound Receiver (USR) units	75
3.5.5	Finger holder unit (Finger probe)	77
3.5.6	Synchronous square wave generator	78
3.5.7	Infrared light source	79
3.5.7.1	940 nm LED wavelength verification	79
3.5.8	Infrared (IR) detector (Photodiode)	80

3.5.9	Signal processing unit	81
3.5.10	Result display	81
3.6	In-vitro experiment	81
3.6.1	In-vitro experiment using glucose in distill water	81
3.6.1.1	Result analysis	82
3.6.2	In-vitro experiment using quasi-finger system	82
3.6.2.1	Study subjects	82
3.6.2.2	Sample preparation	83
3.6.2.3	Result analysis	84
3.7	Preliminary in-vivo analysis	84
3.7.1	Extended in-vivo clinical study	86
3.7.2	Study subjects	86
3.7.3	Experimental phases	87
3.7.3.1	Phase I (a): Before meal intake session in absence of amplitude	87
	modulated ultrasound in our prototype	
3.7.3.2	Phase I (b): Before meal intake Session in presence of amplitude	88
	modulated ultrasound in our prototype	
3.7.3.3	Phase II: One hour after meal intake session in presence of amplitude	89
	modulated ultrasound in our prototype	
3.7.4	Result analysis	91
3.8	Calibration	91
3.9	Inference	92
3.10	Tests methodology	92
3.11	Clarke Error Grid analysis	95
3.12	Statistical analysis	97

4. EFFECT OF GLUCOSE CONCENTRATION ON LIGHT TRANSMISSION

99-109

4.1	Introduction	100
4.2	Study subjects	101
4.3	Experimental protocol	101
4.4	Peak to peak amplitude measurements for Absolute and Square value calculations	103
4.4.1	Absolute value calculations	103
4.4.2	Square value calculations	105
4.4.3	Result and Discussion	106
4.5	Conclusion	109

5. CLINICAL INVESTIGATION BASED RESULTS

110-175

5.1	Oral Glucose Tolerance Test based clinical study over healthy non-	111
3.1	diabetic subjects	111
5.1.1	Introduction	111
5.1.2	Study subjects	111
5.1.2 5.1.3	Experimental protocol	111
5.1.5 5.1.4	Blood glucose measurement	111
5.1. 4 5.1.5	Result and Discussion	112
	Conclusion	
5.1.6 5.2		118
5.2 5.2.1	The effect of different glucose concentrations over blood glucose levels Introduction	118 118
5.2.2	Study subjects	118
5.2.3	Experimental protocol	119
5.2.4	Blood glucose measurement	119
5.2.5	Result and Discussion	120
5.2.6	Conclusion	124
5.3	Study over pre-diabetic subjects	124
5.3.1	Introduction	124
5.3.2	Glucose sensing in pre-diabetics	125
5.3.3	Study subjects	125
5.3.4	Experimental protocol	125
5.3.5	Blood glucose measurement	126
5.3.6	Result and Discussion	126
5.3.7	Conclusion	130
5.4	Clinical study over Diabetic subjects	130
5.4.1	Introduction	130
5.4.2	Blood glucose supervision	131
5.4.3	Study subjects	131
5.4.4	Experimental protocol	131
5.4.5	Blood glucose measurement	132
5.4.6	Result and Discussion	132
5.4.7	Conclusion	137
5.5	Five daily sessions of blood glucose measurement in a healthy normal	137
	and a diabetic subject	
5.5.1	Introduction	137
5.5.2	Study subjects	138
5.5.3	Experimental protocol	138
5.5.4	Blood glucose measurement	138

5.5.5	Result and Discussion	138
5.5.6	Conclusion	142
5.6	Blood Glucose and Glycated Hemoglobin relationship	142
5.6.1	Introduction	142
5.6.2	Study subjects	143
5.6.3	Experimental protocol	143
5.6.4	Invasive and Noninvasive determination of fasting blood glucose	144
	levels	
5.6.5	Glycated Hemoglobin (HbA1c) levels measurement	144
5.6.6	Result and Discussion	145
5.6.7	Conclusion	151
5.7	Blood glucose and blood pressure relationship	151
5.7.1	Introduction	151
5.7.2	Study subjects	151
5.7.3	Experimental protocol	151
5.7.4	Blood pressure and blood glucose measurement	152
5.7.4.1	Blood pressure measurement	152
5.7.4.2	Blood glucose measurement	153
5.7.5	Result and Discussion	153
5.7.5.1	Stage I	153
5.7.5.2	Stage II	155
5.7.5.3	Stage III	157
5.7.6	Conclusion	164
5.8	Extended clinical study using OGTT and Random Blood Glucose	164
	Level Tests	
5.8.1	Introduction	164
5.8.2	Study subjects	165
5.8.3	Experimental Procedures	165
5.8.4	Result and Discussion	166
5.8.4.1	Oral glucose tolerance test based result analysis	166
5.8.4.2	Random blood glucose test based analysis	171
5.8.5	Conclusion	175

6. DISCUSSION

176-205

6.1	Introduction	177
6.2	Overall result comparison and evaluation	178
6.2.1	Clarke Error Grid Analysis	178
6.2.2	Parkes Error Grid Analysis	181
6.2.3	Accuracy Measure based analysis	183

6.2.4	Pearson correlation coefficient analysis	190
6.2.5	Rank correlation coefficients analysis	193
6.2.6	Bland-Altman Plot	195
6.2.7	Mountain plot	197
6.2.8	Linear model validity	199
6.2.9	Independent sample t-tests	200
6.2.10	Deming Regression	202
6.2.11	ISO compliance	203
6.3	Conclusion	205

7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 207-211

7.1	Conclusions	208
7.2	Recommendations for future work	210
REFE	CRENCES	212-229
APPENDICES (AI,AII,AIII)		230-234
LIST	OF PAPERS, PATENT, AND AWARD	235-237
PUBL	JCATIONS	
PERS	ONAL PROFILE	

List of Tables

	Page	No.
2.1	Invasive blood glucose meters	15
2.2	Various noninvasive techniques for blood glucose monitoring	32
2.3	10% Intralipid suspension constituents	47
3.1	Absorption characteristics corresponding to the stretch and vibration	57
	patterns of the bonds present in the glucose molecule	
3.2	Glucose sensitivity analysis at 940 nm wavelength	62
3.3	Model EDC-20 of Edkits Electronics (Sine wave signal generator)	68
3.4	Modulating sine wave signal characteristics	69
3.5	Testronix Model-72 (Sine-Square Oscillator)	70
3.6	Carrier sine wave signal characteristics	71
3.7	AD633 features and benefits	72
3.8	Amplitude Modulated Signal characteristics	74
3.9	Waveform features as received by the USR unit	77
3.10	Square wave signal characteristics	78
3.11	The output signal parameters as acquired from the fingertip of the study	85
	subject	
3.12	Performance assessment parameters	98
5.1	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	116
	(Noninvasive) Blood Glucose Levels as acquired during OGTT over	
	healthy subjects.	
5.2	Performance summary and comparison with other noninvasive	117
	techniques and CGMS(s) based published data.	
5.3	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	122
	(Noninvasive) Blood Glucose Levels.	
5.4	Performance summary and comparison with other noninvasive	123
	techniques and CGMS(s) based published data.	
5.5	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	128
	(Noninvasive) Blood Glucose Levels.	
5.6	Performance summary and comparison with other noninvasive	129
	techniques and CGMS(s) based published data.	
5.7	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	135
	(Noninvasive) Blood Glucose Levels.	
5.8	Performance summary and comparison with other noninvasive	136
	techniques and CGMS(s) based published data.	
5.9	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	140
	(Noninvasive) Blood Glucose Levels.	
5.10	Performance summary and comparison with other noninvasive	141
	techniques and CGMS(s) based published data.	

5.11	Blood Glucose Levels and corresponding HbA1c levels	143
5.12	Reference (invasive), predicted (noninvasive) fasting blood glucose	145
	values and its corresponding GHb% and, HbA _{1c} % values as obtained	
	from the healthy subjects	
5.13	Reference (invasive), predicted (noninvasive) fasting blood glucose	146
0110	values and its corresponding GHb% and, HbA _{1c} % values as obtained	110
	from the diabetic subjects	
5.14	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	149
3.14	(Noninvasive) Blood Glucose Levels.	147
5 15		150
5.15	Performance summary and comparison with other noninvasive	150
F 17	techniques and CGMS(s) based published data.	1 5 3
5.16	Blood pressure classification in adult subjects	152
5.17	Fasting stage blood glucose and blood pressure values of the healthy	154
	normal subjects (I to V) as observed during all the three consecutive	
	days of the clinical study.	
5.18	Fasting stage blood glucose and blood pressure values of the diabetic	155
	subjects (VI to X) as observed during all the three consecutive days of	
	the clinical study.	
5.19	Postprandial stage blood glucose and blood pressure values of the	156
	normal subjects (I to V) as observed during all the three consecutive	
	days of the clinical study.	
5.20	The postprandial stage blood glucose and blood pressure values of the	157
	diabetic subjects (VI to X) as observed during all the three consecutive	
	days of the clinical study.	
5.21	Random stage blood glucose and blood pressure values of the healthy	158
	normal Subjects (I to V) as observed during all the three consecutive	
	days of the clinical study.	
5.22	Random stage blood glucose and blood pressure values of the diabetic	159
	subjects (VI to X) as observed during all the three consecutive days of	
	the clinical study.	
5.23	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	162
	(Noninvasive) Blood Glucose Levels.	
5.24	Performance summary and comparison with other noninvasive	163
	techniques and CGMS(s) based published data.	
5.25	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	169
	(Noninvasive) Blood Glucose Levels.	
5.26	Performance summary and comparison with other noninvasive	170
	techniques and CGMS(s) based published data.	
5.27	Clarke Error Grid Analysis of Reference (Invasive) and Predicted	173
	(Noninvasive) Blood Glucose Levels.	

5.28	Performance summary and comparison with other noninvasive techniques and CGMS(s) based published data.	174
6.1	Clarke Error Grid Analysis of Reference (Invasive) and Predicted (Noninvasive) Blood Glucose Levels	179
6.2	Performance comparison of non-invasive blood glucose measurement- techniques and electrochemical CGMS utilizing Clarke Error Grid Analysis	180
6.3	Parkes Error Grid Analysis of Reference (Invasive) and Predicted (Noninvasive) Blood Glucose Levels	183
6.4	Accuracy measure based performance comparison of non-invasive blood glucose measurement-techniques, and Electrochemical CGMS(s) utilizing Mean Absolute Error (MAE)	185
6.5	Accuracy measure based performance comparison of non-invasive blood glucose measurement-techniques and Electrochemical-CGMS(s) utilizing Percentage of Mean Absolute Relative Error (%MARE)	186
6.6	Accuracy measure based performance comparison of our non-invasive blood glucose Technique to Electrochemical/Micro-dialysis based CGMS(s) utilizing Median Absolute Error (MdAE).	187
6.7	Accuracy measure based performance comparison of non-invasive blood glucose measurement-techniques and Electrochemical-CGMS(s) utilizing Percentage of Median Absolute Relative Error (%MdARE)	188
6.8	Accuracy measure based performance comparison of non-invasive blood glucose measurement-techniques utilizing Root Mean Squared Error (RMSE).	189
6.9	Accuracy measure based performance comparison of non-invasive blood glucose measurement-techniques utilizing Standard Error of Prediction (SEP)	190
6.10	Pearson correlation coefficient (r) analysis	191
6.11	Performance measures of different blood glucose measuring techniques classified based on their degree of invasiveness	192
6.12	Rank Correlation coefficients Analysis	194
6.13	Bland-Altman Plot based analysis	196
6.14	Mountain Plot based analysis	198
6.15	Linear model validity	199
6.16	Independent samples t-test and Welch-test	201
6.17	Deming Regression Analysis	202
6.18	Total Error Limits: ISO 15197-2013	204

List of Figures

	Pa	ge No.
1.1	Major long-term medical complications in diabetic subjects	2
1.2	The number of research articles on glucose monitoring throughout the stated period	3
2.1	Diabetes Mellitus classification	12
2.2	Invasive blood glucometers of (a) Roche Diagnostics (b) LifeScan (c) Abbott (d) Bayer HealthCare	14
2.3	Major compositions of the human blood	43
2.4	The D-Glucose transformation phenomenon	44
2.5	Structural morphology of the human skin	45
.1	Absorption spectra of major intracellular absorbers	57
5.2	Absorption cross-section of oxyhemoglobin and reduced hemoglobin at Red-NIR region	58
5.3	Absorption spectrum of glucose dissolved in water within the spectral range extending from 900 nm to 2400 nm	58
.4	Absorption spectrum of water and glucose in water from 800 nm to 1400 nm	58
.5	Mini-spectrometer of Avantes Inc., USA	59
.6	Absorption profile of 10% Dextrose (glucose)-distill water within 300 nm to 1050 nm	60
8.7	(a) Digital spectrophotometer of M.S Electronics Pvt. Ltd. (India) and(b) Absorption spectra of glucose in distill water between 900 nm to 980 nm	62
.8	The sine wave modulating signal	64
.9	The modulated carrier wave signal	64
10	Simple depiction of Amplitude Modulated sine wave	65
11	Amplitude Modulator with input and output signals	66
.12	Block diagram of noninvasive technique based prototype (MUS-IR) unit.	67
.13	Modulating sine wave signal	69
14	Carrier sine wave signal	71
15	Functional block diagram of AD633	73
.16	Amplitude Modulation circuit for providing modulation input to the Ultrasound Transmitter unit.	73
.17	Amplitude Modulated signal waveform	74
.18	Amplitude Modulated waveform pattern as provided to the finger holder.	76
.19	The output waveform pattern from the USR unit as recorded by DSO	76

3.20 3.21 3.22	Finger holder probe of our noninvasive technique based prototype unit. Square wave signal Typical spectral intensity distribution of the IR LED used in our prototype	77 78 79
3.23 3.24	Infrared photodiode circuit diagram Peak-to-peak amplitude spectrum (in FFT domain) measured at 940 nm from solutions with changing glucose concentration.	80 82
3.25	The peak-to-peak amplitude in FFT domain relationship with varying glucose concentration in fasting and 2 hour postprandial in-vitro samples	83
3.26	The typical output signal acquired from the fingertip of the study subject	85
3.27 3.28	The peak amplitude (mV) spectrum in the FFT domain The observed signal of the study subject in absence of amplitude- modulated ultrasound in our noninvasive technique based prototype during before meal intake session	86 87
3.29	The observed peak amplitude spectrum from the study subject in absence of amplitude-modulated ultrasound in our noninvasive technique based prototype during before meal intake session	88
3.30	The observed signal from the study subject in presence of amplitude- modulated ultrasound in our prototype during before meal intake session	88
3.31	The observed peak amplitude spectrum from the study subject in presence of amplitude-modulated ultrasound in our noninvasive technique based prototype during before meal intake session	89
3.32	The observed peak amplitude spectrum from the study subject in presence of amplitude-modulated ultrasound in our noninvasive technique based prototype during one hour after meal intake session.	89
3.33	The observed peak amplitude spectrum from the study subject in presence of amplitude-modulated ultrasound in our noninvasive technique based prototype during one hour after meal intake session	90
3.34	The in-vivo signals based peak amplitude spectral variations in the FFT domain with respect to change in the blood glucose levels during fasting and 2-hour postprandial stages.	90
3.35	Accu-Chek Active of Roche Diagnostics GmbH, Mannheim, Germany (Invasive Glucometer) for Reference Blood Glucose Level measurement in human subjects	93
3.36 3.37	Our Noninvasive technique based prototype (MUS-IR) unit Our noninvasive technique based prototype unit for Predicted (Noninvasive) Blood Glucose Level measurement in human subjects	94 95

3.38 4.1	Clarke Error Grid plot Diagrammatic representation of the effect of glucose concentration on light transmission phenomenon	96 100
4.2 4.3	Flowchart for quantification of glucose level induced light transmission Absolute value calculation from the signal waveform as acquired from the healthy subject	102 104
4.4	Absolute value calculation from the signal waveform as acquired from the diabetic subject	104
4.5	Square value calculation from the signal waveform as acquired from the healthy subject.	105
4.6	Square value calculation from the signal waveform as acquired from the diabetic subject	106
4.7	Absolute value peak to peak as obtained from Healthy and Diabetic Subjects	107
4.8	Square values peak to peak as obtained from the Healthy and Diabetic Subjects	108
4.9	Invasive Random Blood Glucose Levels as obtained from Healthy and Diabetic Subjects	108
5.1	 (a) The observed signal as acquired from the subject 1 at 0 min and (b) its corresponding peak amplitude spectrum in the FFT domain (a) The observed signal as acquired from the subject 1 at (0 min and 1) 	113
5.2 5.3	 (a) The observed signal as acquired from the subject 1 at 60 min and (b) its corresponding peak amplitude spectrum in the FFT domain (a) The observed signal as acquired from the subject 1 at 120 min and 	114 114-
5.5 5.4	(a) The observed signal as acquired from the subject 1 at 120 min and(b) its corresponding peak amplitude spectrum in the FFT domainOGTT based time dependent sequential variations in the blood glucose	114- 115 115
5. 4	levels; error bars indicate ± 5 percentage error. Clarke Error Grid Analysis plot as obtained from the OGTT	115
5.6	investigation. The effect of 25 gm/100 ml glucose solution (w/v) on the fasting BGL;	120
5.7	error bars indicate ± 5 percentage error. The effect of 50 gm/100 ml glucose solution (w/v) on the fasting BGL;	120
5.8	error bars indicate ± 5 percentage error. The effect of 75 gm/100 ml glucose solution (w/v) on the fasting BGL;	120
5.9	error bars indicate ±5 percentage error Clarke Error Grid Analysis	122
5.10	BGL after meal intake in healthy and pre-diabetic subjects; error bars indicate ± 5 percentage error.	126
5.11	BGL after 75 gm/100 ml glucose intake in healthy and pre-diabetic subjects; error bars indicate ± 5 percentage error.	127
5.12	Clarke Error Grid Analysis	128

- 5.13 R-BGL (Invasive) and P-BGL (Noninvasive) blood glucose levels of 132 the healthy subjects during Fasting, Postprandial, and Random stage; error bars indicate ± 5 percentage error. R-BGL (Invasive) and P-BGL (Noninvasive) blood glucose levels of 5.14 133 the Type I Diabetic subjects during Fasting, Postprandial, and Random stage; error bars indicate ± 5 percentage error. R-BGL (Invasive) and P-BGL (Noninvasive) blood glucose levels of 5.15 134 the Type II Diabetic subjects during Fasting, Postprandial, and Random stages; error bars indicate ± 5 percentage error. 5.16 Clarke Error Grid Analysis 135 5.17 The Blood Glucose Level values as obtained by the Predicted 139 (noninvasive) and Reference (invasive) methods from the normal subject during 5 daily sessions of fasting, postprandial and random stages; error bars indicate ± 5 percentage error. The Blood Glucose Level values as obtained by the Predicted 139 5.18 (noninvasive) and Reference (invasive) methods from the Type II Diabetic subject during five daily sessions of fasting, postprandial, and random stages; error bars indicate ± 5 percentage error. 5.19 Depicts the Clarke Error Grid-based Analysis of the Blood Glucose 140 Level values as obtained from both the Subjects (Normal and Type II Diabetic) during 5 daily sessions of Fasting, Postprandial and Random stages 5.20 Reference (invasive), predicted (noninvasive) fasting blood glucose 146 values as obtained from the healthy subjects; error bars indicate ± 5 percentage error. Reference (invasive), predicted (noninvasive) fasting blood glucose 5.21 147 values as obtained from the diabetic subjects; error bars indicate ± 5 percentage error. HbA1c values of the Healthy (1-10) and Diabetic (11-20) Subjects; 5.22 147 error bars indicate ± 5 percentage error. 5.23 Clarke Error Grid Analysis of reference (invasive) and predicted 148 (noninvasive) blood glucose measurements as obtained from the
- (noninvasive) blood glucose measurements as obtained from the normal healthy subjects (1-10) and diabetic subjects (11-20) altogether respectively; error bars indicate ± 5 percentage error.
- 5.24 The relationship between blood glucose and blood pressure values of 160 healthy normal subject II as observed during Day 1 of the clinical study; error bars indicate ± 5 percentage error.
- 5.25 The relationship between Blood Glucose Levels and Blood Pressure 161 values of Diabetic Subject IX respectively; error bars indicate ±5 percentage error.

5.26	The Clarke Error Grid Analysis of the blood glucose levels as obtained from Healthy Normal (I to V) and Diabetic (VI to X) Subjects respectively.	162
5.27	OGTT response curve of the study subjects (1 to 5) on 1^{st} day; error bars indicate ±5 percentage error.	166
5.28	OGTT response curve of the study subjects (6 to 10) on 2^{nd} day; error bars indicate ±5 percentage error.	166
5.29	OGTT response curve of the study subjects (11 to 15) on 3^{rd} day; error bars indicate ± 5 percentage error.	167
5.30	OGTT response curve of the study subjects (16 to 20) on 4^{th} day; error bars indicate ±5 percentage error.	167
5.31	OGTT response curve of the study subjects (21 to 25) on 5^{th} day; error bars indicate ± 5 percentage error.	168
5.32	OGTT response curve of the study subjects (26 to 30) on 6^{th} day; error bars indicate ± 5 percentage error.	168
5.33	Clarke Error Grid analysis based plot for reference (invasive) and predicted (noninvasive) blood glucose measurement as obtained from 30 human subjects during OGTT analysis.	169
5.34	Random Blood Glucose tests of the Subjects (1-10); error bars indicate	171
	±5 percentage error.	
5.35	Random Blood Glucose tests of the Subjects (11-20); error bars indicate ± 5 percentage error.	172
5.36	Random Blood Glucose tests of the Subjects (21-30); error bars indicate ± 5 percentage error.	172
5.37	Clarke Error Grid analysis based plot for reference (invasive) and predicted (noninvasive) blood glucose measurement as obtained from 30 human subjects during Random blood glucose tests.	173
6.1	Clarke Error Grid Analysis of overall Reference (Invasive) and Predicted (Noninvasive) blood glucose measurement	179
6.2	Parkes Error Grid Analysis of overall Reference (Invasive) and Predicted (Noninvasive) blood glucose measurement	182
6.3	The scatter diagram of Reference and Predicted Blood Glucose Levels	191
6.4	The scatter diagram of Reference and Predicted Blood Glucose Levels	193
6.5	Bland-Altman Plot based analysis	195
6.6	Mountain Plot based analysis	197
6.7	Deming Regression based analysis	202

List of Abbreviations

ADA	: American Diabetes Association
AHA	: American Heart Association
AM	: Amplitude Modulation
BGL	: Blood Glucose Level
CE	: Conformité Européenne (European Conformity)
CEG	: Clarke Error Grid
CGMS	: Continuous Glucose Monitoring System
CUSUM	: Cumulative Sum
CI	: Confidence Interval
DCCT	: Diabetes Control and Complications Trial
D-Glucose	: Dextro-Glucose
DM	: Diabetes Mellitus
DSO	: Digital Storage Oscilloscope
EGA	: Error Grid Analysis
EDTA	: Ethylene Di-amine Tetra-acetic Acid
FDA	: Food and Drug Administration
FFT	: Fast Fourier Transform
FM	: Frequency Modulation
FPG	: Fasting Plasma Glucose
GHb	: Glycosylated Hemoglobin
GmbH	: Gesellschaft mit beschränkter Haftung
HbA1c	: Glycated Hemoglobin
IC	: Integrated Circuit
IDF	: International Diabetes Federation
IFG	: Impaired Fasting Glucose
IGT	: Impaired Glucose Tolerance
IMS-BHU	: Institute of Medical Sciences-Banaras Hindu University
IR	: Infra Red
ISO	: International Organization for Standardization
Inc.,	: Incorporation
LASER	: Light Amplification Simulation Emission Radiation
LED	: Light Emitting Diode
MAE	: Mean Absolute Error
%MARE	: Percentage of Mean Absolute Relative Error
MdAE	: Median Absolute Error
%MdARE	: Percentage of Median Absolute Relative Error
MATLAB	: Matrix Laboratory
MIR	: Mid Infra Red

NIR: Near Infra RedOCT: Optical Coherence TomographyOGTT: Oral Glucose Tolerance TestPA: Photo AcousticP-BGL: Predicted-Blood Glucose LevelPBS: Phosphate Buffer SolutionPP: Post Prandial
OGTT: Oral Glucose Tolerance TestPA: Photo AcousticP-BGL: Predicted-Blood Glucose LevelPBS: Phosphate Buffer Solution
PA: Photo AcousticP-BGL: Predicted-Blood Glucose LevelPBS: Phosphate Buffer Solution
P-BGL: Predicted-Blood Glucose LevelPBS: Phosphate Buffer Solution
PBS : Phosphate Buffer Solution
I I
PP · Post Prandial
PEG : Parkes Error Grid
PM : Phase Modulation
RAD : Relative Absolute Difference
RBC : Red Blood Corpuscles
R-BGL : Reference-Blood Glucose Level
RIGMD : Reverse Iontophoresis based Glucose Monitoring Device
RMSE : Root Mean Squared Error
r value : Correlation Coefficient
SD : Standard Deviation
SNR : Signal to Noise Ratio
SEP : Standard Error of Prediction
TM : Trade Mark
THb : Total Hemoglobin
UK : United Kingdom
UKPSD : United Kingdom Prospective Diabetes Study
USA : United States of America
USD : United States Dollar
US\$: United States Dollar
USR : Ultra Sound Receiver
UST : Ultra Sound Transmitter
UV : Ultra Violet
WHO: World Health Organization