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CHAPTER 4 

A HYBRID-CASCADED ITERATIVE 

FRAMEWORK FOR PET AND SPECT 

IMAGE RECONSTRUCTION  

In this chapter, we have discussed the major drawbacks associated with 

statistical iterative reconstruction algorithms which include the problem of slow 

convergence, choice of optimum initial point and ill-posedness. To alleviate the-

se issues, three different hybrid cascaded frameworks based on statistical itera-

tive reconstruction algorithms (e.g. MLEM, MRP, and OSEM) have been pro-

posed for PET and SPECT imaging modalities. Their performances are evaluat-

ed on computer generated test phantoms and standard thorax real test image. 

The obtained results are compared with those of previously reported methods. It 

is observed that the proposed methods perform better in terms of visual image 

quality and detail preservation.  

Rest of the work is organized as follows: Section 4.1, present the intro-

duction of statistical iterative methods with their advantages and limitations. 

Section 4.2 presents the theoretical background of the proposed framework, 

Section 4.3 and their subs-sections, presents the proposed methods and model; 

Section 4.4, presents the results and discussions. Finally presents the conclusion 

of the work. Finally the overall comparisons of the proposed framework with 

common datasets used in this thesis are stated in section 4.5.    
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4.1 Introduction 

Today, a wide range of different medical imaging modalities can be found in 

radiology. These modalities allow the radiologist to view, usually three dimen-

sional, the internal structures of the human body for investigating accurate func-

tional and anatomical information in a non-invasive way. The use of various 

non-invasive techniques (Marcel Beister et. al., 2012) has greatly reduced risks 

to patients and has increased our understanding of how the body works.   

SIR method have shown great potential to replace traditional analytical 

methods like FBP which take into account of statistical properties of the data 

have been shown to be superior in suppressing noise and streak artifacts. Statis-

tical iterative reconstruction (SIR) (Qi J et. al., 2006) methods reconstruct imag-

es by iteratively maximizing likelihood function. Examples are MLEM (Shepp 

and Vardi, 1982), Median Root Prior (MRP) (Green PJ et. al., 1990), Ordered 

Subsets Expectation Maximization (OSEM) (Hudson and Larkin, 1994) and 

their variants (Xu Lei et. al., 2007). It plays an important role on the quality of 

the images produced by PET/SPECT since they can perform better with noisy, 

incomplete data, accurate system modeling, image prior knowledge, and as an 

alternative to both the analytical and algebraic methods, being less sensitive to 

noise and sparse view inputs. However, the major drawbacks associated with 

statistical algorithms are their slow convergence, the choice of an optimum ini-

tial point, and ill-posedness.  

Nowadays, OSEM (Ordered Subset Expectation Maximization) has be-

come the most widely used iterative methods in Emission computed tomography 

(ECT) (Jinyi Qi et. al., 2006). Image reconstruction algorithms play a significant 

role in many ECT devices. In order to obtain a high quality reconstructed imag-

es from the collected projection data, an excellent image reconstruction algo-

rithm is needed. ECT image quality is dependent on a number of parameters in 

the acquisition of the projectional raw data, such as the intrinsic resolution of the 

camera, choice of collimator, geometry of the gantry set-up, timing of the study 

acquisition, and patient-derived factors such as body habitus and movement dur-

ing study acquisition (Jinyi Qi et. al., 2006). ECT produces an accurate measure 

of spatial distribution of radioactive substances throughout the patient to extract 
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physiological or functional information. The rate of radioactive emissions can 

best be described by a Poisson process (Rajeev Srivastava et. al., 2013). There-

fore, the noise properties of emission tomography are also spatial-variant in na-

ture. (Hudson and Larkin, 1994) proposed an alternative version of maximum 

likelihood approach called OSEM and it is widely used by modern ECT clinical 

scanners together with MLEM. They showed that their refinements accelerate 

the iteration process by a factor proportional to the number of subsets. But, the 

quality of the reconstructed image with OSEM still remains same as MLEM and 

it also suffers from the problem of initialization and ill-posedness. So, there has 

to be an optimum starting point and optimum stopping rules are needed, which 

stops the reconstruction process well in time before we over run the algorithm as 

well as to maintain the visual quality of the reconstructed images. In this work, 

we continue the discussion on the solution of these problems. 

Firstly, the discussion related to selection of an optimum initial point 

which affects the above stated problems directly. The initialization of the algo-

rithm can have a great influence on the final solution of the reconstructed image. 

By choosing the right point for the algorithm one can avoid the case of running 

into stagnation. If the chosen point is closer to the best result, then the algorithm 

will have to put lesser effort into reaching to the result and the same number of 

iterations will yield a better looking image. Also, while choosing the initial im-

age as any random collection of pixels, we might run away from the desired re-

sult and reconstruction might not be able to reproduce the desired image. In such 

cases, the image will contain patches of noisy areas. Secondly, the issue related 

to ill-posedness nature of iterative algorithms, which can be tuned to a well-

posed by using suitable regularization term. To incorporate a suitable regulariza-

tion term within a reconstruction framework is to control the noise propagation 

and to produce a reasonable reconstruction. The most common widespread regu-

larization techniques are available in (Quan Zhang et. al., 2013; Qian He et. al., 

2014; Zhu Hl et. al., 2006). 

Here, in figure 4.1 presents, a new Generalized Hybrid-Cascaded Frame-

work for PET/SPECT Image Reconstruction. The proposed frameworks reduce 

the number of iterations as well as improve the quality of reconstructed. This 

method speeds up the process by using a fast reconstruction algorithm first and 
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then switches to a slower but more precise algorithm. Additionally, regulariza-

tion term anisotropic diffusion proposed by Perona and Malik (Perona and Ma-

lik, 1990) is combined to maximize the likelihood function.  The proposed 

method solves computational time, slow convergence as well as ill-conditioned 

problem of SIR methods. Numerical simulation experience demonstrates that 

proposed hybrid cascaded reconstruction algorithm is superior in performance to 

the MLEM, MRP, OSEM or SART alone as well as other state-of the- art hybrid 

iterative reconstruction methods available in literature.  

3.  

Fig. 4.1: Generalized Hybrid-Cascaded Framework for PET/SPECT Image 

Reconstruction 

To address above mentioned issues of initialization and ill-posedness, in this 

work, an efficient hybrid-cascaded framework is proposed for improving the 

quality of SPECT/PET images. This framework consists of breaking the recon-

struction process into two parts viz. primary and secondary. Primary and sec-

ondary reconstruction parts work in a cascaded manner. Output from primary 

reconstruction is fed into secondary reconstruction. This allows us to use more 

than one algorithm for reconstruction and extract the benefits of both. With a 

cascaded network, we attain performance superior than either of the two algo-

rithms used alone. 
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4.2 Background 

 Brief discussion about MLEM 

MLEM is one of the most widely used iterative methods for PET/SPECT recon-

struction (F. Benvenuto et. al., 2008; Quan Zhang et. al., 2013). MLEM is based 

on a Poisson model in the image reconstruction process and typically used in 

conditions that the measured projection data contains a lot of noise due to lim-

ited photon statistics. This algorithm computes the maximum-likelihood esti-

mate (ML) of a probability distribution function in a reconstructed image from 

the measured projection data via an expectation maximization algorithm (EM). 

The major advantages of SIR based MLEM method is that it has better recon-

struction capability, i.e. produces good quality reconstructed image, but is asso-

ciated with the problem of initialization and slow convergence. In this work, we 

continue the discussion on the solution of these problems as follows:  

First issue related to MLEM algorithm is the initialization of the algorithm 

and their slow convergence which can have a great influence on the final solu-

tion of the problem, as there can be several issues in statistical iterative recon-

struction algorithms such as huge computational burden associated with the 

multiple re-projection and back-projection operation cycles through the image 

domain, complex physics and noise modeling. The problem of choosing an op-

timum initial point affects the above stated problems directly. If the chosen point 

is closer the best result, then the algorithm will have to put lesser effort into 

reaching to the result and the same number of iterations will yield a better look-

ing image. Also, while choosing the initial image as any random collection of 

pixels, we might run away from the desired result and reconstruction might not 

be able to reproduce the desired image. In such cases, the image will contain 

patches of noisy areas. 

A second major issue related to the ill-posedness. During reconstruction pro-

cess, Poisson noise effectively degrades the quality of reconstructed image. 

However, it can be tuned to a well-posed problem by means of regularization. 

Regularization means the use of some additional function in such a way that the 

final image is a compromise between the data and the object as it is expressed 

by the regularization function. To incorporate a suitable regularization term 
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within a reconstruction framework is to control the noise propagation and to 

produce a reasonable reconstruction. Numerous edge preserving priors have 

been proposed in the literature (Chen Y et. al., 2006; Lange K et.al., 1990; Den-

isova NV et.al., 2004; Chlewicki W et. al.,  2004; Panin VY et. al., 1999; Pero-

na and Malik, 1990; Rajeev Srivastava et. al., 2013; Liang Z et. al., 1989; Nunez 

J et. al., 1990; Fessler, 2006; Herman and Levitan, 1987; Chen G-H et. al., 

2008; Chun I Y et. al., 2013; Kang D et. al. 2013; Wang G et. al., 2012; Z. G. 

Gui et. al., 2012; D. Kazantsev et. al., 2012) to produce sharp edges while sup-

pressing noise within boundaries. The most common widespread regularization 

techniques are penalized-likelihood reconstruction algorithm (Jun Ma, 2010), or 

maximum-a-posteriori reconstruction (MAP) (Herman and Levitan, 1987), and 

the one-step-late algorithm (Green PJ et. al., 1990) used to reduce noise effect 

and preserving the edges. A median root prior (MRP) is to encourage preserva-

tion of the piecewise contrast region while eliminating impulsive noise, but re-

constructed images still suffer from streaking artifacts and Poisson noise. Work 

in this direction in the context of PET/SPECT has focused primarily on modifi-

cations and improvements of MLEM with different regularization terms (Chung 

Chan et. al., 2009).  

To maximum a posterior (MAP) estimator, the reconstructed image can be 

obtained by maximizing the log-likelihood function L(f), i.e.,                 

   
0

arg max
f

L f L f


      (4.1)  

To solve the optimization problem of iterative methods given by Eq. (4.1), 

(Shepp and Vardi, 1982) proposed the MLEM algorithm, and the iterative for-

mula can be described as follows: 

1

1
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k I
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 
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  for  j = 1, 2,. . . . , N.  (4.2) 

Although MLEM algorithm is better than filtered back-projection (FBP) algo-

rithm (Zeng GL et. al., 2013), its major problem is that different features con-

verge at different speeds, and as the number of iteration increases, they tend to 

computationally intensive. Additionally, MLEM algorithm is also ill-posed. To 

deal with the slow convergence and speed problem of MLEM, Ordered subsets 

EM (OSE M) (Hudson and Larkin, 1994) algorithm was proposed which is a 
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successful approach. However, a drawback of OSEM is that, the reconstructed 

results still suffer from noise artifacts.The slow convergence and speed issues 

related to MLEM can also be effectively handled with efficient implementations 

which make use of advanced programming techniques (William H et. al., 1992). 

Rigorous mathematical analysis in the case of Landweber iterations and conju-

gate gradient is given in (Per Christian Hansen, & Maria Saxild-Hansen, 2012) 

for solving EM based iterative methods. Other alternative optimization ap-

proaches to estimating the ML solution is available in literature. For example, 

the use of complex conjugate gradient (Guobao Wang et. al., 2012), gradient 

descent optimization (R. Salakhutdinov et. al., 2003), grouped coordinate as-

cent, and fast-gradient based Bayesian reconstruction methods (Erkan U. Mum-

cuoglu et. al., 1994) etc., which have shown fast convergence rates (G I Angelis 

et. al., 2011). A number of examples of the same behavior are also discussed in 

(Emran M Abu Anas et. al., 2011).  

 Brief discussion about MRP 

Although MLEM algorithm is better than filtered back-projection (FBP) algo-

rithm (J. Devaney, 1982), its major problem is that different features converges 

at different speeds, and as the number of iteration increases, the reconstructed 

results suffer from noise artifacts. Median root prior (Green PJ et. al., 1990) is a 

successful approach to accelerate the MLEM algorithm and solve the slow con-

vergence issue. However, a drawback of MRP is that, the reconstructed results 

suffer from noise artifacts. The usual method to solve this problem is to intro-

duce a regularization term, the objective function is: 

   
0

ˆ argmax ln
f

f L f P f


        (4.3) 

where f̂ is the MAP estimate of the radiotracer distribution, L(f) is the log likeli-

hood and P(f) is the prior probability density. The posterior probability P(g| f) 

can be maximized by the one-step-late (OSL) iterative procedure proposed by 

(Green PJ et. al., 1990).  

 
'

1

' '

k

jk i

j k
i i j ii

iji k

i j

f g
f

a f
a

f U f


 








            (4.4) 



102 

 

where )1( k
jf is the updated image after (k+1)th iteration, ig is the projection data 

from different angles available to us and ija  is the weight matrix which describes 

the transition law between the measured projection data and the estimated image 

vector. It fully depends on the geometrical characteristics of the PET/SPECT 

scanner. In Eq. 4.4,  U   is the energy function and   is the Bayes weight of the 

prior. The image is reconstructed by iteratively updating Eq. (4.4) to reach at 

least a local maximum. The MRP can be incorporated into the OSL formula by 

replacing the derivative of the prior function with a relative form of the smooth-

ing prior (Alenius S, Ruotsalainen, 2002): 
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(4.5) 

where  k

jM f is the median of pixel j within its neighborhood. MRP is a Bayesian 

based statistical estimation method whereas SART is algebraic estimation based 

reconstruction process. Due to the probabilistic nature of positron emission to-

mography PET (D.L.Bailey et. al., 2005), MRP is more suited for the image re-

construction technique. It can accommodate the nature of photon reception in 

detectors and hence leads to better estimation of projections. However, the im-

ages reconstructed by MRP are still noisy because median filter cannot remove 

Gaussian and Poisson noise effectively, which dominate in PET images (F. 

Benvenuto et. al., 2008).This method also suffers from optimal point initializa-

tion and slow convergence. 

 Brief discussion about OSEM 

Hudson and Larkin (Hudson et. al.. 1994) proposed an alternative algorithm to 

MLEM that processed the data in subsets within each iteration. They showed 

that their method accelerated the iteration process by a factor proportional to the 

number of subsets. This algorithm was named as Ordered Subsets Expectation 

Maximization (OSEM) and it is widely used by modern PET clinical scanners 

together with MLEM. In the OSEM algorithm the projection data are grouped 

into Ordered Subsets (OS). The number of these subsets defines the OS level. 
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Detailed desctiption of OSEM algorithms with their advantages and limitations 

are discussed in Chapter 2, section 2.3.2.2 statistical methods. 

 Brief discussion about SART 

In the following section, a brief discussion about the SART reconstruction algo-

rithm is given that is used as a primary part of the proposed framework. SART 

is a particular instance of algebraic reconstruction methods designed to solve the 

linear system in image reconstruction. These methods pose the problem of re-

construction from projections as a set of simultaneous equations: 

,Ax p             (4.6) 

where A is an M N design matrix with weights aij, x is the sought-after N di-

mensional image vector, and p is an M-dimensional column vector containing 

the observed projection values. That is, M is the number of rays, N is the number 

of image cells, and the weight aij gives the contribution of the j
th

 cell to the ray 

sum along the i
th

 ray. Various iterative algebraic algorithms have been proposed 

to solve Eq. (7) (Gordon R et. al., 1970; Kaczmarz S et al., 1937; Gilbert et al., 

1972; Andersen et al., 1994; Fernández J et al., 2002; R. Vijayarajan et al., 

2014; Marcel Beister et al., 2012; Guan H et al., 1998). SART has been proven 

to be the most useful iterative reconstruction technique (Ming, J et al., 2003) 

and better suited for real time applications. SART is characterized by better ro-

bustness than ART under noise and its convergence speed is reported to be fast-

er than other algebraic iterative methods (Wang G et al., 2004). The major ad-

vantage of SART is that, even in high resolution tomographic problems, number 

of unknowns can be solved with less computational load. (Hobiger et al. 2008) 

proved that SART iterative approach converges to a solution such that the error 

is minimized. (Michael et. al., 2014) mentioned that SART has the advantage 

that it always iterates to converge to a unique solution irrespective of the above 

situations. No further study has been reported yet to verify this statement.  

Typically, the SART algorithm begins with an arbitrary X(0) and then 

begins to iterate until they are the correct ones. It is possible that the arbitrary 

initial value will greatly deviate from the true value. So the number of iterations 

can be very large. Consequently, the initial solution X(0) is defined by  
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where P represents the projection view at angle  , and λ is known as the relaxa-

tion parameter, and N is the total number of pixels. The process of iteration first 

guesses the values of the pixels and then alters these values until it is correct 

one. All the equations belonging to the same angle at the same time  iP P are 

used before comparing the new values of the pixels with the old one. Further-

more, it has been pointed out that SART can be improved by adjusting the re-

laxation parameters (Michael et. al., 2014). Careful selections for the relaxation 

parameters can lead to the better qualities of reconstructions (Ming, J et al., 

2003; Wang G et al., 2004; Hobiger et al. 2008; Michael et. al., 2014). Here, we 

choose the value of λ as less than one, and find good convergence with small 

number of iterations. In each iteration of SART, all the pixels with the same 

weights receive the same corrections even they have different gray levels. The 

rate of convergence of a SART based reconstruction approach is faster, but the 

quality of reconstructed image is not better with respect to MLEM approach. 

4.3 Proposed Models 

This section presents, three different hybrid cascaded framework based on statis-

tical iterative reconstruction algorithms (e.g. MLEM, MRP, and OSEM) have 

been proposed for PET and SPECT imaging modalities. Their performances are 

evaluated on computer generated test phantoms and standard thorax real test im-

age. The obtained results are compared with those of previously reported meth-

ods. It is observed that the proposed methods perform better in terms of visual 

image quality and detail preservation. For quantitative analysis, various perfor-

mance measures such as: SNR, PSNR, RMSE, CP, MSSIM are used. 

4.3.1 MLEM based hybrid-cascaded framework for PET and 

SPECT image Reconstruction Algorithm 

PET and SPECT are effective and indispensable imaging tools for the applica-

tion of medical image reconstruction. Statistical iterative methods for image re-

construction like Maximum Likelihood Expectation Maximization (MLEM) 
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play a significant role in the quality of the images produced by PET/SPECT and 

allow for accurately modeling the counting statistics and the photon transport 

during acquisition as reported in literature. The major drawbacks associated with 

this algorithm include the problem of slow convergence, choice of optimum ini-

tial point and ill-posedness. In this work, an efficient hybrid-cascaded iterative 

framework for MLEM approach is proposed to alleviate these limitations. This 

framework consists of breaking the reconstruction process into two parts viz. 

primary and secondary. During primary part, simultaneous algebraic reconstruc-

tion technique (SART) is applied to overcome the problems of slow conver-

gence and initialization. It provides fast convergence and produce good recon-

struction results with lesser number of iterations than other iterative methods. 

The task of primary part is to provide an enhanced image to secondary part to be 

used as an initial estimate for reconstruction process. The secondary part is a 

hybrid combination of two parts namely the reconstruction part and the prior 

part. The reconstruction is done using MLEM algorithm while median aniso-

tropic diffusion (MedAD) filter is used as prior to deal with ill-posedness. The 

comparative analysis of the proposed method with other standard methods exist-

ing in literature is presented for four different test phantoms both qualitatively 

and quantitatively. Using cascaded primary and secondary reconstruction steps, 

yields significant improvements in reconstructed image quality. It also acceler-

ates the convergence and provides enhanced results using the projection data. 

The obtained results justify the applicability of the proposed method. 

4.3.1.1 Proposed Method and Model 

The proposed hybrid model consists of two parts namely primary reconstruction 

and secondary reconstruction as shown in Fig.4.2. A detailed description of the 

proposed model as follows:  

 

 Fig. 4.2: Proposed MLEM based hybrid-cascaded framework (Model-1) 
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 Primary Reconstruction 

During primary part, SART is used as initialization stage for MLEM i.e. SART 

image is used for the initial condition in MLEM (the initial value of each pixel) 

for the following reasons: it is presumably close to the final optimized solution 

(lessening the need for iterations); it is a valid indicator of specific-slice image 

noise; and in second step it can be quickly obtained. For modelling and use of 

iterative reconstruction, minimum convergence is achievable with the MLEM 

reconstruction and median anisotropic diffusion (MedAD) (Ling and Bovik, 

2002) as regularization term with MLEM algorithm to reduce noise levels and 

enhances the visual quality of images. In particular, choosing a suitable initial 

value for the MLEM algorithm in such a manner to remove the noise or error as 

well as improvised the slow convergence problem significantly.  

The Poisson noise encountered in image PET/SPECT data falls under 

multiplicative noise. This noise type is also called shot noise and is closely re-

lated to Gaussian noise (F. Benvenuto et al., 2008). SART finds the Euclidian 

distance between calculated projections and true projections and thus reduces 

the weighted least squared error. The error correcting term in SART is also addi-

tive in nature (Zeng GL. et al., 2013). MLEM uses multiplicative ways to find 

and back project error in projections during reconstruction and thus is better 

suited for Poisson noise. We need to introduce non-negativity constraints for 

SART technique hence we only need to ensure that initial image is positive (sys-

tem matrix is always positive). 

It is well established in literature that the SART based reconstruction ap-

proaches converges faster than MLEM but the only drawback of SART is that 

the quality of reconstructed images produced by it are inferior to MLEM based 

approaches. Hence, in this work we exploit the advantage of faster convergence 

of SART and incorporate it in our hybrid approach during primary reconstruc-

tion to accelerate the MLEM and deal with the problem of initialization. Here, in 

this work we use first, 3-5 iterations of SART to produce the initial estimate of 

the image which acts as the input to the MLEM in secondary reconstruction 

phase of our proposed model.  
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Hence, the mathematical model for primary reconstruction phase of the 

proposed model is given as follows by re-writing Eq. no (4.7): 

 
1

, 1
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k
N jk k

SART j j ijN Mi
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   (4.8) 

where M is the total number of rays and N is the total number of pixels. 

is the relaxation parameter and  error (
k

je )is calculated in projections using 

k k

j j je P p  ,where jP is true projections and k

jp  is calculated projections at k
th

 itera-

tion. 

 Secondary Reconstruction 

The secondary reconstruction is a hybrid combination of iterative reconstruction 

and a prior part as shown in Fig. 4.2. They both work in conjunction to provide 

one iterative cycle of secondary reconstruction. This is repeated a number of 

times till we get the required result.  The use of prior knowledge within the sec-

ondary reconstruction enables us to tackle noise at every step of reconstruction 

and hence noise is tackled in an efficient manner. Using median anisotropic dif-

fusion (MedAD) (Ling and Bovik, 2002) inside reconstruction part gives better 

results than working after the reconstruction is over. The basic idea of MedAD 

is to choose a diffusion coefficient in different diffusion region so that regions 

are smoothed out and edges are preserved. With this hybrid-cascaded frame-

work, the problem of slow convergence, choice of optimum initial point and ill-

posedness of MLEM algorithm are tackled in a much better and efficient man-

ner. The convergence is speeded up and output results enhanced to an apprecia-

ble amount with very less expense in computational complexity.   

In secondary reconstruction phase of the proposed model, the output ob-

tained in primary reconstruction phase is used as the initial input to the MLEM 

i.e. the output of the k
th

 SART iteration given by Eq. (4.5) is used as an initial 

iteration of MLEM and then updating the reconstructed images by n
th

 projec-

tions. After the initialization, the MLEM in secondary phase iteratively produces 

the final reconstructed image. Hence the modified MLEM method reads as fol-

lows: 
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   (4.6b)  

where ( 1)n

jf  is the value of pixel j after the n
th

 iteration of MLEM  cor-

rection step.  

Although likelihood increases, the images reconstructed by modified 

MLEM (initialized by SART, i.e. SART+MLEM) are still noisy because of ill-

posed nature of iterative reconstruction algorithms. The anisotropic diffusion 

(AD) is an iterative „tunable‟ nonlinear partial differential equation (PDE) based 

diffusion prior introduced by (Perona and Malik, 1990) for noise removal was 

recently introduced into tomography reconstruction that purports to filter the 

noise without blurring edges. Overcoming the undesirable effects of linear 

smoothing filter, such as blurring or dislocating the useful edge information of 

the images, AD and its variant has been widely used in image smoothing, image 

reconstruction and image segmentation (Qian He et. al., 2014; Kazantsev D et. 

al., 2012; Zhiguo Gui et. al., 2012; Rajeev et. al., 2013). The basic equation is: 

 
f

div C f f
t


    

    (4.7) 

where f is the image , t is the iteration step, f is the local image gradient and 

 C f is the diffusion function, which is a monotonically decreasing function of 

the image gradient magnitude, sometimes called the „edge-preserving‟ function. 

The following diffusion functions were first proposed by (Perona and Malik, 

1990): 
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  (4.8) 

where K is a gradient threshold that controls the edge sensitivity of the model. It 

is a user-specified constant which determines the threshold of the local gradients 

and controls the edge sensitivity of the filter. However, P-M diffusion model can 

remove isolated noise and preserve the edges to some extent it cannot preserve 

the edge details effectively and accurately. To address the limitation of AD 
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method, here we use median filter to the result obtained by AD method (Ling 

and Bovik, 2002) (abbreviated as: MedAD) in each iteration and the discretised 

form of the proposed MedAD based model using finite difference schemes (Wil-

liam H. Press et al., 1992) is given as follows: 

  1

, ' , '

j

k k k k

j j j j j j

j N

f f t C f f



        (4.9) 

 1 1

1 ,k k

j jf Median f W 

      (4.10) 

For the discretized versions of Eq. (4.9) to be stable, the von Neumann 

analysis (William H. Press et al., 1992) shows that we require 2 1( )
4

t x   . 

The value of 1 4t  when 1x , where x is the spacing between the raster grid 

size of the image f(x, y) in x-direction. Therefore, the value of t is set to 1 4 for 

stability of Eq. (4.9), and W in Eq. (4.10), is the window size for the median op-

erator (such as a 3 3 square).  

Towards the end, we refer to the proposed algorithm as an efficient hy-

brid approach for PET/SPECT image reconstruction and outline it as follows. 

 The Proposed Algorithm 

(A) Initialize image using SART algorithm 

Let the following symbols be used in the step 1 of the algorithm: 

X  = true projections, 

ijp
 = system matrix,  

ky = updated image after k
th 

iteration of SART, 

k

j
x

 = calculated projections at k
th 

iteration. 

1. Set k = 0 and chose any random image (zero image density or random image 

density). 

2. Calculate Projections: find projections after k
th 

 iterations using updated im-

age 

( )*k T k

j j ix p y
         (4.11) 

3. Calculate Error:-Find error  in calculated projection using  
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k k

j j je X x 
       (4.12) 

4. Back Projection:- update the image after iteration k 

*

( 1) ( ) 1

ke j
pij Nj

pijk k iy yi i pijj




  



     (4.13) 

5. Put k = k+1, repeat for 3-5 iterations. Obtain the final image finaly . 

(B) Reconstruction using MLEM algorithm 

Let the following symbols be used in the step 2 of the algorithm: 

trueN  = true projections, 

G       = system matrix,  

kL      = updated image after k
th 

iteration of SART, 

k

calcN    = calculated projections at k
th 

iteration. 

8. Set k = 0 and put  

0

finalL y
       (4.14) 

Calculate Projections: find projections after k
th 

iterations using updated image 

kTk
calc LGN *        (4.15) 

9. Error Calculation:-Find error  in calculated projection(element-wise division) 

k

calc

truek

error
N

N
N 

      (4.16) 

Back projection:-back project the error onto image 

k

error

k

error NGX *       (4.17) 

10. Normalization:- normalize the error image(element-wise division) 




j
ij

k
errork

norm
G

X
X

      (4.18) 

11. Update:- update the image 

1 *k k k

m normL L X 
       (4.19) 

(C) Prior: use median ad as prior 

12. Set m = 0 and apply Median Anisotropic Diffusion (abbreviated as: Me-

dAD) 

 1 1

1

k k

m mL MedAD L 

 
      (4.20) 

13. Put m = m+1 and repeat till m = 3; 
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14. Put k = k+1, repeat with MLEM reconstruction. 

In our algorithm, the SNR is monitored during each loop of stage II. The 

processing is stopped when SNR begins to saturate or degrade from any existing 

value. 

4.3.1.2 Results and Discussions 

In this section of the work, results and performance analysis of the proposed 

method are presented for three different computer generated PET/SPECT phan-

toms and one standard medical thorax image, both qualitatively and quantita-

tively. In this simulation study, only two- dimensional (2-D) simulated phan-

toms were considered. This was because our main aim here is to compare pro-

posed hybrid method with other algorithms and to demonstrate that the proposed 

method was applicable to different imaging modalities such as PET/SPECT, 

where 2-D phantoms were sufficient for this purpose. The comparative analysis 

of the proposed method is also presented with other standard methods available 

in literature such as MLEM (Shepp and Vardi, 1982), MRP (Green PJ et. al., 

1990), OSEM (Hudson and Larkin, 1994), and MLEM+AD (Qian He et. al., 

2014). For simulation study MATLAB 2013b software was used on PC with 

Intel(R) Core (TM) 2 Duo CPU U9600 @ 1.6GHz, 4.00 GB RAM, and 64 bit 

Operating system. For quantitative analysis the various performance measures 

used include signal-to-noise ratio (SNR), the root mean square error (RMSE), 

the peak signal-to-noise ratio (PSNR), the correlation parameter (CP) (Rajeev et. 

al., 2013), and mean structure similarity index map (MSSIM) (Rajeev et. al., 

2013). The SNR, RMSE and PSNR give the error measures in reconstruction 

process. The correlation parameter is a measure of edge preservation in the re-

constructed image. The MSSIM is a measure of preservation of luminance, con-

trast and structure of the image after the reconstruction process, which is neces-

sary for medical images. The definitions of these quantitative measures are dis-

cussed in Chapter 2 section 2.8, performance measures.  

For implementation of the proposed method i.e. 

(SART+MLEM+MedAD) algorithms Eq. (4.5- 4.10) were used. During step 1 

of the proposed method which deals with the problem of initialization to 
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MLEM, SART described by Eq. (4.9) was run for 5-10 iterations and the value 

of λ was set to 0.0033 for each dataset. Output provided by this step of SART is 

used as an input to the step 2 of the proposed method. To deal with the problem 

of ill-posedness of traditional MLEM here in step 2, a hybrid filter as a prior i.e. 

Median anisotropic diffusion (MedAD) filter was used in each step of the tradi-

tional MLEM. In step 2 the MedAD was run for 3 iterations with each MLEM 

step which is described by Eqs. (4.5 to 4.10). For the implementation of step 2 

of the proposed algorithm by Eq. (4.9) the value of t  was set to 1/7 and 0.25 

for three computer generated phantoms and standard medical thorax phantom 

image respectively. For the computation of diffusion coefficient used by Eq. 

(4.9) and described by Eq. (4.8), the value of threshold parameter k was set to 

1/100 and 5 for three computer generated phantoms and standard medical thorax 

phantom image respectively. The whole algorithm is run for 1000 iterations and 

graphs are plotted for SNR, RMSE, PSNR, correlation parameter (CP), and 

MSSIM. This is done to ensure that the algorithm has only single maxima and 

by stopping at the first instance of stagnation or degradation, we are not missing 

any further maxima which might give better results. The experiments revealed 

major observations. The brief description of the three computer generated phan-

toms and one standard medical thorax phantom image are given as follows: Fig. 

4.3, shows the visuals of the test phantoms used for the simulation purposes. 

These test phantoms are (a) Modified Shepp-Logan phantom (128 128 pixels), 

(b) PET Test phantom (128 128 pixels), (c) SPECT Test phantom (128 128 pix-

els), (d) Medical thorax image (128 128 pixels). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.3: The phantoms used in the simulation study, (a) Modified Shepp-Logan 

phantom (128 128 pixels), (b) PET Test phantom (128 128 pixels), (c) SPECT 

Test phantom (128 128 pixels), (d) Medical thorax image (128 128 pixels)  
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Test case 1: 

 

 

Fig. 4.4: The Modified Shepp-Logan phantom with different reconstruction 

methods. Projection including 15% uniform Poisson background events. 
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(c) 

 

(d) 

Fig.4.5: The Plots of (a) SNR, (b) RMSE, (c) CP and (d) MSSIM along with No. 

of Iterations for different reconstruction algorithms for Test case 1. 

 

Table 4.1: Performance measures for the reconstructed images using Proposed 

(SART+MLEM+MedAD) and other methods for Test case 1 

Performance 

Measures 
MLEM MRP OSEM MLEM+AD 

SART+MLEM 

(Proposed 

method without 

prior) 

SART+MLEM+MedAD 

(Final proposed method 

with prior) 

SNR 9.9900 12.9546 12.6123 11.3773 12.4551 13.8022 

RMSE 0.0784 0.0557 0.0580 0.0668 0.0590 0.0505 

PSNR 70.2792 73.2439 72.9016 71.6665 72.7443 74.0915 

CP 0.8611 0.9328 0.9489 0.9102 0.9308 0.9628 

MSSIM 0.9997 0.9999 0.9999 0.9999 0.9998 0.9999 
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Fig. 4.6: Line Plot of Shepp-Logan head Phantom using proposed method 

(SART+MLEM+MedAD) with other methods . 

Test case 2: 

 

 

Fig. 4.7: The PET test phantom with different reconstruction methods. Projec-

tion including 15% uniform Poisson distributed background events. 
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.  

Fig. 4.8: Line Plot of PET Test Phantom using proposed method 

(SART+MLEM+MedAD) with other methods . 

Table 4.2: Performance measures for the reconstructed images for Test case 2  

Performance 

Measures 
MLEM  MRP OSEM  MLEM+AD  

SART+MLEM 

(Proposed method 

without prior) 

SART+MLEM+MedAD 

(Final proposed method  

with prior) 

SNR 14.5304 19.3744 17.3523 18.8201 18.7362 22.1053 

RMSE 0.0775 0.0444 0.0560 0.0473 0.0478 0.0324 

PSNR 70.3748 75.2188 73.1967 74.6645 74.5806 77.9498 

CP 0.7647 0.9163 0.8901 0.9224 0.9091 0.9870 

MSSIM 0.9998 0.9999 0.9999 0.9999 0.9999 1.0000 

 

Test case 3: 
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Fig. 4.9: The SPECT test phantom with different reconstruction methods.  

Projection including 15% uniform Poisson distributed background events. 

 

Fig. 4.10: Line Plot of Elliptical Test phantom using proposed method 

(SART+MLEM+MedAD) with other methods. 

Table 4.3: Performance measures for the reconstructed images for Test case 3 

Performance 

Measures 
MLEM  MRP OSEM MLEM+AD 

SART+MLEM 

(Proposed method 

without prior) 

SART+MLEM+MedAD 

(Final proposed method 

with prior) 

SNR 13.2096 19.4522 19.0916 19.4477 18.7111 21.4443 

RMSE 0.0844 0.0411 0.0429 0.0412 0.0448 0.0327 

PSNR 69.6390 75.8816 75.5210 75.8771 75.1405 77.8937 
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MSSIM 0.9998 1.0000 0.9999 0.9999 1.0000 1.0000 
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Test case 4 

 

 

Fig. 4.11: The Real thorax phantom with different reconstruction methods. Pro-

jection including 5% uniform Poisson distributed background events. 

 

Fig.4.12: Line Plot of standard thorax medical image using proposed method 

(SART+MLEM+MedAD) with other methods. 
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Table 4.4: Performance measures for the reconstructed images of Test case 4 

Performance 

Measures 
MLEM MRP OSEM MLEM+AD 

SART+MLEM 

(Proposed 

method with-

out prior) 

SART+MLEM+MedAD 

(Final proposed method 

with prior) 

SNR 4.3828 11.0321 9.1262 10.8353 10.9714 11.9768 

RMSE 35.8710 16.6831 20.7766 17.0654 16.8000 16.0230 

PSNR 17.0699 23.7192 21.8133 23.5225 23.6586 24.650 

CP 0.3277 0.7879 0.5618 0.7707 0.7829 0.8102 

MSSIM 0.3280 0.5561 0.4910 0.5307 0.5506 0.5550 

 

Fig. 4.5(a) shows the plots of SNR versus the number of iterations for test cases 

1-4 respectively. The plots are based on 1000 iterations. From Figure 4.5(a), it is 

observed that the SNR values associated with the hybrid method is always high-

er than that produced by other algorithms such as traditional MLEM, MRP, 

OSEM, and MLEM+AD which indicate that the hybrid framework significantly 

improves the quality of reconstruction in terms of SNR.  Furthermore, it is ob-

served for all the test cases that the proposed method is producing better recon-

structed image in 100-150 iterations whereas other methods are taking much 

higher number of iterations. 

Fig. 4.5(b), show that the RMSE values of proposed method is smaller in 

comparison to other methods which indicate that the proposed method is recon-

structed with very less error.  Fig. 4.5(c), show that the CP values of proposed 

method is higher and close to unity in comparison to other methods which indi-

cate that the proposed method is also capable of preserving the fine edges and 

structures during the reconstruction process. Fig. 4.5(d), show that the MSSIM 

values of proposed method is higher and closer to unity in comparison to other 

methods which indicate that in addition to better reconstruction, it also preserves 

the luminance, contrast and other details of the image during the reconstruction 

processes. The visual results of the resultant reconstructed images for all the 

four test cases obtained from different algorithms are shown in Figures 4.4, 4.7, 

4.9, and 4.11. 

Tables 4.1 – 4.4 show the quantification values of SNRs, RMSEs, 

PSNRs, CPs, and MSSIMs in for different test cases respectively. The compari-
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son tables indicate that proposed reconstruction method produces images with 

prefect quality than other reconstruction methods in consideration.  

Figures 4.6, 4.8, 4.10, and 4.12 shows the error analysis of the line pro-

file at middle row for four different test cases. To check the accuracy of the pro-

ceeding reconstructions, line plots for four test cases were drawn, where x-axis 

represents the pixel position and y-axis represents pixel intensity value. Line 

plots along the mid-row line through the reconstructions produced by different 

methods show that the proposed method can recover image intensity effectively 

in comparison to other methods. Although the MRP can recover image well, 

even can do better than the proposed algorithm in some place, but it does not 

preserve the structure of the edges accurately, especially the thin edges and its 

convergence speed is slow and one can observe that the proposed method does 

not have this shortcoming. Both the visual-displays and the line plots suggest 

that the proposed model is preferable to the existing reconstruction methods.  

In view of above analysis and discussions for four test cases in consider-

ation it is observed that the proposed hybrid cascaded iterative framework con-

verges very fast, producing the better visual results, having less reconstruction 

error, higher SNR values, better edge, structure, luminance, and contrast preser-

vation capabilities in comparison to other standard methods in consideration. 

Furthermore, the proposed method effectively handles the issues of initialization 

and ill-posedness solution in a better manner. The initialization improves the 

cost function, which can be exploited to obtain faster convergence than with 

regularized and un-regularized MLEM. Traditional MLEM performs the worst 

in both convergence and SNR. Although it seems to match the same perfor-

mance as by SART+MLEM, it is too slow in convergence. Thus we can say that 

using SART for initial reconstruction brings the convergence earlier and fetches 

better results. Similarly for MedAD in regularization term, it significantly en-

hanced the SNR output. Hence the experimental results show the convergence 

speed may be a reason to use a hybrid method as a kind of acceleration tech-

nique. 
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4.3.2 An efficient and modified median root prior (MRP) based 

framework for PET/SPECT Reconstruction Algorithm 

Bayesian statistical algorithm plays a significant role in the quality of the images 

produced by Emission Tomography like PET/SPECT, since they can provide an 

accurate system model. The major drawbacks associated with this algorithm in-

clude the problem of slow convergence, choice of optimum initial point and ill-

posedness. To address these issues, in this work a hybrid-cascaded framework 

for Median Root Prior (MRP) based reconstruction algorithm is proposed. This 

framework consists of breaking the reconstruction process into two parts viz. 

primary and secondary. During primary part, simultaneous algebraic reconstruc-

tion technique (SART) is applied to overcome the problems of slow conver-

gence and initialization. It provides fast convergence and produce good recon-

struction results with lesser number of iterations than other iterative methods. 

The task of primary part is to provide an enhanced image to secondary part to be 

used as an initial estimate for reconstruction process. The secondary part is a 

hybrid combination of two parts namely the reconstruction part and the prior 

part. The reconstruction is done using Median Root Prior (MRP) while Aniso-

tropic Diffusion (AD) is used as prior to deal with ill-posedness. A comparative 

analysis of the proposed model with some other standard methods in literature is 

presented both qualitatively and quantitatively for a simulated phantom and a 

standard medical image test data. Using cascaded primary and secondary recon-

struction steps, yields significant improvements in reconstructed image quality. 

It also accelerates the convergence and provides enhanced results using the pro-

jection data. The obtained result justifies the applicability of the proposed meth-

od. 

4.3.2.1 Proposed Methods and Models 

The proposed hybrid model consists of two parts namely primary reconstruction 

and secondary reconstruction as shown in Fig.4.13 
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 Fig. 4.13: Proposed MRP based hybrid-cascaded framework (Model-2) 

The basic SART equation is defined as (Anderson and Kak, 1984): 
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Where M is the total number of rays and N is the total number of pixels. 

  is the relaxation parameter and  error (
k

je ) is calculated in projections using 

k k

j j je P p  ,where P is true projections and k
jp  is calculated projections at k

th 
itera-

tion. 

A modified MRP algorithm is employed to solve the slow convergence 

and optimal initialization problem. For this, SART algorithm is implemented in 

primary reconstruction part and its output is used in secondary reconstruction 

part as median root prior (MRP) function.  To this an extra step is added to Eq. 

(3) and the modified equation reads for MRP as: 
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(4.21) 

where k

jf  is the value of pixel j after the k
th

 SART step and ,

k

OSL jf is the same after 

the k
th

 one-step-late correction. The median filter  jM f  replaces the value of the 

j
th

 pixel by the average pixel value contained in the j
th

 pixel neighborhood. Here 

we use 3 3 neighborhood.  is the j
th

 parameter to control the weight of the 

correction. It is set to 0.25 in this work as it gives better result in the test simula-

tions. Finally the proposed hybrid cascaded framework is as follows: 
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where h is the diffusion number and diffusion coefficient C is defined by Eq. 

(4.8). For the discretized versions of Eq. (4.22) to be stable, the von Neumann 

analysis (Rajeev et. al., 2010) shows that we require 2( ) 1 4t x   . If the grid size is 

set to 1, then 41t . Therefore, the value of t is set to 0.25 for stability of 

Equation. 

 The Proposed Algorithm 

a) Primary Reconstruction: Initialize image using SART algorithm 

Let the following symbols are used in the primary step of the algorithm: 

P  = true projections, a  = system matrix  
kg = updated image after k

th 
iteration of SART,  

k
jp  = calculated projections at k

th 
iteration. 

1. Set k = 0 and chose any random image (zero image density or random image 

density). 

2. Calculate Projections: find projections after k
th 

 iterations using updated im-

age:     )(
*

k
i

T
j

k
j gap       

3. Calculate Error: Find error in calculated projection using  
k

jj

k

j pPe 
        

4. Back Projection: update the image after iteration k 

 

*

( 1) ( ) 1

ke j
aij Nj

aijk k ig gi i aijj




  



    
5. Put k = k+1, repeat for 3-5 iterations. Obtain the final image

finalg . 

b) Secondary Reconstruction: reconstruction using MRP algorithm 

Let the following symbols are used in the secondary step of the algorithm: 

trueN  = true projections,   G  = system matrix  

kL      = updated image after k
th 

iteration of SART 
k
calcN    = calculated projections at k

th 
iteration. 

15. Set k = 0 and put 
finalgL 0      

16. Calculate Projections: find projections after k
th 

 iterations using updated 

image : kTk
calc LGN *       

Error Calculation:-Find error in calculated projection (element-wise division) 

k
calc

truek
error

N

N
N         

Back projection: Back project the error onto image 
k
error

k
error NGX *        

17. Normalization:- Normalize the error image(element-wise division) 
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 
 

k

k error

norm
k k

ijj k

X
X

L M L
G

M L



 
 
 
 



     

18. Update:- update the image: k
norm

kk
m XLL *1      

  

c) Prior: Use AD as prior 

19. Set m = 0 and apply Anisotropic Diffusion 

 11

1



  k

m

k

m LADL        
20. Put m = m+1 and repeat till m = 3; 

21. Put k = k+1, repeat with MRP reconstruction. 
 

In our algorithm, the SNR is monitored during each loop of secondary 

reconstruction. If the required accuracy for numerical convergence has been 

achieved then processing is stopped, i.e. when SNR begins to saturate or 

degrade from any existing value. 

4.3.2.2 Results and Discussions 

This section presents the qualitative and quantitative analysis of the proposed 

method with other standard methods for two test cases. First test case is a com-

puter generated Modified Shepp-Logan phantom and another test case is a 

standard medical thorax images shown in Figure 4.14. The comparative analysis 

of the proposed method is presented with other standard methods available in 

literature such as MLEM (Shepp and Vardi, 1982), MLEM+AD (Qian He et. al., 

2014), OSEM (Hudson and Larkin, 1994), MRP (Alenius S, Ruotsalainen, 

2002) and MRP+AD (Jianhua Yan and Jun Yu, 2007).  

 

Fig. 4.14: The phantoms used in the simulation study, (a) Modified SheppLogan 

phantom (64 x 64 pixels), (b) Medical thorax  image (128x128 pixels) 
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Fig.4.15: The Modified Shepp-Logan phantom with different reconstruction methods. 

(Projection include 15% uniform Poisson distributed background events) 

 

 

Fig.4.16: The standard thorax medical image with different reconstruction methods. 

(Projection include 15% uniform Poisson distributed background events) 
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Fig.4.17: The Plots of (a) SNR, (b) RMSE, (c) CP and (d) MSSIM along with No.  Iterations for 

Modified Shepp-Logan Phantom (test case 1). 

 

(a) 

 

(b) 

Fig. 4.18: Line Plot of (a) Shepp-Logan phantom and (b) standard thorax medical im-

age using proposed and other methods 

Table 4.5: Performance measures for the reconstructed images of Test case 1 

 

 
MLEM  

[8] 

MLEM+ 

AD [20] 

OSEM 

[10] 

MRP 

[15] 

MRP+AD 

[21] 

SART+MRP+AD 

(Proposed Method ) 

SNR 7.0027 15.2126 14.9642 14.0646 15.7130 16.3365 

RMSE 0.1094 0.0425 0.0438 0.0485 0.0401 0.0374 

CP 0.5447 0.9076 0.9105 0.8465 0.9023 0.9200 

MSSIM 0.9997 0.9999 0.9999 0.9999 1.0000 1.0000 
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Table 4.6: Comparison of performance measures for the reconstructed images of Test case 2 

 

 
MLEM 

[8] 

MLEM+ 

AD[20] 

OSEM  

[10] 

MRP 

[15] 

MRP+AD  

[21] 

SART+MRP+AD 

(Proposed method ) 

SNR 5.0061 13.0371 13.1495 16.5513 16.7531 17.9704 

RMSE 33.5103 13.2931 13.1222 8.8699 8.6662 7.5329 

CP 0.3831 0.6837 0.7002 0.9364 0.9364 0.9403 

MSSIM 0.4291 0.6392 0.6493 0.6832 0.6955 0.7442 

 

The brief description of the various parameters used for generation and recon-

struction of the two test cases are mentioned in chapter 2 section performance 

measures and datasets. 

The proposed algorithm was run for 200 to 500 iterations for simulation 

purposes and the convergence trend of the proposed method and other methods 

were recorded. However, the proposed and other algorithms converged in less 

than 500 iterations. Also, this was done to ensure that the algorithm has only 

single maxima and by stopping at the first instance of stagnation or degradation, 

we are not missing any further maxima which might give better results. The cor-

responding graphs are plotted for SNR, RMSE, CP, and MSSIM. The graphs 

support the fact as shown in Figure 4.17. From these plots, it is clear that pro-

posed method (SART+MRP+AD) gives the better result in comparison to other 

methods by a clear margin. Using cascaded primary reconstruction and AD in 

secondary reconstruction brings the convergence much earlier than the usual al-

gorithm. With proposed method, result hardly changes after 300 iterations 

whereas other methods converge in more than 300 iterations. Therefore, tradi-

tional MLEM and MRP perform the worst in both convergence and visual quali-

ty. The other methods such as MLEM+AD and MRP+AD take the maximum 

time to converge. Thus we can say that using SART for primary reconstruction 

brings the convergence earlier and fetches better results. Similarly for AD in 

secondary reconstruction, the SNR output is highly enhanced. Further, the pro-

posed model preserves the edges and other radiometric information such as lu-

minance and contrast of the images, the plot correlation parameter (CP) as 

shown in Figure 4.17. 

The visual results of the resultant reconstructed images for both the test 

cases obtained from different algorithms are shown in Figures 4.15 and 4.16. 

The experiment reveals the fact that proposed hybrid framework effectively 
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eliminated Poisson noise and it performs better even at limited number of pro-

jections in comparison to other standard methods and has better quality of re-

construction in term of SNRs, RMSEs, CPs, and MSSIMs. Further, from the 

Figure 4.15 and 4.16, one can see that the proposed method is better capable of 

preserving the edges and fine structures as well. At the same time, it is also ob-

served that the hybrid cascaded method overcomes the short coming of streak 

artifacts existing in other iterative algorithms and the reconstructed image is 

more similar to the original phantom. 

Tables 4.5 and 4.6 show the quantification values of SNRs, RMSEs, 

CPs, and MSSIMs in for both the test cases respectively. The comparison table 

indicate the proposed reconstruction method produce images with prefect quali-

ty than other reconstruction methods in consideration.  

Figure 4.18 indicate the error analysis of the line profile at the middle 

row for two different test cases. To check the accuracy of the proceeding recon-

structions, line plots for two test cases were drawn, where x-axis represents the 

pixel position and y-axis represents pixel intensity value. Line plots along the 

mid-row line through the reconstructions produced by different methods show 

that the proposed method can recover image intensity effectively in comparison 

to other methods. Both the visual-displays and the line plots suggest that the 

proposed model is preferable to the existing reconstruction methods.  From all 

the above observations, it may be concluded that the proposed model is perform-

ing better in comparison to its other counterparts and provide a better recon-

structed image. 

4.3.3 An OSEM based hybrid-cascaded framework for 

PET/SPECT Image Re-construction 

Expectation Maximization (EM) and the Simultaneous Iterative Reconstruction 

Technique (SIRT) are two iterative PET/SPECT reconstruction algorithms often 

used when the data contain a high amount of statistical noise, have been ac-

quired from a limited angular range, or have a limited number of views. A wide-

spread technique to increase the rate of convergence of these types of algorithms 

has been to perform the correctional updates within subsets of the projection da-
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ta. This has given rise to the method of Ordered Subsets EM (OS-EM) and the 

Simultaneous Algebraic Reconstruction Technique (SART). But, the quality of 

the reconstructed image with OSEM remains same as EM. Further, it also suf-

fers from the problem of initialization and ill-posedness. On the other hand the 

quality of reconstructed image produced by SART in first few iterations is better 

than EM and OSEM but it also suffers from the problem of ill-posedness. To 

address these aforementioned issues, in this work a hybrid-cascaded framework 

of OSEM is proposed. This allows us to use more than one algorithm for recon-

struction and extract the benefits of each. The proposed model includes two 

steps: In the primary step, simple algebraic iterative SART method is used as an 

initial guess for OSEM to deal with the problem of initialization and conver-

gence. The task of primary step will be to provide an enhanced image to second-

ary step to be used as an initial estimate for reconstruction process. The second-

ary step is a hybrid combination of two parts namely the OSEM reconstruction 

and anisotropic diffusion (AD) as a prior. By incorporating a suitable prior 

knowledge the problem of ill-posedness is addressed. A comparative analysis of 

the proposed model with some other standard methods in literature is presented 

both qualitatively and quantitatively for phantom test data sets. The proposed 

model yields significant improvements in reconstruction quality from the projec-

tion data. The obtained result justifies the applicability of the proposed model. 

4.3.3.1 Proposed Methods and Models 

In this work, a new hybrid-cascaded framework (here referred to as: 

SART+OSEM+AD) to reduce number of iterations as well as improve the quali-

ty of reconstructed images is proposed. This method speedup the process by us-

ing a fast algebraic iterative reconstruction algorithm (SART) first and then 

switch to more precise accelerated version of statistical EM algorithm (OSEM). 

Additionally, regularization term anisotropic diffusion proposed by Perona and 

Malik (1990) is combined to maximize the likelihood function.  The proposed 

method solves large computational time, slow convergence as well as ill-

conditioned problem of iterative methods. Numerical simulation experience 

demonstrates that proposed hybrid cascaded reconstruction algorithm is superior 

to the MLEM, MRP, OSEM and SART alone in performing iterative image re-
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construction. Finally, hybrid method is applied to PET/SPECT tomography for 

obtaining optimal solutions. 

The proposed hybrid model consists of two parts namely primary recon-

struction and secondary reconstruction as shown in Fig.4.19  

 

 Fig. 4.19: Proposed OSEM based hybrid-cascaded framework (Model-3) 

The mathematical model for primary reconstruction phase of the proposed mod-

el using SART is given as follows: 

1

, 1

1 1

k
N jk k

SART j j ijN Mi

ij iji j

e
x x p

p p





 

 
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 
 


 

    (4.23) 

where M is the total number of rays and N is the total number of pixels. λ 

is the relaxation parameter and  error  k

je is calculated in projections using

k k

j j je P p  , where P is true projections and k

jp   is calculated projections at k
th 

iteration. 

The output of the k
th

 SART iteration is used as an initial iteration of 

OSEM and then updating the reconstructed images by nth projections.  

Hence, modified OSEM = OSEM (Initial guess image
 0

x given by SART):  

Initial value: 
k

JSARTj xix ,
0)(       (4.24a) 
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      (4.24b) 

for pixels i = 1,2,…, I   
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where  
1k

j
x i

 is the value of pixel j after the k
th

 iteration of OSEM  correction 

step. Un-regularized image reconstruction in Eq. (4.24) is ill-posed in nature. 

So, converged OSEM images may be still noisy. There are generally three 

methods to deal with this problem to suppress the noise. First, one can stop it-

eration before convergence. However, more iteration may be necessary for re-

covering image details. Secondly, one can use a post-reconstruction filter to re-

duce noise. Lastly, one can add a regularizer to Equation (4.24) (e.g. anisotropic 

diffusion). However, using non-local regularizers for 3D images is computation-

ally very expensive (Chun S. Y. et. al. 2014). In this work, we focus on inbuilt 

filters within each iteration of OSEM. Recently anisotropic diffusion (AD) is a 

nonlinear partial differential equation (PDE) based diffusion process (Perona 

and Malik, 1990) introduced into tomography reconstruction that purports to 

filter the noise without blurring edges. Overcoming the undesirable effects of 

linear smoothing filter, such as blurring or dislocating the useful edge infor-

mation of the images, AD and its variant has been widely used in image smooth-

ing, image reconstruction and image segmentation (Chung Chan et. al., 2009; 

Zhiguo Gui et. al., 2012; Kazantsev D. et. al., 2012). The anisotropic diffusion 

(AD) based filter proposed initially by Perona and Malik (1990) reads: 

  .
x

div C x x
t

  


  


     (4.25) 

where x is the image, t is the iteration step, x  is the local image gradient and 

 xC  is the diffusion function, which is a monotonically decreasing function of 

the image gradient magnitude, sometimes called the „edge-preserving‟ function. 

The diffusion process is tuned to return large values in the regions with no or 

small intensity fluctuations and small values in the areas with large intensity 

variations. This leads to conditional smoothing which encourages intra-region 

smoothing while preserving the sharp transition between two different regions. 

The following diffusion coefficient function as proposed by Perona and Malik 

(1990) was used: 

 
1

, 1
1

1

C x aa
x

Kappa

 
 
 

  




,           (4.26) 
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where Kappa is a gradient threshold that controls the edge sensitivity of the 

model. It is a user-specified constant which determines the threshold of the local 

gradients and controls the edge sensitivity of the filter. Mostly these priors are 

used at the end of reconstruction when all the data is available for the noise re-

moval and missing/faulty data. Here, by using diffusion on images within the 

reconstruction process, we get higher SNR values for the final image. Moreover, 

since noise is tackled in each iteration of secondary reconstruction, the number 

of iterations required to reach the result are also reduced by great amount and 

the resulting image is visually enhanced.  

  1

, ' , '

j

k k k k

j j j j j j

j N

x x t C x x



        (4.27) 

For the discretized version of Eq. (4.27) to be stable, the von Neumann 

analysis (William H. Press et. al., 1992) shows that we require
2

1
4( )

t

x





. If 

the grid size is set to 1x  then t < ¼ i.e.( t < 0.25). Therefore, the value of 

t is set to 0.25 for stability of Equation. 

 The Proposed Algorithm: 

A. Primary Reconstruction: initialize image using SART algorithm 

P  = true projections 

a  = system matrix  

kx = updated image after k
th 

iteration of SART 

k

jp
 = calculated projections at k

th 
iteration. 

1. Set k = 0 and chose any random image (zero image density or random image 

density). 

2. Calculate Projections: find projections after k
th 

 iterations using updated im-

age 

)(
*

k
i

T
j

k
j xap 

       (4.28) 

3. Calculate Error:-Find error  in calculated projection using  

k

jj

k

j pPe 
       (4.29) 
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4. Back Projection:- update the image after k
th

 iteration using Eq.(4.29)  
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 

 
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 
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 

   (4.30) 

5. Put k = k+1, repeat for (2-4) iterations. Obtain the final image final
SARTx . 

B. Secondary Reconstruction: reconstruction using OSEM algorithm 

X  = true projections, 

ija
 = system matrix,  

ky = updated image after k
th 

iteration of secondary reconstruction 

k

j
x

 = calculated projections at k
th 

iteration. 

6. Set k = 0 and put  

final
SARTxy 0

       (4.31) 

7.   Repeat until convergence of mx̂  

 (a) 1,ˆ1  mmxx m       (4.32) 

(b) For subsets t = 1, 2,….., n 

i) Calculate Projections: find projections after k
th 

iterations using updated image 

 
1

I
k t k

ij

i

x j a y


   , for detectors nj S     (4.33) 

ii) Error Calculation:-Find error in calculated projection(element-wise 

division) 

k

j

k

error
x

X
x 

       (4.34) 

iii) Back projection:-back project the error onto image 
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       (4.35) 

 for pixels i = 1,2,…, I    

(c) k
errorij

k
error xaX *       (4.36) 

8. Normalization:- normalize the error image(element-wise division) 




j ij

k

errork

norm
a

X
X

      (4.37) 

9.   Update:- update the image 
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k

norm

kk Xyy *.1 

      (4.38) 

C. Prior: Use AD as prior 

10. Set m = 0 and apply Anisotropic Diffusion 

 11

1



  k

m

k

m yADy
               (4.39) 

 Put m = m+1 and repeat till m = 3; 

11. Put k = k+1, repeat with OSEM reconstruction. 

 

In our algorithm, the SNR is monitored during each loop of secondary recon-

struction. If the required accuracy for numerical convergence has been achieved 

then processing is stopped, i.e. when SNR begins to saturate or degrade from 

any existing value. 

4.3.3.2 Results and Discussions 

For implementation of the proposed method i.e. (SART+OSEM+AD) algo-

rithms Eq. (4.25- 4.30) were used. During step 1 of the proposed method which 

deals with the problem of initialization to MLEM, SART described by Eq. 

(4.25) was run for 5-10 iterations and the value of λ was set to 0.0033 for each 

dataset. Output provided by this step of SART is used as an input to the step 2 of 

the proposed method. The step 2 uses OSEM and a prior (AD). For experimen-

tation purposes, total number of subsets taken for OSEM algorithm was 8 as it is 

performing better in comparison to other number of subsets taken. To deal with 

the problem of ill-posedness of traditional OSEM here in step 2, a hybrid filter 

as a prior i.e. anisotropic diffusion (AD) filter was used in each step of the tradi-

tional OSEM. In step 2 the AD was run for 3 iterations with each OSEM step 

which is described by Eq. (4.27), for the implementation of step 2 of the pro-

posed algorithm by Eq. (4.30) the value of t  was set to 1/7 and 0.25 for three 

computer generated phantoms and standard medical thorax phantom  image  re-

spectively. For the computation of diffusion coefficient used by Eq. (4.28) and 

described by Eq. (4.29), the value of threshold parameter Kappa was set to 

1/100 and 5 for three computer generated phantoms and standard medical thorax 

phantom image respectively. The whole algorithm was run for 1000 iterations to 

show the overall convergence pattern though different algorithms converges at 
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different number of iterations and the proposed one being the faster one. The 

graphs are plotted for SNR, RMSE, PSNR, correlation parameter (CP), and 

MSSIM against the number of iterations. This is done to ensure that the algo-

rithm has only single maxima and by stopping at the first instance of stagnation 

or degradation, we are not missing any further maxima which might give better 

results. The experiments revealed major observations. The brief description of 

the three computer generated phantoms and one standard medical thorax phan-

tom image are given in chapter 2: Fig. 4.20, shows the visuals of the test phan-

toms used for the simulation purposes. These test phantoms are (a) Modified 

Shepp-Logan phantom (64 x 64 pixels), (b) PET Test phantom (64 x 64 pixels), 

(c) SPECT Test phantom (64 x 64 pixels), (d) Medical thorax image (128x128 

pixels). 

  

(a)                     (b)                    (c)                        (d) 

Fig. 4.20: The phantoms used in the simulation study, (a) Modified Shepp-

Logan phantom (64 x 64 pixels), (b) PET Test phantom (64 x 64 pixels), (c) 

SPECT Test phantom (64 x 64 pixels), (d) Medical thorax image (128x128 pix-

els) 

 Experimental Analysis and discussions: 

Here, in this work the experimental analysis of the proposed method and other 

standard methods are presented for four different test cases as follows:  

Test case 1: 

 

Original Image MLEM MLEM+AD MRP

OSEM SART+OSEM+AD

Original Image MLEM MLEM+AD MRP

OSEM SART+OSEM+AD

Original Image MLEM MLEM+AD MRP

OSEM SART+OSEM+AD
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Fig. 4.21: The Modified Shepp-Logan phantom with different reconstruction 

methods. Projection including 15% uniform Poisson distributed background 

events. 
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(c) 

 

(d) 

 

(e) 

Fig 4.22: The Plots of (a) SNR, (b) RMSE, (c) PSNR, (d) CP, and (e) MSSIM 

along with No. of Iterations for different reconstruction methods for Test case 1 
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Table 4.7: Performance measures for the reconstructed images of Test case 1 

Performance 

Measures 
MLEM MLEM+AD MRP OSEM 

SART+OSEM+AD 

(The proposed method ) 

SNR 6.8231 10.4513 14.1565 15.1511 18.0692 

RMSE 0.1117 0.0736 0.0480 0.0428 0.0306 

PSNR 67.2038 70.8320 74.5372 75.5319 78.4500 

CP 0.5234 0.7218 0.8503 0.9020 0.9532 

MSSIM 0.9997 0.9999 0.9999 1.0000 1.0000 
 

 

Fig. 4.23: Line Plot of Shepp-Logan Phantom using proposed method 

(SART+OSEM+AD) with other methods 

Test case 2: 

 

 

Fig. 4.24: The PET test phantom with different reconstruction methods. Projec-

tion including 15% uniform Poisson distributed background events. 
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Table 4.8: Performance measures for the reconstructed images of Test case 2 

Performance 

Measures 
MLEM MLEM+AD MRP OSEM 

SART+OSEM+AD 

(The proposed method ) 

SNR 13.0047 16.7145 19.2592 18.9275 22.9290 

RMSE 0.0924 0.0603 0.0450 0.0467 0.0295 

PSNR 68.8491 72.5589 75.1036 74.7719 78.7735 

CP 0.6893 0.8608 0.9124 0.9353 0.9870 

MSSIM 0.9998 0.9999 0.9999 0.9999 1.0000 

 

 

Fig. 4.25: Line Plot of PET Test Phantom using proposed method 

(SART+OSEM+AD) with other methods 

Test case 3: 

 

 

Fig. 4.26: The SPECT elliptical Test Phantom with different reconstruction 

methods. Projection including 15% uniform Poisson distributed background 

events. 
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Table 4.9: Performance measures for the reconstructed images of Test case 3 

Performance 

Measures 
MLEM MLEM+AD MRP OSEM 

SART+OSEM+AD 

(The proposed method ) 

 

SNR 12.3355 15.9454 19.4039 19.4279 22.7114 

RMSE 0.0933 0.0616 0.0414 0.0412 0.0283 

PSNR 68.7649 72.3748 75.8333 75.8573 79.1408 

CP 0.6962 0.8555 0.9299 0.9533 0.9923 

MSSIM 0.9998 0.9999 1.0000 0.9999 1.0000 

 

 

Fig. 4.27: Line Plot of Elliptical Test Phantom using proposed method 

(SART+OSEM+AD) with other methods 

Test case 4 

 

 

Fig. 4.28: The standard thorax medical image with different reconstruction 

methods. Projection including 15% uniform Poisson distributed background 

events. 
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Table 4.10: Performance measures for the reconstructed images of Test case 3 

Performance 

Measures 
MLEM MLEM+AD MRP OSEM 

SART+OSEM+AD 

(The proposed method ) 

SNR 5.2971 11.1649 13.2200 10.0488 13.6744 

RMSE 32.2868 16.4301 12.9683 18.6827 12.3073 

PSNR 17.9843 23.8520 25.9071 22.7360 26.3615 

CP 0.3007 0.6032 0.8107 0.5324 0.8228 

MSSIM 0.4481 0.6378 0.7175 0.5954 0.7502 
 

 

Fig. 4.29: Line Plot of Standard Thorax Test phantom image using proposed 

method (SART+OSEM+AD) with other methods 

The proposed algorithm was run for 1000 iterations for simulation purposes and 

the convergence trend of the proposed method and other methods were recorded. 

However, the proposed and other algorithms converged in less than 500 itera-

tions. Also, this was done to ensure that the algorithm has only single maxima 

and by stopping at the first instance of stagnation or degradation, we are not 

missing any further maxima which might give better results.  

The visual results of the resultant reconstructed images for both  the test 

cases obtained from different algorithms are shown  in Figure 4.21,4.24, 4.26, 

and 4.28. The experiment reveals the fact that proposed hybrid framework effec-

tively eliminated Poisson noise and it performs better even at limited number of 

projections in comparison to other standard methods and has better quality of 

reconstruction in term of SNR, RMSE, PSNR, CP, and MSSIM. Further, from 

the Figure 4.22, one can see that the proposed method is better capable of pre-
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serving the edges and fine structures as well. At the same time, it is also ob-

served that the hybrid cascaded method overcomes the short coming of streak 

artifacts existing in other iterative algorithms and the reconstructed image is 

more similar to the original phantom. 

The corresponding graphs are plotted for SNR, RMSE, PSNR, CP, and 

MSSIM. The graphs support the fact as shown in Figures 4.22. From these plots, 

it is clear that proposed method (SART+OSEM+AD) gives the better result in 

comparison to other methods by a clear margin. Using cascaded primary recon-

struction and AD in secondary reconstruction brings the convergence much ear-

lier than the usual algorithm. With proposed method, result hardly changes after 

300 iterations whereas other methods converge in more than 300 iterations. 

Therefore, traditional MLEM perform the worst in both convergence and visual 

quality. The other methods such as MLEM+AD MRP and OSEM take the max-

imum time to converge. Thus we can say that using SART for primary recon-

struction brings the convergence earlier and fetches better results. Similarly for 

AD in secondary reconstruction, the SNR output is highly enhanced. Further, 

the proposed model preserves the edges and other radiometric information such 

as luminance and contrast of the images, the plot correlation parameter (CP) and 

mean structure similarity index map (MSSIM) as shown in Fig. 4.22. 

Tables 4.7 – 4.10 show the quantification values of SNR, RMSE, PSNR, 

CP, and MSSIM in for both the test cases respectively. The comparison table 

indicates the proposed reconstruction method produce images with prefect quali-

ty than other reconstruction methods in consideration.  

Figures 4.23, 4.25, 4.27, and 4.29 indicate the error analysis of the line 

profile at the middle row for two different test cases. To check the accuracy of 

the proceeding reconstructions, line plots for two test cases were drawn, where 

x-axis represents the pixel position and y-axis represents pixel intensity value. 

Line plots along the mid-row line through the reconstructions produced by dif-

ferent methods show that the proposed method can recover image intensity ef-

fectively in comparison to other methods. Both the visual-displays and the line 

plots suggest that the proposed model is preferable to the existing reconstruction 

methods. From all the above observations, it may be concluded that the pro-
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posed model is performing better in comparison to its other counterparts and 

provide a better reconstructed image  

4.4 Overall Comparisons of Model 1, Model 2, and Model 3 

In this chapter, three different hybrid cascaded framework based on statistical 

iterative reconstruction algorithms (e.g. MLEM, MRP, and OSEM) have been 

proposed for PET and SPECT. Their performance analysis are evaluated on 

computer generated test phantoms and standard thorax real test image and the 

results are compared with the previous methods proposed by the authors of the 

papers (Shepp and Vardi, 1982; Alenius S, Ruotsalainen, 2002; Hudson and 

Larkin, 1994; Qian He et. al., 2014; Zeng GL et. al., 2013; Wang G et. al., 

2012). It is observed that the proposed method performs better in terms of visual 

image quality and different quantitative performance measures.  

 

Fig 4.30: The Plots of SNR along with No. of Iterations for different 

reconstruction algorithms for Test case 1 
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Fig 4.31: The Plots of RMSE along with No. of Iterations for different 

reconstruction algorithms for Test case 1 

 

 

Fig 4.32: The Plots of CP along with No. of Iterations for different 

reconstruction algorithms for Test case 1 
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Fig 4.33: The Plots of MSSIM along with No. of Iterations for different 

reconstruction algorithms for Test case 1 

 

  Fig 4.34: The overall performance measures of Model 1, Model 2, and Model 3  

4.5 Results and Discussions 

In this section of the work, results and performance analysis of the three pro-

posed method are presented for three different computer generated PET/SPECT 

phantoms and one standard medical thorax images both qualitatively and quanti-
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tatively. In this simulation study, only two- dimensional (2-D) simulated phan-

toms were considered. This was because our main aim here is to compare pro-

posed hybrid method with other algorithms and to demonstrate that the proposed 

method was applicable to different imaging modalities such as PET/SPECT, 

where 2-D phantoms were sufficient for this purpose.  

After critical examination of the comparative results of Model 1, Model 

2, and Model 3 as shown in Fig.4.30-4.34. It is found that the OSEM based hy-

brid-cascaded algorithm which is an accelerated version of MLEM performs 

better in comparison to other proposed two models with the common projection 

data. The graphs for SNR, RMSE, correlation parameter (CP), and MSSIM 

against the number of iterations are plotted in Fig.4.30-4.34. The experiments 

revealed major observations. It is found that the OSEM based hybrid-cascaded 

method (accelerated version of MLEM) outperforms with respect to other pro-

posed models on common projection data.  

4.6  Conclusion 

In this work, three different hybrid-cascaded efficient frameworks for MLEM, 

MRP and OSEM based SIR reconstruction algorithms were proposed. The pro-

posed frameworks were based on two consecutive modules viz. Primary and 

secondary. The problems of slow convergence, choice of optimum initial point 

and ill-posedness are resolved in this framework. During primary part, simulta-

neous algebraic reconstruction technique (SART) was applied to overcome the 

problems of slow convergence and initialization. It provided fast convergence 

and produced good reconstruction results with lesser number of iterations than 

other iterative methods. The task of primary part was to provide an enhanced 

image to secondary part to be used as an initial estimate for reconstruction pro-

cess. The secondary part was a hybrid combination of two parts namely the re-

construction part and the prior part. The reconstruction was done using SIR 

based methods such as: MLEM, MRP, and OSEM algorithm while anisotropic 

diffusion (AD) filter is used as prior to deal with ill-posedness. The comparative 

analysis of the proposed methods with other standard methods was presented for 

four different test phantoms both qualitatively and quantitatively. The proposed 
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cascaded framework yield significant improvements in reconstructed image 

quality. Finally, in the last section of the chapter, after comparison with all three 

proposed methods, it is concluded that OSEM based hybrid-cascaded frame-

work which is an accelerated version of MLEM performs better with the com-

mon projection data in comparison to other two presented methods. Therefore, 

the use of this proposed method in the image reconstruction of real PET and 

SPECT studies is possible. 

 

 

 

 

 

 

 

  


