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CHAPTER 5 

  A NON-LINEAR MODIFIED 

CONVEF-AD BASED APPROACH 

FOR LOW-DOSE SINOGRAM 

RESTORATION    

This work focuses on an approach for statistical sinogram smoothing for 

low-dose CT reconstruction. The proposed method is modelled into a variation-

al framework. The solution of the method, based on minimization of an energy 

functional, consists of two terms viz. data fidelity term and a regularization 

function.  The data fidelity term is obtained by minimizing the negative log like-

lihood of the signal dependent Gaussian probability distribution, which depicts 

the noise distribution in low dose X-ray CT. The second term i.e. regularization 

term is a non-linear CONVEF-AD (CONvolutional Virtual Electric Field Aniso-

tropic Diffusion) based filter, which is an extension of Perona–Malik (P–M) an-

isotropic diffusion filter. The role of regularization function is to resolve the ill-

posedness of first term. The proposed method is capable of dealing with both 

signal dependent and signal independent Gaussian noise i.e. mixed noise. For 

experimental purpose, two different sinograms generated from test phantom im-

ages are used. The comparative study and performance evaluation of the pro-

posed method with other standard methods is also presented. The obtained re-

sults indicate that the proposed method possess better mixed noise removal ca-

pability than other methods in low dose X-ray CT. 
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5.1 Introduction 

X-ray computed tomography (CT) is one of the most widely used medical imag-

ing modalities for various clinical applications such as diagnosis and image-

guided interventions. Recent discoveries regarding the potential harmful effects 

of X-ray radiation including lifetime risk of genetic, cancerous and other diseas-

es (Yu, Lifeng et. al., 2015) have raised growing concerns to patients and medi-

cal physics community (Yu, Lifeng et. al., 2015). Therefore, minimizing the ra-

diation risks is strongly desirable in clinical practices. To realize this objective, 

numerous studies have focused on radiation dose reduction of CT examinations 

(Yu, Lifeng et. al., 2015; Zhang H et. al., 2014; Gao Yang et. al., 2014; Whiting 

Bruce et. al., 2014). According to the International Commission on Radiological 

Protection (ICRP), patient doses in CT, especially in case of children, should 

always be kept as ALARA principle: “as low as reasonably achievable”, see 

ICRP (2007) (Yu, Lifeng et. al., 2015). 

In the past decade, two classes of strategies have been exploited extensively 

for radiation dose reduction: (1) reducing the X-ray tube current and shortening 

the exposure time (i.e., milli ampere-second (mAs)) or the X-ray tube voltage 

(i.e., kilo voltage (kV)) settings to reduce the X-ray photon flux towards at each 

projection view; and (2) reducing the number of projection views per rotation 

during projection data acquisition. (Gao Yang et. al., 2014)  

Reducing the X-ray tube current and shortening the exposure time around the 

body, would inevitably increase the noise in projection/sinogram data, and the 

resulting image by the conventional analytical filtered back-projection (FBP) 

method (Whiting Bruce et. al., 2014) may be severely degraded due to excessive 

X-ray poisson noise (Zhang et. al., 2010). The later strategy would produce un-

der sampled projection/sinogram data, and the resulting images by the FBP 

method would suffer from view-aliasing artifacts due to insufficient angular 

sampling. Sometimes, these two strategies are even combined, leading to both 

noisy and under sampled sinogram data, and the corresponding image recon-

structed by the FBP method can be further degraded. Many algorithms to im-

plement these strategies have been proposed for radiation dose reduction of CT 

examinations (Yu, Lifeng et. al., 2015; Zhang H et. al., 2014; Gao Yang et. al., 
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2014; Zhang et. al., 2010; Liu Li et. al., 2012; Cui Xueying et. al., 2014). 

Among these algorithms, preprocessing the noisy sinogram smoothing by statis-

tical iterative methods have shown great potential to reduce the radiation dose 

while maintaining the image quality in X-ray CT as compared with the FBP re-

construction algorithm. 

In the previous literature (Yu, Lifeng et. al., 2015; Zhang H et. al., 2014; Gao 

Yang et. al., 2014; Zhang et. al., 2010; Liu Li et. al., 2012; Cui Xueying et. al., 

2014), Poisson noise is incorporated due to the limited number of detected pho-

tons counts in low-dose x-ray CT plus other background electronic noise is con-

sidered due to the electronic fluctuation in detector photodiode and other com-

ponents. The acquired projection data by low energy radiation were considered 

to follow a signal–dependent compound poisson distribution plus a signal–

independent Gaussian or normal distribution with zero mean (Liu Li et. al., 

2012). After that, a penalized Poisson likelihood maximization algorithm was 

then proposed. Later, a compound Poisson distribution model (Cui Xueying et. 

al., 2014) was proposed, which takes into account both the characteristics of the 

energy-integrating sensors in the X-ray CT detector and the energy spectrum of 

X-ray beam. Since then, previous works (Jing Wang et. al., 2008; Chen Y et. al., 

2010) described the calibrated and log transformed projection data of low-dose 

CT approximately follow a Gaussian distribution. Afterwards, the penalized 

weighted least-squares (PWLS) approach (Jing Wang et. al., 2008) was applied 

to the noisy sinogram, thus, the optimal estimation of the projection data was 

obtained for FBP reconstruction. Recently, a generalized Gibbs prior (Zhen Tian 

et. al., 2011) was designed to exploit nonlocal information of the projection data 

for the noisy sinogram and used the FBP method to finish the final CT recon-

struction. The Bayesian statistical reconstruction for low-dose X-ray CT using 

an adaptive weighting nonlocal prior has been studied in (Chen Y et. al., 2010) 

and got satisfactory effects.  

For the sinogram smoothing purpose, it is very important to consider a widely 

studied effective regularization terms or priors (Liu Li et. al., 2012; Cui Xueying 

et. al., 2014; Jing Wang et. al., 2008; Chen Y et. al., 2010). Lowering the noise 

effect and preserving the edges are the two main aims in devising priors. But 

one drawback of these priors is their tendency to uniformly penalize the image 
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or the image gradient irrespective of the underlying image structures and the dif-

ference of signal-dependent noise properties in different regions. As a result, 

edges are sometimes over smoothed, leading to loss of detailed information. To 

address this drawback, several priors including smoothing, edge-preserving reg-

ularization terms and iterative algorithms with varying degrees of success have 

been already studied to obtain high-quality CT reconstruction images from low-

dose projection data (Cui Xueying et. al., 2014; Jing Wang et. al., 2008; Chen Y 

et. al., 2010; Srivastava Rajeev et. al., 2013).  

In the following paragraph at first we present a brief review of various diffu-

sion based priors applied in image denoising problems are presented. After this a 

discussion about the possibilities of applying modified CONVEF-based P–M 

approach for restoration of low dose sinogram data is carried out. It is found that 

the Laplace operator can be used for image smoothing (Yuanquan Wang et. al., 

2010; Huaibin Wang et. al., 2012), and for this purpose heat diffusion Eq., an 

isotropic diffusion, can cause blurring of the edges (Yuanquan Wang et. al., 

2010). A selective smoothing method, which makes the computation of gradient 

more stable through the use of a Gaussian filter and can also remove the isolated 

noise spot, was proposed in (Huaibin Wang et. al., 2012). However, it presented 

the problem of edge blur. This problem was resolved by introducing diffusion 

tensor to make the diffusion faster in one direction than in other (Huaibin Wang 

et. al., 2012). Afterwards, a diffusion based on trace to eliminate the influence of 

the interference term and to avoid the seeking of the best difference method in 

calculations was presented (Zhang Hao et. al., 2015). The total Variation (TV) 

denoising model (Niu Shanzhou et. al., 2014) which was stable than the P–M 

Eq. (Srivastava Subodh et. al., 2012) was presented. Thereafter, the denoising 

algorithm based on TV was studied and applied widely (Cui Xueying et. al., 

2014; Niu Shanzhou et. al., 2014; Srivastava Subodh et. al., 2012; Zhang et. al., 

2013; Zhen Tian et. al., 2011). However, the TV-based approach caused stair-

case effect. A more effective solution to this shortcoming is to increase the order 

of the derivative. Further, the shock filters which is a combination of two terms 

inverse (shock) and forward diffusion processes to make the diffusion process 

faster and to open the new dimensions in the field of image enhancement and 

restoration was introduced (Ghita O et. al., 2010). 
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Furthermore, an anisotropic diffusion nonlinear partial differential Eq. (PDE) 

based diffusion process (Perona and Malik, 1990) was developed as a typical 

feature-preserving denoising technique. In this process the diffusion is con-

trolled by a variable coefficient in order to preserve edges. After that, the gradi-

ent vector flow (GVF) field (Hongchuan yu, 2004) was developed for the im-

plementation of the anisotropic diffusion models. But it has the disadvantage to 

produce undesirable staircase effect around smooth edges.  Due to this effect, 

this method could not remove the isolated noise accurately and falsely recognize 

the boundaries of different blocks that actually belong to the same smooth area 

as edges.  

A variety of high order denoising techniques has been developed (Perona and 

Malik, 1990; Hongchuan yu, 2004; Yuanquan Wang, 2008; Zhang Quan et. al., 

2013; Gui Z.g, 2013) to overcome the staircase effect and to improve the ability 

of denoising. The fourth-order PDE (Huaibin Wang et. al., 2012) for noise re-

moval presented a representative for this group, seeks to approximate the noisy 

image with a piecewise harmonic one and overcomes the staircase effect effec-

tively. In view of these problems, the second-order derivatives at the direction of 

level set and gradient in (Hongchuan yu, 2004) are acquired through direct cal-

culation on the noisy image, so the denoising effect can be affected because of 

the low numerical stability. Furthermore, to minimize the denoising effects, the 

gradient vector flow (GVF) field was incorporated as an external force for active 

contour model (Yuanquan Wang, 2008), into the anisotropic diffusion. Howev-

er, due to presence of mixed noise in the sinogram data i.e. signal dependent and 

signal independent Gaussian noise; these methods cannot be applied directly. 

Even, GVF fields have no ability to find edge when images are corrupted by ex-

traneous or Gaussian noise, and thus the denoising effect of mixed noisy images 

remains unsatisfactory. Afterwards, a new modified GVF (INGVF) field was 

introduced (Ghita O et. al., 2010) into the P–M Eq. in order to remove both sig-

nal dependent and signal independent Gaussian noise. But, both the models 

GVF and INGVF are computationally expensive because they have to iteratively 

solve the generalized diffusion equations on the whole image.  

In this work, modified CONVEF-based P–M approach is used as a prior term 

to deal with the issues of low dose CT image reconstruction. The modified 
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CONVEF-AD Eq. is used for smoothing of mixed noise sinogram data affected. 

The modified CONVEF-AD serves as regularization or smoothing term for low 

dose sinogram restoration to deal with the problem of ill-posedness and possess 

better reconstruction result. The presented reconstruction model has many desir-

able properties, such as superior noise robustness, reduced computational cost, 

the improved denoising effect and better edge & structure preserving properties. 

It can also overcome the staircase effect effectively. The proposed model per-

forms well in low dose X-ray CT image reconstruction. Besides some relevant 

works of classical diffusion models, the results are also compared with some 

recently developed non-diffusion based approaches (Ghita O et. al., 2010; Pero-

na and Malik, 1990; Hongchuan yu, 2004; Yuanquan Wang, 2008; Zhang Quan 

et. al., 2013; Gui Z.g, 2013). 

Rest of the work is divided into the following sections. Section 2 pre-

sents the methods and materials of the work.  Section 3, describes the proposed 

variational framework for sinogram restoration using CONVEF-AD regularized 

statistical image reconstruction method. Section 4 presents results and discus-

sion of the simulation experiments and verifies that best results can be achieved 

by CONVEF-AD reconstruction method in both the simulated data and CT data. 

The conclusion is given in Section 5.   

5.2 Background work 

Noise modelling of the projection (or sinogram) data, specifically for low-dose 

CT, is essential for the statistics-based sinogram restoration algorithms. Low-

dose (or mAs) CT sinogram data were usually contained serious stair-case arti-

facts and follow a Gaussian distribution with a nonlinear signal de-pendent and 

signal independent noise between the sample mean and variance, To address this 

issue, several statistic-based sinogram restoration methods, such as the penalized 

weighted least square (PWLS) based and poisson likelihood (PL) based meth-

ods, have been proposed (Jing Wang et. al., 2008; Liu Yan et. al., 2012; Ma Jun, 

2010). However, these existing methods often suffer from noticeable resolution 

loss especially in the case of constant noise variance over all sinogram data 
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(Gao, Yang et. al., 2014).The formation of X-ray CT images can be modeled 

approximately by a discrete linear system as follows: 

g Af
     

(5.1) 

where  1 2, ,...., ,
T

Nf f f f  is the original image vector to be reconstructed, N is 

the number of voxels, the superscript T is the transpose operator, 

 1 2, ,...., ,
T

Mg g g g is the measured projection vector data, M is the total number of 

sampling points in the projection data,  , 1,2,..... 1,2,...., .ijA a i M and j N   is the sys-

tem matrix, relating f and g, with the size I × J, and its element ija is typically 

calculated as the intersection length of projection ray i with pixel j. 

The line integral along an attenuation path is calculated according to the 

Lambert–Beer‟s law: 

0 0ln , lni i
i i

i i

N N
g g

N N

   
    

        

(5.2)

 

where 0iN represents the mean number of X-ray photons just before entering 

the patient and going toward the detector bin i, and can be measured by system 

calibration, e.g., by air scans; iN denotes the detected photon counts at detector 

bin i with expected value iN . The approximation for the second Eq. in (5.2) re-

flects an assumption that the Lambert–Beer‟s law can be applied to the random 

values (Zhang H et. al., 2014). 

Based on the previous studies, (Zhang H et. al., 2014; Gao, Yang et. al., 

2014; Whiting Bruce et. al., 2014; Zhang et. al., 2010; Liu Li et. al., 2012; Cui 

Xueying et. al., 2014; Jing Wang et. al., 2008‟; Chen Y.et. al., 2010) found that 

two principal sources of CT transmission data noise, X-ray quanta noise (signal–

dependent compound Poisson distribution) and system electronic background 

noise (signal–independent Gaussian or normal distribution with zero mean). 

However, it is numerically difficult to directly implement these models for data 

noise simulation. Several reports have been discussed approximation of this 

model by the Poisson model (Srivastava Rajeev et. al., 2013). Practically, the 

measured transmission data I can be assumed to statistically follow the Poisson 
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distribution upon a Gaussian distributed electronic background noise (Whiting 

Bruce et. al., 2014):  

   2,i i e eN Poisson N Gaussian m  

   

(5.3) 

where em and
2

e are the mean and variance of the Gaussian distribution from 

the electronic background noise, iN  is the mean of Poisson distribution.. In real-

ity, the mean em of the electronic noise is often calibrated to be zero (i.e., „dark 

current correction‟) and the associative variance slightly changes due to different 

settings of tube current, voltage and durations in a same CT scanner (Liu Li et. 

al., 2012). Hence, in a single scan, the variance of electronic background noise 

can be considered as uniform distribution. Based on the noise model (5.3) and 

the use of the Lambert-Beer‟s law (5.2), the calibrated and log-transformed pro-

jection data follow approximately a Gaussian distribution with an associated re-

lationship between the data sample mean and variance, which can be described 

by the following analytical formula (Niu Shanzhou et. al., 2014): 

    2 2

0 0

1 1
exp 1 exp 1.25i i i e

i i

g g
N N

 
 

   
 

   (5.4) 

where 0iN is the incident x-ray intensity, ig is the mean of the log transformed 

ideal sinogram datum ig  along path i, and 
2

e  is the background Gaussian noise 

variance. In the implementation, the sample mean iy  could be estimated by 

neighborhood averaging with a 3×3 window. The parameters 0iN and
2

e can be 

measured as part of the standard routine calibration operation in modern CT sys-

tems (Zhang H et. al., 2014). 

According to previous studies (Yu, Lifeng et. al., 2015; Zhang H et. al., 

2014; Gao Yang et. al., 2014; Zhang et. al., 2010; Liu Li et. al., 2012; Cui 

Xueying et. al., 2014; Jing Wang et. al., 2008; Liu Yan et. al., 2012; Lui Doro-

thy et. al., 2013), the noisy line integral along an attenuated measurements can 

be treated as normally distributed with a non-linear signal-dependent variance 

(Liu Yan et. al., 2012; Lui Dorothy et. al., 2013). Assuming that the measure-

ments among different bins are statistically independent, the likelihood function 
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of the joint probability distribution, given a distribution of the attenuation coef-

ficients, can be written as: 

 
 

2

2

0

1
exp

2

i i

i i

g f
P g f

Z 

 
  

  


     

(5.5)

 

where 0Z  is a normalizing constant,  1 2, ,...., ,
T

Mg g g g is the is the measured pro-

jection vector data. 

Then, ignoring the constant and irrelevant terms, and by taking the negative 

log-likelihood function can be written as: 

   
 

2

2
1

ln
2

M
i i

i i

g f
L g f P g f



  
   

  


        

(5.6) 

Due to the presence of an extremely limited number of X-ray projections, 

noise and other inconsistencies in the acquired sinogram data of CT image re-

construction causes an ill-posedness problem (Chen Y.et. al., 2010). Therefore, 

the image estimation that directly optimizes the Maximum Likelihood (ML) cri-

terion can be very noisy and unstable. So researchers reformulate this problem 

with the MAP estimation by posing a prior term to penalize or regularize the 

solution. The prior term enables us to incorporate available information or ex-

pected properties of the image to be reconstructed. 

Mathematically, the MAP estimator can be expressed as: 

 * arg max
f

f P f g
      

(5.7) 

According to the Bayesian law: 

 
   

 

P g f P f
P f g

P g


      

(5.8) 

By taking the logarithm and omitting the irrelevant term the MAP estimator 

can be simplified to: 

 
         * arg max ln arg max arg max

f f f

f P f g L g f R f L g f U f              
   

(5.9) 
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where U(f) denotes a penalty, and 0  is a scalar control parameter which al-

lows one to tune the MAP (or penalized ML (pML)) estimation for a specific 

noise-resolution tradeoff. When the value of   goes to zero the reconstructed 

image from the MAP estimation approach behaves like the ML estimation. 

The SIR of low-dose CT can be considered to estimate the attenuation map 

by maximizing the MAP (or pML) criterion with a non-negativity constraint (us-

ing the calibrated transmitted photon counts): 

   *

0

arg max
f

f L g f U f


   
              

(5.10) 

or directly minimizing the objective function by variational framework (using 

the calibrated line-integrals): 

     

 
 

2

*

2
0 1

arg min
2

M
i i

f i i

g f
f U f

 

 
  

  


     
                  

(5.11) 

where  U f denotes the regularization term(e.g., the log-prior)  and  is the 

smoothing parameter that controls the trade-off between the data-fidelity 

term(e.g., the log-likelihood)  and regularization term . In next section, we pre-

sent the various possible choices available in literature for the regularization 

function or prior or penalty function  U f .  

5.2.1 Regularization strategies 

The conceptual and mathematical model of regularization strategies will be 

illustrated explicitly in this section. Without loss of generality, we assume 2D 

configuration for the regularizations, while extension from 2D to 3D is straight-

forward (in 3D presentation, voxels would be used, instead of pixels). Here, im-

age reconstruction problem can be cast into following minimization problem: 

   *

0

arg min
f

f L g f U f


        (5.12) 

Let    ,
2

U f Cf f


 , 
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 

2

2
0 1

arg min ,
22

M
i i

f i i

g f
Cf f



 

 
  

  
    (5.13) 

The first term  
 

2

2
1 2

M
i i

i i

g f
L g f




 measures the data fidelity for Gaussian 

noise and second term is a regularization function depending on the choice of C; 

 is the regularization parameter that controls the degree of smoothing or regu-

larization; and 
*f is the obtained solution i.e. the processed or denoised image 

obtained by minimizing Eq. (5.13). 

In this section, list of some possible choices of regularization function C are 

as follows:   

1. If C= Square integral of the n
th

 derivative of  f: The penalized regularization 

 function is known as a smoothing spline 

2. If C=In (Identity Matrix): The minimization problem given by Eq. (14) re-

duces to Tikhonov regularization which is in L2 framework and penalizes 

reconstructions with large L2-norm.  

3. A common choice of Cf  in CT/PET image reconstruction is the quadratic 

function written as : 

21

2
Cf f

     
(5.14) 

A disadvantage of the quadratic prior (Zhang et. al., 2010) is that it may over-

smooth edges and small objects when a large value of   is used in order to 

smooth out noise from large regions.  

4. The second type of independent prior is based on the entropy function 

(Wang Guobao et. al., 2011), whose corresponding energy function (f) can 

be described as: 

lnj j

j

Cf f f      (5.15) 

Basically, these two priors have the tendency to smooth both high-frequency 

edge regions and low-frequency background, so they cannot explicitly en-

force smoothness in the image (Gui Z.g, 2013). 
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5. The third type of independent prior is the Gaussian prior (Zhang Quan et. al., 

2013), whose energy function has the form: 

 
2

22

j j

j j

f f
Cf




      (5.16) 

where jx and 2

j are the mean and variance respectively, and when 0jf   it re-

duces to Eq. (5.16). 

6. Similarly, the Gamma prior (Yuanquan Wang, 2008) allows only non-

negative image values and can be a more natural model for an image: 

 , ,j jj

j

Cf f f      (5.17) 

Where  , ,j jjf f  is a Gamma PDF. 

Basically, the Gaussian and Gamma priors encourage the neighbouring pixel 

values to be close to the mean image. Thus, the determination of the mean 

image has a significant effect on the reconstructed image (Yuanquan Wang, 

2008). Some researchers investigated a new approach to estimate the mean 

image during the reconstruction using either the median or the mean of 

neighbouring pixels. However, in these cases, the priors are no longer truly 

independent. 

7. The Tikhonov regularization is obtained by minimizing following: 

 
2

2*

2
0 1

arg min
22

M
i i

f i i

g f
f f



 

  
  

  
    (5.18) 

8. If Cf f  : defined as Total Variation (TV), then L1 norm of the second 

term in minimization problem given by Eq. (5.13) reduces to TV regulariza-

tion (Zhang et. al., 2013). The TV penalized Gaussian maximum likelihood 

estimation is obtained by minimizing following Eq.: 

 
2

*

2
0 1

arg min
2

M
i i

f i i

g f
f f

 

  
   

  
    (5.19) 

9. If
2Cf f  : defined as Laplacian L2 framework , the Laplacian penalized  
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Gaussian maximum likelihood estimation is obtained by minimizing fol-

lowing equation: 

 
2

* 2

2
0 1

arg min
2

M
i i

f i i

g f
f f

 

  
   

  
    (5.20) 

If
2

Cf f  : defined as anisotropic diffusion in L2 norm. Therefore, the se-

cond term in minimization problem given by Eq. (5.13) reduces to aniso-

tropic diffusion regularization (Perona and Malik, 1990) which may also be 

converted to nonlinear complex diffusion (Srivastava Subodh et. al., 2012) 

regularization after modification. The anisotropic diffusion penalized 

Gaussian maximum likelihood estimation is obtained by minimizing fol-

lowing: 

 
2

2*

2
0 1

arg min
22

M
i i

f i i

g f
f f



 

  
   

  
    (5.21) 

10. If 
2

2Cf f  : defined as Fourth order PDE. Afterwards, the second term in 

minimization problem given by Eq. (5.13) reduces to Fourth order PDE 

(Huaibin Wang et. al., 2012) regularization. The fourth order PDE penalized 

Gaussian maximum likelihood estimation is obtained by minimizing follow-

ing: 

 
2

2
* 2

2
0 1

arg min
22

M
i i

f i i

g f
f f



 

  
   

  
    (5.22) 

Another form of priors assumes that the attenuation maps are locally smooth, 

i.e., the neighbouring pixels tend to have similar values.  

11. One simple mathematical model that can describe this property is the Mar-

kov random field (MRF) model, also known as Gibbs distribution (Srivasta-

va Subodh et. al., 2012) is defined as:  

   
1

expC f U f
Z

   
            

(5.23) 

where Z  is a normalizing constant.  
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12. Conventionally, the quadratic penalty value U(f) is computed through a 

weighted sum of  equal-distanced neighborhood pixels which is defined as : 

      
2

1

2
j

jm j m

j m W

U f w f f


       (5.24) 

which corresponds to the Gaussian MRF (GMRF) prior (Zhang H et. al., 

2014) that has been widely used for SIR. A major drawback of the GMRF 

prior is that it can excessively penalize the differences between neighbouring 

pixels when jf and 
mf fall across a discontinuous boundary in the image, thus 

may lead to over smoothing of edges and fine structures in the reconstructed 

image. To mitigate this issue, some researchers replaced the quadratic poten-

tial function with non-quadratic functions that increase less rapidly for suffi-

ciently large differences. In this way, the corresponding priors are expected to 

remove noise while retaining sharp edges in the reconstructed image. 

13. Another family of convex function prior is q-generalized Gaussian MRF 

prior (q-GGMRF) (Ma Jun, 2010), which can be described as: 

   1 2
1

p

p q
C q p





    

 
    (5.25) 

 By giving specific parameter values, it can become:  

 

 

 

 

 

 

2

2

, 2,

, 1,

, 1 2,

, 1, 2,
1

, 1 2,
1

p

p

p q

q p Gaussian prior

q p median pixel prior

q p generalized Gaussian MRF

C q p approximate Huber prior

q p q generalized Gaussian MRF






  

  


   


     
 


    

  



(5.26) 

14. In Median root Prior (MRP), intensity differences among neighbouring pix-

els are not penalized. Instead, the penalty is set according to how much the 

central pixel differs from the local median. Mathematically, the MRP can be 

described as (Ma Jun, 2010): 

 
  

 

2

j j

j j

f median f
U f

median f


      (5.27) 
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where  jmedian f is the local median. Therefore, no penalty is applied when the 

image is locally monotonic, and only non-monotonic local changes among 

neighbouring pixels are penalized. Although the MRP captures significant 

edges while encouraging preservation of locally monotonic regions, it is a 

heuristic empirical method and not convex in theory. 

15. Recently, a new signal reconstruction theory, compressed sensing (CS) 

(Chun I Y and Talavage T M, 2013), has been rigorously formulated to ac-

curately reconstruct a signal from much fewer samples than that is required 

by the Nyquist sampling theorem (Yuanquan Wang, 2008). The main idea of 

CS is that most signals are sparse in appropriate orthonormal systems, that 

is, a majority of their coefficients are close or equal to zero. Researchers 

tried to apply this theory to accurately reconstruct CT images at a much low-

er angular-sampling rate than the Nyquist sampling, but the CT images are 

generally not sparse in their original pixel representation (Srivastava R, 

2010). 

Mathematically, the CS method reconstructs an image via the Lp norm (0 ≤ p 

< 2) minimization. Herein, for a vector f , || f ||0 represents the L0 norm of 

vector f which counts the number of nonzero components of f , and || f ||p (p 

> 0) denotes the Lp norm of vector f which is defined as: 

   

1 p

p pp

j jp p
j j

f f f f
 

   
 
     (5.28) 

It should be noted that || f ||p is not actually a norm when 0 ≤ p < 1 because it 

is not sub-additive, yet we still refer it as norm following convention (sort of 

abuse of terminology). 

16. The next choice is total-variation (TV) which is widely used penalty func-

tion in image reconstruction that avoids smoothing of salient details (Ghita, 

O et. al., 2010), which is given as the 1-norm of the gradient of the solution. 

Regularization with the TV penalty results in smoothing of weakly varying 

details and preservation of salient (having strong variation) details such as 

edges: 
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      2C f f T T  
    

(5.29) 

where, T is a thresholding  parameter. Another methods to reduce the amount 

of noise present in the images, we used a high performance spatially adaptive  

17. Block matching 3D filter (BM3D), (Wang G. et. al., 2012) which is used for 

the noise removal. BM3D is based on the assumption that a noise-free image 

spectrum of similar image fragments group can be better approximated as a 

combination of a few spectrum elements than a single image fragment 

(Wang G. et. al., 2012). Afterwards, a patch-based regularization proposed 

by (Wang G. et. al., 2012). 

18. Traditional regularizations penalize image roughness based on the intensity 

difference between neighbouring pixels, but the pixel intensity differences 

may not be reliable in differentiating sharp edges from random fluctuation 

due to noise. To address this issue, Probabilistic Patch-Based (PPB) regular-

izations proposed by (Wang G. et. al., 2012) which utilize neighborhood 

patches instead of individual pixels to measure the image roughness. Since 

they compare the similarity between patches, the patch-based regularizations 

are believed to be more robust in distinguishing real edges from noisy fluc-

tuation. The patch-based roughness regularizations are defined as: 

      2,
1

j

j

n

jk j k c
j k SW

U f w C f x f x
 

  
   

(5.30) 

where 1jkw  , or 1jk jkw d  and  jf x and  kf x is the feature vector consisting of 

intensity values of all pixels in the patch centred at pixel j and k respectively. 

A wide variety of regularization methods has been discussed in this sec-

tion such as the quadratic membrane (QM) (Zhang Quan et. al., 2013) prior, 

Gibbs prior (Gui Z.g, 2013), entropy prior (Srivastava R, 2010), Huber prior 

function (Yang Chen, 2008), total variation (TV) prior (17], and some edge-

preserving priors. These priors were able to preserve sharp edge information 

by choosing a non-quadratic prior (Wang G. et. al., 2012; Wang Guobao et. 

al., 2011; Ma Jun, 2010; Rajeev Srivastava, 2010; Srivastava R, 2010). How-

ever, in the case of low X-ray scan where the noise level is relatively signifi-

cant, such edge-preserving quadratic and non-quadratic priors tend to pro-

duce blocky piecewise regions or staircase artifacts. None of these priors ad-
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dresses the information of global connectivity and continuity in objective im-

age. Only local and in discriminatively prior information is provided. Thus, 

to address these drawbacks in the existing priors, here we proposed a new 

variational framework for sinogram restoration in case of low-dose X-ray CT 

reconstruction in the next section. 

5.3 The Proposed variational framework for sinogram restora-

tion 

In this section, we present a new variational model of sinogram restoration 

based on the choice of proposed regularization function. The proposed prior is 

an extension of nonlinear AD based filter. It uses the concept of Convex virtual 

field (abbreviated as: CONVEF) to deal with case of mixed noise in the sino-

gram data. In addition to denoising signal dependent Gaussian noise the sino-

gram data may also contain some other additive noise such as quantum or back-

ground noise which we can defined as signal independent Gaussian noise. For 

simplicity, we can say that low-dose sinogram data are corrupted with mixed 

type noise i.e. signal dependent and signal independent Gaussian noise. There-

fore, the proposed regularization term is well capable of handling such type of 

noise effectively and efficiently. 

In this work, we incorporate a novel CONVEF based P-M anisotropic diffu-

sion term into an energy function for statistical sinogram smoothing. The energy 

minimization function is used to obtain sinogram smoothing. In variational 

framework (Ghita, O et. al., 2010), the minimization problem given by Eq. 

(5.13) can also be defined as: 

      *

0

arg min
f

f E f


                  (5.31) 

where the energy functional is described as follows: 

     1 2E f E f E f      (5.32) 

In Eq. (5.32),  1E f is known as a data fidelity term or data energy, which en-

sures the consistency between the ideal projection data f and the measurement g. 
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 2E f is a regularization term or smoothness energy. The parameter   is intro-

duced to control the degree of agreement between the estimated and the meas-

ured data. 

In the MRF framework, the data energy comes from ignoring the constant 

and irrelevant terms and by taking the (negative) log-likelihood function of the 

observed projection data (Chen Y.et. al., 2010).According to the noise model, 

the joint probability distribution of the projection data which can also be ex-

pressed in Eq. (5.33) as: 

   
 

2

22
1 1

1
exp

22

M M
i i

i i

i i ii

g f
P g f P g f

 

 
   
 
 

 

  

(5.33)

 

where  1 2, ,...., ,
T

Mg g g g is the measured projection vector data. Then, ignor-

ing the constant and irrelevant terms, the negative logarithm function can be 

written as: 

 
 

2

1 2
1

( ) ln
2

M
i i

i i

g f
E f P g f



  
   

  


         

(5.34) 

In the MRF framework, the smoothness energy comes from the negative log 

likelihood of the priori (Zhang et. al., 2010). In this work, we choose nonlinear 

CONVEF based P-M anisotropic diffusion regularization term for two reasons. 

One is that, due to the integral nature of the edge-preserving MRF priori, does 

not suit well for high continuity of the projection data. Another is that the 

smoothness energy  2E f has a quadratic form (thus convex) and a prior model 

like CONVEF based P-M anisotropic diffusion permits an optimal solution of 

Eq. (5.31) in a computationally acceptable time. With MRF, the smoothness en-

ergy has the form as: 

    2

2 arg minE f f d 


       (5.35) 

where  2
f  is defined as gradient norm of image corresponding energy 

function. The solution of the proposed sinogram smoothing of Eq. (5.32) can be 

described by substituting Eq. (5.34) and (5.35) to Eq. (5.32), we get: 
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   
 

 
2

2

2
0 1

arg min
2

i

M
i i

f i y

g f
E f E f f d

  

  
     

  
    (5.36) 

The functional  E f is defined on the set of  f BV   such that  1log f L 

and f must be positive everywhere. After minimizing Eq. (5.36) using Euler–

Lagrange minimization technique combined with gradient descent approach, the 

solution to above Eq. (5.36) can be written as: 

 
  2

, 0
i i

t

i

g f f
f div c f f with on

n




 
     


  (5.37) 

where div is the divergence operator and is the gradient operator,   00t
f f


 is 

the initial condition for noisy image. The diffusion coefficient  c  is a nonnega-

tive function of the image gradient. Generally  c  takes as: 

    2

1 expc f f k     and     2

2 1 1c f f k    (5.38) 

where k is a conductance parameter also known as gradient magnitude 

threshold parameter that controls the rate of diffusion and the level of contrast at 

the boundaries. Since the scale-space generated by these two functions is differ-

ent. The diffusion coefficients, 1c  favours high contrast edges over low-contrast 

ones while 2c favours wide regions over small ones. Moreover, when the value 

of k is a small, weak edges will be preserved but the denoising capability is 

weak. Conversely, the denoising capability is strong but weak edges and fine 

details will be smoothed as well when k is a large value. 

From the literature (Perona and Malik, 1990; Hongchuan yu, 2004; Yu-

anquan Wang, 2008; Zhang Quan et. al., 2013; Gui Z.g, 2013; Buyle P et. al., 

2007; Srivastava R, 2010), it is well known that in nonlinear AD prior diffusion 

is controlled by a variable coefficient in order to preserve edges. This prior is 

typically used as a feature-preserving denoising algorithm. However, P-M diffu-

sion model can remove isolated noise and preserve the edges up to some extent. 

But, it cannot preserve the edge details effectively and accurately, therefore 

tends to cause blocking staircase effect. Its performance is worst for very noisy 

images. It‟s smooth of an image near pixels with a large gradient magnitude 
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(i.e., at the edge pixels). Thus, noise at edges cannot be removed by permitting 

more diffusion along the edge than across it. To address these limitations of AD 

method as prior, here the CONVEF based P-M anisotropic diffusion process is 

introduced as a second term in the above mentioned (in Eq. 5.37) regularization 

framework. The expanded form of the second term i.e. AD based prior (Yu-

anquan Wang et. al., 2010), which is defined as:  

    2div c f f f c f f            (5.39) 

where,  

 c f f f    

 

= An inverse diffusion term used for enhance or sharpen the 

boundaries, 

  2c f f 
 

= Laplacian term used for smoothing the regions that are 

relatively flat, 

∇f = A term used to displace the inverse diffusion term to im-

prove the denoising effect, as the GVF field basically im-

plements a weighted gradient diffusion process. 

Since, the GVF-based P–M Eq. is vulnerable when the image data is corrupt-

ed by both poisson and Gaussian noises. As a solution to this, an Inverse GVF 

(INGVF) based P–M model (Ghita, O et. al., 2010), which shows more stability 

in the presence of poisson and Gaussian noises, was developed. However, both 

the GVF and INGVF need a complicated computation process and their noise 

robustness is not always guaranteed. To deal with this issue while still preserv-

ing strong and weak edges, here the inverse diffusion term based on CONVEF 

AD is redesigned to improve the P–M equation. The CONVEF is equivalent to 

gradient diffusion, just like the GVF and INGVF, but it performs better than the-

se two fields. Thus, we have used here a CONVEF-based P–M Eq. defined as: 

         0 0 1 0

2

CONVEF1 E
t t

f IN f med f f IN f f c f


          (5.40) 

where 0
f is the input noisy image, 1tf   is the updated f at iteration t − 1. IN (

0
f ) is the signal dependent and signal independent Gaussian estimator defined 
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in (Baodong Liu., 2011), med is the median filter and CONVEFE denotes the Convo-

lutional Virtual Electric Field defined as follows (Ghita, O et. al., 2010):  

2 2
,CONVEF n n

h h

a b
E q q

r r 

 
     
 

    (5.41) 

where,  

2 2

hr a b h  

 

= An effective kernel that modifies the distance metrics,  

h = The factor which plays a role analogous to scale space fil-

tering,  

a and b = Virtual electric field in the image pixel, and  

q = Magnitude of the image edge maps.  

 

The larger the value of h, greater is the smoothing effects on the results; on 

the other hand, the larger the value of n, faster is the potential decay with dis-

tance and vice versa. These properties allow the CONVEF snakes to preserve 

edges and to tell apart two closely-neighbored objects with large n and to enter 

into C-shaped concavities with small n. 

In Eq. (5.39), second order derivative of P-M Eq. is computed. To solve this 

complexity of deriving second derivative Eq. (5.40), in which E is determined 

before image evolution and only f needs to be computed directly from the ob-

served image in the inverse diffusion term, is proposed. The proposed model 

have advantages of both GVF and INGVF-based P–M equation, such as robust 

estimation of high-order derivative and numerical stability improvement. 

Therefore, the proposed model Eq. (5.39) will benefit from the computational 

cost and it may effectively remove mixed noise i.e. signal dependent and signal 

independent present in low dose sinogram data. The above discussed model in 

Eq. (5.40) could be broken in two parts according to the type of noise properties. 

For example, if the pixels in image are corrupted by impulse or electronic noise 

(IN ≈ 0), then the output of the image enhancement process shown in Eq. (5.40) 
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approximates the output of the median filter, and the discrete implementation of 

Eq. (5.40) becomes 

  1 0 1t t t tf f d med f f        (5.42) 

where td  denotes the time step. If the pixels in image are corrupted by 

Gaussian noise (IN ≈ 1), then the discrete implementation of Eq. (5.40) equiva-

lent to: 

 2

1 1 1 1 .t t t t t t CONVEF t tf f d f f d E f c f            (5.43) 

After introducing the concepts of above mentioned CONVEF-AD based ap-

proach adapted to mixed noise reads as: 

 
    2

2
, 0

i i

i

g ff x
c f f f c f f with on

t n




 
         

 
(5.44) 

This model is capable of dealing with the case of mixed noise sinogram data. 

Now applying the solution of CONVEF AD using Eq. (5.44). The proposed 

model in Eq. (5.39) can be re-written as follows: 

 
          0 0 1 0

2

2
1 ,

t

i i

i

g ff
IN f med f f IN f E f c f

t






         


(5.45) 

where IN ≈ 0, for image are corrupted by impulse or electronic noise and IN 

≈ 1,for image are corrupted by signal dependent Gaussian noise.  The value of k 

is set to e which is minimum absolute deviation (MAD) of the gradient of an 

image. The adaptive value of k is estimated as: 

 1.4826e f fk median f median f       
    (5.46) 

Using gradient descent to solve Eq. (5.45), the solution is obtained by 

 

 
          0 0 0

1

2

2
1 ,

i i

t t

n n

n n n n n

n

i

g f
f IN f med f f IN f E f c f





           

(5.47) 
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where the index n represents the iterative number. For digital implementa-

tions, the Eq. (5.47) can be discretized using finite differences schemes (Sri-

vastava Rajeev et. al., 2013). After discretization of the proposed modified 

CONVEF AD model, given by Eq. (5.47), reads 

 
 

          , ,

0 0 0
1

1

, , 2

2

,

1 ,
i j i j

t

n nn n

i j i j n n n n

n

i j

g ff f
IN f med f f IN f E f c f

t





 
         



         (5.48) 

 
 

          , ,

0 0 0
1

1 2

, ,
2

,

1 ,
i j i j

t

n n

n n n n n n

i j i j n

i j

g f
f f t IN f med f f IN f E f c f






 
            
 
 

         (5.49) 

For the discretized versions of Eq. (5.48) & (5.49) to be stable, the von Neu-

mann analysis (Srivastava Rajeev et. al., 2013) shows that we require 2 1( )
4

t f   . 

If the grid size is set to 1f , then the value of t is set to 1 4t  . Therefore, the 

value of t is set to 1 4 for stability of Eq. (5.49). 

Proposed Algorithms: 

The Pseudo code for the proposed framework can be summarized as: 

CONVEF-AD based Sinogram Restoration Step 

1. Initialize: 
2

0 0, , , ; 20;eg N Niter   ; 

2. for j=1,2,….,N (Data variance estimation) 

3. jg  = measured projection data 

4. 3 3
ˆ 9;

i
i jj N

g g
 (Mean of projection data over 3 3 window) 

5.     2 2

0 0

1 1
exp 1 exp 1.25i i i e

i i

g g
N N

 
 

   
 

; 

6. end for 

7. Calculate the gradient coefficient: 

 
2

exp
f

c f
K


   
    
   
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where 
    

2
2exp j m

E

jm

jm

f n f n h

d


 

  

8. Calculate the gradient magnitude threshold: 

9.  1.4826e f fk median f median f       
 

 

10. Initialize: 0, , , , ;a b q h r n  

11. while (stop criteria is not met) 

12. Calculate: 
2 2

,CONVEF n n

h h

a b
E q q

r r 

 
     
 

;  

13. For l=1,2,…..,L; (AD Gradient Descent) 

14.  
 

          , ,

0 0 0
1

1 2

, ,
2

,

1
i j i j

t

n n

n n n n n n

i j i j n

i j

g f
f f t IN f med f f IN f E f c f






 
            
 
 

; 

15. update:  

 
2

exp
f

c f
K


   
     
   

   

16. update: 

17.     2 2

0 0

1 1
exp 1 exp 1.25i i i e

i i

g g
N N

 
 

   
 

 

18. end for; 

19. End if stop criteria is satisfied. 

20. Repeat Steps A and B until Eq. (5.49) converges to a relative stable solu-

tion. 

21. Reconstruct the object image using FBP from the smoothed sinogram 

obtained from step 20. 

5.4 Results and Discussions 

In this work, two test cases are used shown in Fig. 5.1, both are computer gener-

ated mathematical simulated modified Shepp-Logan head phantom and hot and 

cold phantom utilized to validate the performance of the proposed CONVEF-

AD based sinogram smoothing method for low-dose CT reconstruction. For 

simulation study MATLAB 2013b software was used on a PC with Intel(R) 

Core (TM) 2 Duo CPU U9600 @ 1.6GHz, 4.00 GB RAM, and 64 bit MS win-

dow operating system. The brief description of the various parameters used for 
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generation and reconstruction of the two test cases are as follows: Both test cas-

es are of size 128 x128 pixels and 120 projection angles were used. To simulate 

the noisy low-dose sinogram data, Eq. (5.3) was used, which is in mixed noise 

nature i.e.  Both signal dependent and signal independent Gaussian distributed 

and all assumed to be 128 radial bins and 128 angular views evenly spaced over 

1800. A mixed noise of magnitude 10% is added to sinogram data. In simulation 

purposes fan-beam imaging geometry were used. By applying radon transform 

noise free sinogram were generated which is shown in Fig. 5.2(b) and 5.3(b). 

After that isolated data from the noisy sinogram which are shown in Fig. 5.2(c) 

and 5.3(c), were extracted by applying a 3x3 median filter and select the output 

as an initial estimator. Also compute the mean and variance by using Eq. (5.4) 

and then calculate the gradient coefficient by applying Eq. (5.38). The value of 

conductivity coefficient k (kappa) was set to 0.033 to 1.0 for different test cases 

and within each MLEM step, AD is run for 3 iterations.  

The value of   was set to 0.24 and the value of diffusion coefficient (Kappa) 

used by proposed CONVEF-AD based prior was set to 0.033 to 1.0 for different 

test cases, within each iteration during sinogram smoothing. Update the value of 

estimation pixel by pixel using Eq. (5.18) until not reaches to a relative conver-

gence. The reconstructed images generated by different algorithms are shown in 

Fig.5.2 (d, e, f) & 5.3(d, e, f) respectively. From the figures, we can see that the 

proposed algorithm has well performance of noise removal and edges preserva-

tion especially the thin edges and detail information. At the same time, we can 

observe that the CONVEF-AD algorithm overcomes the shortcoming of streak 

artifacts and the reconstructed image is more similar to the original phantom. In 

our study, the suitable value for iteration number N is 15 because visual result 

hardly changes for further iterations. The graphs are plotted for SNR, RMSE, 

CP, and MSSIM along with number of iterations for different algorithms are 

shown in Fig. 5.4-5.7, for two different test cases. From Fig. 5.4, it is observed 

that the SNR, values associated with the proposed method is always higher than 

that produced by other algorithms such as Total variation (TV) and Anisotropic 

Diffusion (AD) priors with traditional Filtered Back-projection (FBP), which 

indicates that the CONVEF-AD with FBP framework significantly improves the 

quality of reconstruction in terms of SNR, RMSE, CP, and MSSIM values. Fig-
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ure 5.5 shows that the RMSE values of proposed method are higher in compari-

son to other methods which indicate that the proposed method is performing bet-

ter. Figure 5.6 shows that the CP values of proposed method are higher and 

close to unity in comparison to other methods which indicate that the proposed 

method is also capable of preserving the fine edges and structures during the re-

construction process. Figure 5.7, shows that the MSSIM values of proposed 

method is higher which indicate that better reconstruction; it also preserves the 

luminance, contrast and other details of the image during the reconstruction pro-

cesses. 

 

Fig 5.1: The phantoms used in the simulation study, Modified Shepp-Logan phantom 

(128 x 128 pixels), CT Test phantom (128 x 128 pixels) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 5.2: The Modified Shepp-Logan phantom with different reconstruction methods 

from the noise-free and noisy data.Original Shepp-Logan phantom, (b) noise free 

sinogram (c) noisy sinogram (d) reconstructed image by TV+FBP, (e) reconstructed re-

sult by AD+FBP, (f) reconstructed result by CONVEF_AD+FBP 

Shepp-Logan Phantom Sinogram Noisy Sinogram

Final Restored Result Final Restored Result Final Result
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 5.3: The CT phantom with different reconstruction methods from the noise-free and 

noisy data. Original Shepp-Logan phantom, (b) noise free sinogram (c) noisy sinogram 

(d) reconstructed image by TV+FBP, (e) reconstructed result by AD+FBP,  (f) 

reconstructed result by CONVEF_AD+FBP 

 

  

Fig. 5.4: The Plots of SNR along with No. of Iterations for different 

reconstruction algorithms for Test case 1 
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Fig. 5.5: The Plots of RMSE along with No. of Iterations for different 

reconstruction algorithms for Test case 1 

 

  

Fig. 5.6: The Plots of CP along with No. of Iterations for different 

reconstruction algorithms for Test case 1 
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Fig. 5.7: The Plots of MSSIM along with No. of Iterations for different 

reconstruction algorithms for Test case 1 

5.5 Conclusion 

In this work, proposed an efficient method for statistical sinogram smoothing for 

low-dose X-ray CT reconstruction. The proposed method is modelled into a var-

iational framework. The solution of the method, based on minimization of an 

energy functional, which consists of two terms viz. data fidelity term and a regu-

larization function.  The data fidelity term was obtained by minimizing the nega-

tive log likelihood of the signal dependent Gaussian probability distribution, 

which depicts the noise distribution in low dose X-ray CT. The second term i.e. 

regularization term was a non-linear CONVEF-AD (CONvolutional Virtual 

Electric Field Anisotropic Diffusion) based filter, an extension of Perona–Malik 

(P–M) anisotropic diffusion filter. The role of regularization function was to re-

solve the ill-posedness of first term. The proposed method was capable of deal-

ing with both signal dependent and signal independent Gaussian noise i.e. mixed 

noise. For experimental purpose, two different sinograms generated from test 

phantom images are used. The comparative study and performance evaluation of 

the proposed method with other standard methods is also presented. The ob-

tained results indicate that the proposed method possess better mixed noise re-

moval capability than other methods in low dose X-ray CT. 

  


