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PREFACE 
 

Computed Tomography (CT) is an effective and indispensable imaging tool for 

medical image reconstruction application. It comprises positron emission to-

mography (PET) and single photon emission computed tomography (SPECT). It 

provides functional and anatomical information about physiological processes. 

The goal of CT is to reconstruct the distribution of the radio-isotopes in the 

body by measuring the emitted photons. Tomographic image reconstruction us-

ing statistical methods (e.g. MLEM, MRP, OSEM etc.) can improve the image 

quality over the conventional filtered backprojection (FBP) method. Statistical 

Iterative Reconstruction (SIR) method offers many advantages like incorporat-

ing physical effects and physical constraints, modeling of complex imaging ge-

ometries, appropriate noise models, imaging at lower X-ray doses etc. over 

FBP. But, the use of statistical methods is limited due to many practical prob-

lems like sourse intensity fluctuation, scattering effects, attenuation, noise con-

tamination etc. The major drawbacks associated with these methods include the 

problem of slow convergence, choice of optimum initial point, ill-posedness etc. 

They also require huge computation and complex modeling. To address above 

mentioned issues, simple and computationally efficient methods based on accu-

rate statistical models are yet to be explored. The objective of this thesis is to 

design and develop efficient SIR frameworks for two different applications: 

First, for normal dose PET image reconstruction by using provision for proper 

initialization and spatial regularization term to alleviate above mentioned draw-

backs of SIR methods. Secondly, for low dose X-ray CT image reconstruction 

by using statistical sinogram restoration method to minimize the radiation risks 

in clinical practice. The efficient hybrid cascaded framework proposed for first 

application leads to a reduction in reconstruction time, accelerates the conver-

gence and provides enhanced results using the less projection data. It also makes 

the algorithm robust to the initial guess image. The obtained results have proven 
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the suitability of the designed framework for the undertaken objective. Second 

framework performs well in low dose X-ray CT image reconstruction by offer-

ing several desirable features like superior noise robustness, reduced computa-

tional cost, the improved denoising effect and better edge & structure preserving 

properties, overcome of the staircase effect effectively.  

First framework consists of the properties of the maximum likelihood 

expectation maximization (MLEM) algorithm and its variants. After the mathe-

matical analysis of these algorithms, it is observed that the choice of optimum 

initial input data, pixel updating coefficients, and stopping (convergence) crite-

ria play a significant role during the update of reconstructed image from current 

n
th

 iteration to next (n+1)
th

 iteration. For the analysis of the properties of these 

algorithms, a PET and SPECT scanner geometry are simulated using MATLAB 

Tools. To validate the proposed method, different mathematical computer gen-

erated test phantoms and real test images are utilized. 

For image reconstruction using iterative techniques, the calculation of 

the transition or system matrix is essential. The transition matrix describes the 

transition law between the measured projection data and the estimated image 

vector. It fully depends on the geometrical characteristics of the PET scanner. 

For its calculation, a software code, based on a parallel projection method, has 

been developed. The parallel projection method is preferred for comparison of 

analytical, statistical and state-of-art methods due to its lower complexity.  

Finally, three different hybrid cascaded framework based on statistical 

iterative reconstruction algorithms (e.g. MLEM, MRP, and OSEM) have been 

proposed for PET and SPECT imaging modalities. Their performances are eval-

uated on computer generated test phantoms and standard thorax real test image. 

The obtained results are compared with those of previously reported methods. It 

is observed that the proposed methods perform better in terms of visual image 

quality and detail preservation. For quantitative analysis, various performance 

measures such as: SNR, PSNR, RMSE, CP, MSSIM are used. After, critically 

comparing the results of all three proposed methods, it is found that the OSEM 

based hybrid-cascaded method (accelerated version of MLEM) outperforms 

with respect to other proposed models on common projection data. Hence, we 

conclude that an OSEM based hybrid-cascaded framework is an efficient meth-
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od for PET and SPECT image reconstruction. The proposed framework is inde-

pendent of the image size and topology but it is strongly dependent on the num-

ber of detected counts. Therefore, the use of this proposed method in the image 

reconstruction of real PET and SPECT studies is possible. 

Further, the role of the low dose X-ray CT image reconstruction algo-

rithm was further studied, and it is found that the potential harmful effects of X-

ray radiation including lifetime risk of genetic, cancerous and other diseases 

have raised growing concerns to patients and medical physics community. 

Therefore, minimizing the radiation risks is strongly desirable in clinical prac-

tices. To realize this objective, numerous studies have focused on radiation dose 

reduction of CT examinations. Sinogram smoothing using non-linear modified 

anisotropic diffusion (AD) based statistical iterative methods have been pro-

posed, which have shown great potential to reduce the radiation dose while 

maintaining the image quality in X-ray CT as compared with the FBP recon-

struction algorithm.  

Furthermore, three sets of digital phantoms and one real test image i.e. 

Shepp-Logan head Phantom, (128 128 pixels), PET Test phantom (128 128

pixels), SPECT Test phantom (128 128 pixels) and Medical thorax image (

128 128 pixels), are used for the simulation and validation purposes. For each 

one of the phantoms employed, simulated data sets have been generated, at dif-

ferent activity distribution levels. The algebraic and statistical iterative recon-

struction algorithms (e. g. SART, MLEM, MRP, and OSEM) are used to recon-

struct   the   projection   data.   In   order   to   compare   the reconstructed and 

true images, various performance measures including signal-to-noise ratio 

(SNR), the root mean square error (RMSE), the peak signal-to-noise ratio 

(PSNR), the correlation parameter (CP), and mean structure similarity index 

map (MSSIM) are used for quantitative analysis. The SNR, RMSE and PSNR 

give the error measures in reconstruction process. The correlation parameter is a 

measure of edge preservation in the reconstructed image. The MSSIM is a 

measure of preservation of luminance, contrast and structure of the image after 

the reconstruction process, which is necessary for medical images. The brief 

descriptions of the various chapters of the thesis are given as follows:  
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Chapter 1 provides the introduction, motivation and problem descrip-

tion for the present work including thesis scope/objectives, and contributions. 

Finally, the chapter concludes with the organization that describes the coverage 

of chapter in the thesis. 

Chapter 2 discusses the theoretical background related to medical im-

age reconstruction. It gives an overview of the physics, geometries of imaging 

systems, more specifically generation and detection techniques. The basic con-

cepts of ill-posedness, ill-conditioned problems in reconstruction methods and 

the formulation of various reconstruction problems are also discused.  A brief 

discoussion about the state-of-art of SIR image reconstruction techniques used 

in various medical imaging modalities like CT/PET/SPECT etc. is also present-

ed. Further, in the last section of the chapter qualitative analysis and behavior of 

these reconstructions algorithm are provided. Analysis of different simulated 

test phantoms and standard digital test images are also presented for quantitative 

analysis. 

In Chapter 3, various priors have been studied. This chapter focuses on 

improving statistical iterative reconstruction algorithms by incorporating a suit-

able prior knowledge of the object being scanned. Some statistical maximum 

likelihood (ML) based approach for CT, PET, and SPECT image reconstruction 

methods are proposed. The proposed method investigates and presents various 

choices of regularization priors used in standard SIR reconstruction methods 

like MLEM, MRP, and OSEM in literature. Experimental analysis has been per-

formed over own created mathematical test phantoms and benchmark Shepp-

Logan head phantom plus real thorax test phantom. The results have been com-

pared with existing methods using six quantitate measures that are signal-to-

noise ratio (SNR), the root mean square error (RMSE), the peak signal-to-noise 

ratio (PSNR), the correlation parameter (CP), and mean structure similarity in-

dex map (MSSIM). 

In Chapter 4, we have discussed the major drawbacks associated with 

statistical iterative reconstruction algorithms include the problem of slow con-

vergence, choice of optimum initial point and ill-posedness. To alleviate these 

issues, in this chapter, we have proposed three different hybrid-cascaded effi-
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cient frameworks for MLEM, MRP and OSEM based SIR reconstruction algo-

rithms. The proposed framework is based on two consecutive modules viz. Pri-

mary and secondary. We have performed experiments over three different simu-

lated mathematical test phantoms and one standard thorax image. The results 

have been evaluated and compared with existing methods in terms of visual 

analysis as well as quantitative analysis using SNR, PSNR, RMSE, CP, and 

MSSIM performance measures. Hence, in the last section of the chapter, after 

comparison with all three proposed methods, we have conclude that OSEM 

based efficient hybrid-cascaded framework which is an accelerated version of 

MLEM performs better with the projection data which dedicated to PET and 

SPECT imaging scanner. 

Chapter 5 presents a low dose image reconstruction method for com-

puted tomography (CT). The theoretical background, issues and challenges of 

low dose CT reconstruction are discussed. To address the issues in this chapter, 

we have proposed statistical sinogram restoration models for low dose CT re-

construction. To examine the efficacy and usefulness of proposed models an 

appropriate qualitatively and quantitatively analysis using simulated test phan-

tom and standard digital image. The obtained results justify the applicability of 

the proposed method. 

In Chapter 6, we summarize main findings of this thesis and give future 

perspectives of the research out in this thesis.  

  


