
145

CHAPTER 4

Heuristic Algorithms for Graph Problems

Abstract

This chapter discusses new heuristic and meta-heuristic algorithms for

Orienteering and Constrained Shortest Path problems. An algorithm has been

proposed for the orienteering problem that can handle complete as well as

incomplete graphs. This algorithm gives superior performance in comparison to

other algorithms reported in the literature. The experimental analysis of this

algorithm shows that the roulette wheel selection heuristic performs better than

the other selection methods. Having established roulette wheel heuristic as the

best strategy, we compare its performance against Ostrowski’s algorithm. We

found that the new algorithm �`�_6. easily outperforms Ostrowski’s

algorithm. In fact, �`�_6. performs better both in terms of score and time i.e.,

helps in achieving a better total collected score and utilizes the given time

budget more effectively. Further, for complete graphs a meta-heuristic based on

flower pollination (�.#_6.) is shown to perform better than other reported

algorithms, especially for the larger values of time budget. A heuristic has also

been proposed for the constrained shortest path problem which uses

bidirectional search. This algorithm improves the results (for the average case)

of the recently reported path delay discretization algorithm suggested by Chen

et al.

 In section 4.1, an introduction to heuristics has been presented. Section

4.2 presents a comparison of various selections methods for the orienteering

problem. The results of the roulette wheel selection method are compared with

the results known for incomplete graphs in section 4.3. Section 4.4 presents the

implementation of the flower pollination algorithm for the orienteering

problem. In section 4.5, the bidirectional search heuristic for the constrained

146

shortest path problem has been proposed and finally the conclusion of the

chapter is stated in section 4.6.

147

4.1 Introduction

Most of the optimization problems are NP-Hard and to solve these problems, we

need efficient algorithms that can generate optimal solutions in polynomial

time. However, it is difficult to obtain an algorithm that simultaneously

possesses three properties: (1) computes optimal solutions, (2) for any instance

and (3) in polynomial time (Williamson & Shmoys, 2010). To tackle the NP-

Hard optimization problems, the decision maker needs to compromise with at

least one of the above stated requirements. A category of algorithms that

compromises with the polynomial-time solvability and generates an optimal

solution for an instance by exploiting the entire search space is called an exact

algorithm. But in case of exact algorithms, it can never be predicted that for the

next input instance, how much time is required for determining the solution. It

can take seconds, minutes, hours or even days. So exact algorithms might

require immensely large amount of time to deal with the formidable challenges

and hence are not very appropriate for the NP-Hard problems. Another category

of algorithms are the heuristic algorithms that relaxes the requirement of

determining the optimal solution and settles with a near to optimal solution.

These algorithms generate a solution that is good enough, in polynomial time

for an input instance of any size. Approximation algorithms forms the third

category where again the compromise is with the optimal solution but the

advantage of these algorithms is that the relaxation is minimized to the extent

where an upper bound can be set on the quality of the solution.

 Therefore, the problems that have large inputs and which cannot be

solved in polynomial time can be dealt with using heuristic algorithms. The

word heuristic was derived from the Greek word “heuriskein” which means to

discover and a heuristic algorithm is basically used to gain some knowledge or

compute some desired result by using the rule-of-thumb, trial and error method,

intelligent guesswork etc. instead of implementing some pre-established

formula. Heuristic algorithms have the advantage of computing a solution for

NP-Hard or NP-Complete problems with tolerable time and space complexity at

the cost of optimality of the solution i.e., one needs to compromise with the

quality of the solution to generate one with acceptable time and space

complexity. However, the solution computed using a heuristic is most of the

148

times a near to optimal solution and for real life applications it is sufficient to

have an approximate or partial solution. Most of the practical problems can be

presented as an optimization problem. The set of possible solutions for these

optimization problems is often referred to as the search space and the algorithms

used to explore the search space are regarded as the search algorithms (Kokash,

2005).

 In this chapter, we concentrate on heuristic algorithms and propose few

heuristics to deal with the considered research problems viz. orienteering

problem (OP) and constrained shortest path problem (CSPP).

4.2 Comparison of Selection Methods for Orienteering Problem

Orienteering problem (OP) is an NP-Hard graph problem. In OP the aim is to

determine a Hamiltonian Path . that connects the stated source ���� and target ��B�, includes a subset �	�:� of the vertex set � such that the total collected

score can be maximized within the stated time budget �-����. OP can be

represented by an undirected weighted graph (complete or incomplete) ���,��
where � is the set of vertices and � is the set of edges. We associate two

functions, that is, a time function and a score function to the edges and vertices

respectively. Let �:� → ℜ� denote the time function and �:� → ℜ�	signify the

score function. Consequently, for a subset �:��	� and �:��	�, we have ���:� = ∑ �==∈n# and ���:� = ∑ ��	�H∈i# respectively (Vansteenwegen,

Souffriau, & Oudheusden, 2011).

OP finds application in several fields like logistics, transportation

networks, tourism industry, etc. Most of the existing algorithms for OP can only

be applied on complete graphs that satisfy the triangle inequality. Real-life

scenario does not guarantee that there exists a direct link between all control

point pairs or that the triangle inequality is satisfied. To provide a more practical

solution, we propose a stochastic greedy algorithm (��5_6.) that uses the

various selection methods, does not require that the triangle inequality condition

be satisfied and is capable of handling both complete as well as incomplete

graphs.

 The OP can be stated as an integer programming problem which is as

follows (Vansteenwegen, Souffriau, & Oudheusden, 2011):

149

S�� ∑ ∑ �	�	�B�4�B��	4� (4.1) ∑ ���B�4� = 1				,			 ∑ �	BB��	4� = 1 (4.2) ∑ �	�B��	4� ≤ 1						∀	0 = 2, … … . ," − 1 (4.3) ∑ ���B�4� ≤ 1						∀	0 = 2, … … . ," − 1 (4.4) ∑ ∑ �	��	�	B�4�B��	4� 	≤ 	 -��� (4.5)

2 ≤ �	 ≤ "					∀	� = 2, … … . ," (4.6) �	 − �� + 1 ≤ �" − 1�81 − �	�9			∀	�, E = 2, … … … ," (4.7) �	� 	�	�0,1�			∀	�, E = 1, … … ," (4.8)

Eq. 4.1 represents the objective function of OP i.e., maximization of the total

collected score. Few other constraints like a path should have �� as its starting

and �B as its ending node is taken care by Eq. 4.2 and no vertex is visited more

than once and the path remains connected is ensured by Eqs. 4.3 - 4.4. The

important condition that the path satisfies the time bound �-���� is represented

by Eq. 4.5. The need to eliminate sub tours is executed by Eq. 4.6 and 4.7.

Variable �	 signifies the position of vertex �	 in the path and �	� = 1 if �� is

visited after �	 otherwise, �	� = 0.

4.2.1 Selection Methods

(I) Tournament Selection

In this selection technique, one individual is chosen from a population of

individuals. Several tournaments are run among the randomly selected

individuals from a population and the best ones are copied to the next

generation (those that win the tournament i.e., have the best fitness value). The

process is repeatedly performed to saturate the population. The tournament size

is denoted by q and the most common tournament size is q=2. By altering the

tournament size, the selection pressure can be easily adjusted. In case the

tournament size is large, then weak individuals have a lesser chance of getting

selected. Some advantages of this method are (1) it does not require any sorting

mechanism and therefore can be implemented in O(n) time and (2) it supports

150

parallel architecture (Back, 1994; Razali, & Geraghty, 2011; Sivaraj, &

Ravichandran, 2011).

(II) �º,»� Selection
This selection technique was formulated with the idea of reducing the offspring

population generated as a result of recombination and mutation. In this case, the

offspring population of size � ≥
 is reduced by selecting
 best offspring

individuals as new parents for the next generation. It is an easy to implement

technique, takes less time and practically follows the greedy approach therefore

generates good results and helps in most of the cases (Back, 1994; Razali, &

Geraghty, 2011; Sivaraj, & Ravichandran, 2011).

(III) Roulette Wheel Selection

This selection method is also called proportional selection method and uses the

fitness proportionate approach. It selects an element randomly from a list on the

basis of the fitness function. The elements having a higher fitness value have a

greater probability of getting selected, however, even the elements with a lesser

fitness value has a non-zero probability of getting selected (Back, 1994; Razali,

& Geraghty, 2011; Sivaraj, & Ravichandran, 2011).

(IV) Random Selection

It is the simplest selection method. In this technique, any node is randomly

selected from the set of available candidate nodes i.e., a node is selected only

because it is readily available and can be conveniently used for further operation

without performing any other processing. This method can explore a large

search space and provides a wide range of answers. Also, if the technique is

allowed to run large number of times, it may generate the best possible solution

(Back, 1994; Razali, & Geraghty, 2011; Sivaraj, & Ravichandran, 2011).

151

4.2.2 Algorithm for Incomplete and Complete Graphs

Input: A graph ���,�� with	�	� (time taken to traverse) value and �	 (score)

value of each edge and each vertex respectively. A constant .��ℎ5�/����		
value which denotes the maximum number of paths that are considered at each

level.

Output: A Hamiltonian path with the best possible total collected score such

that the total travel time is within the stated time bound.

 ��5_	6.��,.��ℎ5�/����	,-����
1. �ghpdh	.��ℎ5�/�;

// Array of paths which is initially empty.

2. .��ℎ5�/� ← ∅;

3. .��ℎ	P ← ��E0/������, �!�;

// Shortest path between source �	�� and target �	$�.

4. tichgd	.	��	.��ℎ5�/�;

5. ghdugi	�	�	�������.��ℎ5�/��;
 �	�	�������.��ℎ5�/��

1. �ghpdh	"	�.��ℎ5�/�	,^ℎ��
���ℎ5�/�; // Queues storing paths.

 "	�.��ℎ5�/� ← ∅;

 ̂ ℎ��
.��ℎ5�/� ← ∅;

2. efg	� ← 0	��	|.��ℎ5�/�| �. �	�	1�����.��ℎ5�/�(�),^ℎ��
.��ℎ5�/��;
//�ℎ������ℎ����	will contain children generated from each path in ���ℎ����.

3. efg	� ← 0	��	.��ℎ5�/����	

// Selecting best ���ℎ�������� children for next generation.

 �.^ℎ��
.��ℎ = +	/�.��ℎ�^ℎ��
.��ℎ5�/��;

// The path with the maximum total score.

 |h¼f�h	^ℎ��
.��ℎ	����	^ℎ��
.��ℎ5�/�;

 tichgd	^ℎ��
.��ℎ	��	"	�.��ℎ5�/�;
 �. me	|^ℎ��
.��ℎ5�/�| == 0

 ��	�0;

152

4. me	"	�.��ℎ5�/� == .��ℎ5�/�
 // Terminate if no new child is generated and return the �������ℎ.

 ghdugi	+	/�.��ℎ�.��ℎ5�/��;

5. ghdugi	�	�	�������"	�.��ℎ5�/��;

 �	�	1���� �.��ℎ	.,^ℎ��
.��ℎ5�/��
 //���ℎ is an array of nodes that forms a path.

1. Q��� ← 	0;

2. efg	� ← 0	��	|�|
3. �. me	� ∈ .

 // If a node is already present in the path then ignore it.

 �fidmiuh; 														�.�pn�unpdh∆�		;	
// The time increment due to insertion of 	% at its best position.

 	1. Q	 = ½ �	 |∆�	|⁄ , 													∆�	 	≥ 1�	, 													 −1 ≤ ∆�	 < 1�	 ∗ |∆�	|, 										∆�	 < −1		

. meQ��� ≤ 	 Q	
 Q��� ← Q	

4. ^�	��		^��
�
��	5�/�	;
 // Array of candidate nodes used for selection.

5. ^��
�
��	5�/� ← ∅;

6. efg	� ← 0	��	|�|
7. �. me	� ∈ .

 �fidmiuh;

 �. me	(Q	 	≥ 	:	Q���)&&	(����H!� + ∆�	 ≤ -���)

// � is the greediness parameter that decides which node should participate in selection process.

 1. tichgd	�		��	^��
�
��	5�/�	;
8. me|^��
�
��	5�/�| == 0

 tichgd	.	��	^ℎ��
.��ℎ5�/�;

// If no new nodes are added then insert the parent path	�.

 |hdugi;

153

9. efg	� ← 0	��	.��ℎ5�/����	

 // Generates	���ℎ�������� number of children paths from path P.

10. �.^ℎ��
"�
		 ← ^�����	�^��
�
��	5�/��
 // Compute 1 using tournament selection.

 // Compute 2 using (�, �) selection.

 // Compute 3 using roulette wheel selection.

 // Compute 4 using random selection.

 |h¼f�h	^ℎ��
"�
		����	^��
�
��	5�/�;
 tichgd	^ℎ��
"�
		��	.��ℎ	.	��
	tichgd	.��ℎ	.	��	^ℎ��
.��ℎ5�/�.
 |h¼f�h	^ℎ��
"�
		����	.��ℎ	.;

 �. me	|^��
�
��	5�/�| = 0	
 oghpq;

 +	/�.��ℎ�.��ℎ5�/��
1. ��� ← 0; �	/����ℎ ← 0;

2. efg	� ← 0	��	|.��ℎ5�/�|
a. me U�1��	8.��ℎ5�/����9V > ����1��	

// Score (���ℎ	�) is the sum of the rewards associated with each node of ���ℎ	� . 	�.����1��	 ← �1��	8.��ℎ5�/����9;

 �	/����ℎ	 ← �;
3. �	����	.��ℎ5�/���	/����ℎ�;

The aim of above stated algorithm is to determine a path that connects the

source ���� and target ��B� and a subset of vertices that maximize the total

collected score and obeys the time limit. This algorithm can be implemented on

both complete as well as incomplete graphs. To ensure that in a path, source and

target is connected we implement the Dijkstra’s algorithm as shown in step 3 of ��5_6.(). To take care of the other constraint that no vertex is visited more

than once, the explored nodes are removed from the set of available nodes that

forms the candidate list for the selection process.

 In lines 1-5 of ��5_6.(), Dijkstra’s algorithm is applied to find the

shortest path connecting the source and target, and the path obtained is stored in

154

.��ℎ. A queue of .��ℎs, viz. .��ℎ5�/� is maintained that contains the list of .��ℎ/ obtained after each iteration and is initialized with the shortest path ..

Lines 1-5 of �	�	������() denotes that in each iteration (i.e., in each

run), �	�	������ function inserts a node into the .��ℎ obtained after the

previous iteration. Thus, an iteration of �	�	������ function accepts a list of .��ℎs in the form of .��ℎ5�/� and for each .��ℎ in the .��ℎ5�/�, it calls the �	�	1���� function. Another queue of .��ℎs, namely ^ℎ��
.��ℎ5�/� is

maintained, which is initially empty. It stores the child paths generated using the �	�	1���� function for each .��ℎ of .��ℎ5�/�. After each iteration, we

consider only .��ℎ5�/����		number of 	.��ℎs at a time. Thus, .��ℎ5�/����		number of +	/�.��ℎs	(+	/�.��ℎ is the one which has the

highest value for total collected score) from the	^ℎ��
.��ℎ5�/�	are inserted into

another queue of .��ℎs, viz. "	�.��ℎ5�/�. Then the termination condition is

checked to determine whether a new child is generated by the �	�	������	function or not. If no new child is generated (i.e., all paths in the

queue, "	�.��ℎ5�/� is the same as that of .��ℎ5�/�), then the �	�	������	function will return the +	/�.��ℎ from the .��ℎ5�/� else, the �	�	������ function is recursively called for "	�.��ℎ5�/�. In the �	�	1����	(), four selection techniques were implemented one by one. A

comparison of their results has been presented in the next section. A detailed

explanation of lines 1-10 of �	�	1����	() has been stated in section 4.3.1 after

the �`�_6. algorithm. The time complexity of ��5_6. is 6�|�|��.

4.2.3 Experimental Analysis

Our code was implemented in C++ and compiled using CodeBlocks on an Intel

Core i5 650 running at 2.20 GHz. ��5_6. has the capability to tackle both

complete as well as incomplete graphs and here the results for incomplete

graphs are reported by running the code on some real data. Two instances were

considered viz. a real road network data of 160 and 306 cities of Poland. Each

instance is associated with two files viz. cities.txt and distances.txt. The names

of the various cities and their scores are specified in cities.txt. The score of each

city is calculated on the basis of the number of inhabitants using the formula /1��	 = ��ℎ�������/ 10000	⁄ . The other file distances.txt represents for each

155

city, its adjacent city and their respective edge lengths. These edges of the graph

correspond to the roads of the real map of Poland.

 The algorithm ��5_6. was executed using four different selection

methods defined in section 4.2.1. In Table 4.1, the maximum and mean score

value achieved by each selection technique for different -��� values is

presented and in Figure 4.1, these values have been plotted for the first instance

with 160 cities. It was observed that roulette wheel selection method performs

better than the other three techniques in most of the cases and helps in obtaining

a better total collected score when compared to the other techniques.

 It was also seen that when the same algorithm was executed for the 306

cities instance, only the random selection method suffers and rest of the

selection methods achieves the same maximum total collected score most of the

times as shown in Table 4.2 and Figure 4.2. The possible reason for this

observation might be the existence of big clusters in the 306 cities instance

which is absent in case of the 160 cities instance as shown in Figure 4.3 (a) and

4.3 (b). Therefore, the selection techniques have more possible options available

to be explored in case of 160 cities instance and do not get stuck within a

cluster. On this basis, it can be stated here that roulette wheel selection

procedure performs better than the other methods when executed by ��5_6.

algorithm.

156

Table 4.1: Comparison of the mean and maximum value of the total

collected score obtained by z}r_®s when executed with four different
selection procedures for 160 cities

 {dlm (µ,λ) Random Tournament Roulette

Wheel

 Max Mean Max Mean Max Mean Max Mean

500 49 49 49 48 49 48 49 48

750 67 67 67 64 67 66 67 65

1000 83 83 88 77 88 84 88 79

1250 103 103 103 99 103 101 102 100

1500 118 118 116 114 119 116 116 114

1750 135 135 130 128 135 128 130 128

2000 145 145 145 143 145 143 148 143

2250 157 157 160 154 157 155 162 155

2500 179 179 184 175 179 176 187 174

2750 190 190 203 193 191 189 203 193

3000 206 206 214 205 206 202 214 206

3250 234 234 233 223 234 228 233 224

3500 248 248 249 242 249 245 251 244

3750 255 255 261 255 257 255 263 256

4000 269 269 271 264 272 268 270 267

157

Table 4.2: Comparison of the mean and maximum value of the total

collected score obtained by z}r_®s when executed with four different
selection procedures for 306 cities

 {dlm (µ,λ) Random Tournament Roulette

Wheel

 Max Mean Max Mean Max Mean Max Mean

500 127 121 127 117 127 121 127 118

750 155 149 155 147 155 148 155 147

1000 178 173 177 168 178 172 178 169

1250 211 173 208 190 211 172 211 193

1500 236 213 234 218 236 219 236 221

1750 263 241 263 253 263 254 263 251

2000 282 280 279 273 282 277 282 273

2250 307 300 299 291 307 292 307 281

2500 325 323 323 307 325 309 325 306

2750 349 336 333 325 349 327 349 329

3000 366 355 366 346 366 345 366 344

3250 396 339 386 366 396 371 396 369

3500 420 394 414 384 420 393 420 390

3750 435 408 428 410 435 411 435 400

4000 459 430 448 429 459 437 459 440

158

Fig. 4.1: Comparison of the maximum value of the total collected score

obtained by four different selection methods for different {dlm values (160
cities)

40 90 140 190 240 290

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

Total Score

T
m

a
x

160 cities

(μ,λ) Tournament Random Roulette Wheel

159

Fig. 4.2: Comparison of the maximum value of the total collected score

obtained by four different selection methods for different {dlm values (306
cities)

100 150 200 250 300 350 400 450 500

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

Total Score

T
m

a
x

306 cities

Tournament (μ,λ) Roulette Wheel Random

160

(a)

(b)

Fig. 4.3: Graph for (a) 160 cities and (b) 306 cities instance

161

4.3 Roulette Wheel Selection based Heuristic Algorithm for the

Orienteering Problem

In section 4.2, it was shown through experiments that the roulette wheel

selection method performs better than the other selection methods. Here, based

on several experiments on standard benchmark data, we show that RWS_OP is

faster, more efficient in terms of time budget utilization and achieves a better

performance in terms of the total collected score as compared to a recently

reported algorithm for incomplete graphs.

Here, we have proposed a stochastic greedy heuristic for OP (RWS_OP)

that uses the roulette wheel selection method for determining the path that

maximizes the total collected score within the specified time frame (-���). The

algorithm is guaranteed to reach the destination node (�B) since the starting

node (��) and the final node (�B) are always the end points for all the generated

paths. One necessary condition of OP is to ensure that a node is visited at most

once, which in our algorithm is implemented by removing the explored nodes

from the set of available nodes. This algorithm can be applied on both complete

as well as incomplete graphs. We also compare our results with those reported

by Ostrowski et al for large instances to show that RWS_OP executes more

efficiently. Ostrowski et al. (2011) proposed two algorithms one for incomplete

graphs (IG) and the other that requires conversion of IG to complete graphs

(CG) before OP can be solved. Few drawbacks of their paper are: (1) The paper

does not categorically provide conclusive evidence about which of these

algorithms is better. (2) Further, the authors allow each vertex to be visited more

than once, but the reward is collected only on the first visit. This strategy is not

only disadvantageous from the time budget point of view, but also produces

invalid results (i.e., Non-Hamiltonian path). (3) In the second version of their

algorithm, virtual edges need to be added using Dijkstra’s algorithm, which

results in unnecessary complication. (4) Their strategy requires application-

specific complex crossover and mutation operations that often produce

infeasible partial solutions that require additional correction / repair operations.

A stochastic greedy algorithm that uses roulette wheel selection method has

been proposed here to avoid the search getting trapped in local maxima and

removes all the disadvantages of Ostrowski’s method mentioned above. It also

162

outperforms Ostrowski’s algorithm by improving the score and utilizing the

time budget up to almost 99%. The objective function used in RWS_OP is

based on the greedy adaptive search procedure and path relinking (GRASP)

technique suggested by Campos et al. (2013). Also, it has been shown that

roulette wheel selection with the new instance coding technique outperforms

full GA implementation by Ostrowski et al. in terms of both quality of solution

and search time and space. In our method of candidate representation, we start

with the shortest path between �� and �B and using the roulette wheel

proportionate selection scheme, keep on adding the nodes until -��� is reached.

At each step, the probability of selecting a node is proportionate to its fitness

defined in Eq. 4.9. Thus, without using crossover and mutation and without the

need to maintain a population of possible solution, this algorithm is able to

outperform GA based technique reported by Ostrowski et al. (2011).

Fig. 4.4: The process of selecting a path using roulette wheel selection

function where the number in () denotes the probability of node selection

163

4.3.1 Algorithm RWS_OP

Input: A graph ���,�� with	�	� (time taken to traverse) value of each edge

(�)	connecting vertex �	 and �� ∈ �, �	 (score) value of each vertex �	 ∈ �

and the .��ℎ5�/����	 (maximum number of paths considered at each level).

Output: A Hamiltonian path with the highest possible collected score such that

total travel time is within the specified time budget.

.��ℎ is an array of nodes or vertices, which is a sequence connecting the source

and the target.

.��ℎ5�/�, "	�.��ℎ5�/�	and ^ℎ��
.��ℎ5�/�, are all queues and each of its

element is a .��ℎ. .��ℎ5�/����	 is a constant whose value defines the

maximum number of paths to be considered after each iteration.

 �`�_	6.��,.��ℎ5�/����	,-����
1. �ghpdh	.��ℎ5�/�;

// Array of paths which is initially empty.

2. .��ℎ5�/� ← ∅;

3. .��ℎ	P ← ��E0/������, �!�;

 // Shortest path between source �	�� and target �	$�.

4. tichgd	.	��	.��ℎ5�/�;

5. ghdugi	�	�	�������.��ℎ5�/��;
 �	�	�������.��ℎ5�/��

1. �ghpdh	"	�.��ℎ5�/�	,^ℎ��
���ℎ5�/�; // Queues storing paths.

 "	�.��ℎ5�/� ← ∅;

 ̂ ℎ��
.��ℎ5�/� ← ∅;

2. efg	� ← 0	��	|.��ℎ5�/�| �. �	�	1�����.��ℎ5�/�(�),^ℎ��
.��ℎ5�/��;
// �ℎ������ℎ����	will contain children generated from each path in ���ℎ����.

3. efg	� ← 0	��	.��ℎ5�/����	

// Selecting best ���ℎ�������� children for next generation. �.^ℎ��
.��ℎ = +	/�.��ℎ�^ℎ��
.��ℎ5�/��;

164

// The path with the maximum total score.

 |h¼f�h	^ℎ��
.��ℎ	����	^ℎ��
.��ℎ5�/�;

 tichgd	^ℎ��
.��ℎ	��	"	�.��ℎ5�/�;
 �. me	|^ℎ��
.��ℎ5�/�| == 0

 ��	�0;

4. me	"	�.��ℎ5�/� == .��ℎ5�/�
// Terminate if no new child is generated and return the �������ℎ. ghdugi	+	/�.��ℎ�.��ℎ5�/��;

5. ghdugi	�	�	�������"	�.��ℎ5�/��;

�	�	1����(.��ℎ	.,^ℎ��
.��ℎ5�/�)
 //���ℎ is an array of nodes that forms a path.

1. Q��� ← 	0;

2. efg	� ← 0	��	|�|
3. �. me	� ∈ . // If a node is already present in the path then ignore it. �fidmiuh;

													�.�pn�unpdh∆�		;	
// The time increment due to insertion of 	% at its best position.

1. Q	 = ½ �	 |∆�	|⁄ , 													∆�	 	≥ 1�	, 													 −1 ≤ ∆�	 < 1�	 ∗ |∆�	|, 										∆�	 < −1		 ;

. meQ��� ≤ 	 Q	

 Q��� ← Q	
4. ^�	��		^��
�
��	5�/�	;

// Array of candidate nodes used for roulette wheel selection.

5. ^��
�
��	5�/� ← ∅;

6. efg	� ← 0	��	|�|
7. �. me	� ∈ .

165

�fidmiuh; �. me	(Q	 	≥ 	:	Q���)&&	(����H!� + ∆�	 ≤ -���)

// � is the greediness parameter that decides which node should participate in roulette

wheel selection. 1. tichgd	�		��	^��
�
��	5�/�	;
8. me|^��
�
��	5�/�| == 0

 tichgd	.	��	^ℎ��
.��ℎ5�/�;

// If no new nodes are added then insert the parent path	�.

 |hdugi;

9. efg	� ← 0	��	� ← .��ℎ5�/����	

 // Generates	���ℎ�������� number of children paths from path P.

10. �.^ℎ��
"�
		 ← ����	�	`ℎ		��^��
�
��	5�/��
 |h¼f�h	^ℎ��
"�
		����	^��
�
��	5�/�; 																	tichgd	^ℎ��
"�
		��	.��ℎ	.	��
	tichgd	.��ℎ	.	��	^ℎ��
.��ℎ5�/�. |h¼f�h	^ℎ��
"�
		����	.��ℎ	.;

 �. me|^��
�
��	5�/�| ≤ 0	
 oghpq;

 ����	�	`ℎ		��^��
�
��	5�/��
1. /�� ← 0;

2. efg	� ← 0	��	|^��
�
��	5�/�| /��+= ����	//���;	
//����	//��� 	← Q	, where Q	 = ½ �	 |∆�	|⁄ , 												∆�	 	≥ 1�																	, 				−1 ≤ ∆�	 < 1					�	 ∗ |∆�	|					, 										∆�	 < −1		

3. ���
��"���	� ← ���
()%�/�� + 1�
4. .��������� ← 0;

5. �	�	1�	
 ← 0;

6. klmnh����
��"���	� > .����������
 �. �	�	1�	
 + +; 											�..���������+= ����	//�/	�	1�	
�;.

7. ghdugi	/	�	1�	
;

166

+	/�.��ℎ�.��ℎ5�/��
1. ��� ← 0; �	/����ℎ ← 0;

2. efg	� ← 0	��	|.��ℎ5�/�|
a. me U�1��	8.��ℎ5�/����9V > ����1��	

// Score (���ℎ	�) is the sum of the rewards associated with each node of ���ℎ	�. 	�.����1��	 ← �1��	8.��ℎ5�/����9;�	/����ℎ	 ← �;
3. �	����	.��ℎ5�/���	/����ℎ�;

The �`�_6.() and �	�	������() functions work in a similar manner as

explained in section 4.2.2 above. Here, the �	�	1����() and the ����	��	`ℎ		�() functions have been explained in detail.

The �	�	1����	function is used for generating ^ℎ��
.��ℎs from .��ℎ	..

This function generates a ^ℎ��
.��ℎ which contains one node more than that

already present in .��ℎ	P. This function decides the node to be inserted and its

location in .��ℎ	.. As shown in line 3 of �	�	1����(), for each vertex that has

not yet been inserted in .��ℎ	., its best position (one that leads to smallest

increment in time ∆�) is evaluated and then the ratio Q	 is computed. The ratio Q��� is calculated in the following way: �Q���� = 	���		∈	�n\;��Q	�	
In lines 4-7 of �	�	1����(), another list of nodes, named ^��
�
��	5�/�	is

created which is initially empty. All those nodes which satisfy the following

inequality are inserted in the ^��
�
��	5�/�: ^��
�
��	5�/� = 2� ∈ ��\.� ∶ (Q	 	≥ 	:	Qopq)	&&	(����H!� + ∆�	 ≤ -���)3
Here :	is the greediness parameter. Greater value of : denotes a more greedy

solution and smaller value of :	denotes a more random solution. As the value of : decreases, more nodes will be selected for the ^��
�
��	5�/�. As stated in

lines 8-10 of �	�	1����(), if the ^��
�
��	5�/� is empty, .��ℎ	. is inserted in

the queue ^ℎ��
.��ℎ5�/�, else ����	�	`ℎ		� selection method is used to

choose a node from the ^��
�
��	5�/�. The chosen node is removed from the ^��
�
��	5�/�	and inserted at its best position in	.��ℎ	. to generate a ^ℎ��
.��ℎ which is then en-queued into ^ℎ��
.��ℎ5�/�. This process of

extracting nodes from the ^��
�
��	5�/�	is repeated until a constant

167

(.��ℎ5�/����) number of ^ℎ��
.��ℎ/ are generated or ^��
�
��	5�/�
becomes empty.

Roulette wheel selection is a population-based selection method used in

genetic algorithms that stochastically picks out a node based on their fitness

value i.e., a node having greater fitness value has more chances of getting

selected, although nodes with lower fitness also have a nonzero probability of

selection. This assists the search in escaping local maxima. It is conceptually

equal to giving each individual option, a portion of a circular roulette wheel

proportional in area to the individual’s fitness value (Zhang et al., 2012). As it

can be seen, lines 1-7 of the ����	�	`ℎ		�()	selects a node from the ^��
�
��	5�/� using ����	//.�����������	�	�	1���� approach where an

element is randomly chosen, but the probability of choosing an element with

higher fitness is greater than choosing an element with lower fitness value. In

our selection process, the fitness of an element of ^��
�
��	5�/� is computed

using the following equation:

����	//��� 	← Q	, where Q	 = ½ �	 |∆�	|⁄ , 												∆�	 	≥ 1�																	, 				−1 ≤ ∆�	 < 1					�	 ∗ |∆�	|					, 										∆�	 < −1		 (4.9)

Therefore, nodes having a higher value of �	 and lower value of time increment �∆��, have a greater probability of getting selected and also the nodes having

low �	 and high �∆�� values can be selected but with a lesser probability �> 0�.
The time complexity of ��E0/���′/	���, �B� algorithm is 6�|�|�� where |�| is

the number of vertices in the graph. In the ����	�	`ℎ		� function, there exists

an iterative loop that runs |^��
�
��	5�/�| times and because

the	^��
�
��	5�/� can contain at	most		�|�| − 2� nodes, therefore the time

complexity of ����	�	`ℎ		� will be 6�|�|�.
In the selection function, line 2 is an iterative loop running for all the

vertices of � i.e., |�| times and in each iteration, the best position of node � in

the current .��ℎ	. is found which takes 6�|�|� time. Line 6 represents another

iterative loop, which takes 6�|�|� time as it also runs for all the vertices of �. T�/	�� operation in the 	^��
�
��	5�/�	is similar to simple insertion in an

array and takes 6�1� time. �	���	 operation in ^��
�
��	5�/� will take 6�|^��
�
��	5�/�|� or 6�|�|� time. �	���	 operation in ^ℎ��
.��ℎ5�/�
takes 6�|�|� time as 6�|�|� time is required to bring the element to the front of

168

the ^ℎ��
.��ℎ5�/� queue and 6�1� to dequeue it. T�/	��	operation in .��ℎ	.

takes 6�|�|� time. The iteration of line 9 takes 6�.��ℎ5�/����	 ∗ |�|� time as

it runs for .��ℎ5�/����	 times, and each iteration takes 6�|�|� time. Hence, the

overall time complexity of �	�	1���� function is 86�|�|�� + 	6�|�|� +

	6�.��ℎ5�/����	 ∗ |�|�9, which is equivalent to 6�|�|�� as .��ℎ5�/����	 ≤|�|.
For the �	�	������ function, time complexity of line 2 which is an

iterative loop is 6�.��ℎ5�/����	 ∗ |�|�� as it runs for all the paths in .��ℎ5�/�
and there can be at most .��ℎ5�/����		.��ℎ/ in this queue. In each iteration, it

calls the �	�	1���� function that takes 6�|�|�� time. The +	/�.��ℎ function

will take 6�.��ℎ5�/����	� time. Since it is a recursive function, after each

recursion, the .��ℎ/ contained in .��ℎ5�/� will increase by 1. The function

will terminate when no new node is available that can be inserted in the .��ℎ.

Therefore, the recurrence relation can be written as: -�S� = 	-�S − 1� + .��ℎ5�/����	 ∗ |�|�

Here, -�S� is the time complexity for the �	�	������	function where, S is the

number of nodes that can be added to the .��ℎ/ contained in .��ℎ5�/� and

after one iteration, the function calls itself with S − 1 number of nodes that can

be added to the .��ℎ/ of "	�.��ℎ5�/�. Solving the above recurrence, we get

the overall complexity as 6�|�|��.
The main function, which is RWS_	6., uses the Dijkstra’s algorithm

(6�|�|�� time), �	�	1���� function (6�|�|�� time) and �	�	������ function

(6�|�|�� time). Therefore, the overall time complexity of �`�_	6. is 6�|�|��.
The memory consumption of RWS_OP is |.��ℎ5�/����	|� ∗ " as opposed to

Ostrowski_CG and Ostrowski_IG methods that occupies .������������	 ∗ "

memory where " = ����	�	��	��
	/	��	�ℎ		!���ℎ.

169

Fig. 4.5: Progression of RWS_OP algorithm for a graph with 25 nodes with

source (�+) = ³, destination	��Y� = §« and {dlm = 70

4.3.2 Experimental Analysis

Most of the standard benchmark instances available for the orienteering problem

include Set 1, Set 2 and Set 3 given by Tsiligirides, Set 64 and Set 66 given by

Chao etc. (www.mech.kuleuven.be/en/cib/op/). In each of the available

instances, only scores and coordinates of each vertex are specified leading to the

170

formation of complete graphs that satisfy the triangle inequality. However, in

the real world, there is no guarantee that two nodes will be connected through a

direct path. To deal with such cases, graphs are usually complemented with

fictional edges by running the Dijkstra’s algorithm for every node, before

applying the classic OP algorithms available for complete graphs. This results in

a considerable increase in the search space size. Our method works on both,

complete as well as incomplete graphs without the need to insert fictional edges.

We have implemented our code in C++ using CodeBlocks on an Intel

Core i5 650 at 2.20 GHz. As stated before, RWS_OP is capable of handling

both complete as well as incomplete graphs, and here we present a few

observations by applying RWS_OP on a real road network data (same as ��5_6.) based on 160 and 306 cities of Poland (http://piwonska.pl/p/research/).

The following tables and plots show a comparison of our results with

those obtained by applying the genetic algorithm suggested by Ostrowski et al

on the same instances (Ostrowski and Koszelew, 2011). As can be seen in Table

4.3 and Fig. 4.6, it has been observed that RWS_OP performs better for larger -��� values (taking the same first and last node i.e., source = destination) than

the one proposed by Ostrowski et al. because the highest total collected score

attained for a graph with 306 nodes is greater in our case. Further, the mean

score and 95% confidence interval (CI) of mean for 30 runs W�. 		^T =

�.G.	∗	���!����	�H=	��	I!	I8	�JH	!<� H�	I8	�<!�
r!<� H�	I8	�<!� X are higher in our case when

compared to the values obtained by the genetic algorithm. Fig. 4.7 shows that

for the same -��� value, there is a significant decrease in the execution time of

RWS_OP as compared to the CG (Complete Graph version) and IG (Incomplete

Graph version) of the genetic algorithm proposed by Ostrowski et al. (2011). It

has also been observed, that the execution time increases linearly with the

increase in -��� because increase in -��� leads to the exploration of more

number of nodes. Fig. 4.8 presents the effect on scores, by varying the value of

the greediness parameter	�:�, which balances the degree of randomness and

greediness. Increasing the value of the greediness parameter �:�, makes the

algorithm more greedy. Therefore, even after several executions of the code,

most of the times, the same value is obtained for score, i.e., lesser variation in

171

the score. However, decreasing the value of �:� increases the randomness, i.e.,

more variations are observed in the scores obtained, as shown through smaller

and larger boxes respectively. Also, it has been observed that the maximum

score achieved increases with the increase in �:�. However, for large number of

executions, a greater maximum score can be obtained even for smaller values of �:�. RWS_OP is also efficient in terms of the time utilization (as shown in

Table 4.4 and Table 4.5) as almost 99% of the specified time budget �-���� is

utilized. This helps in determining a better path that covers almost 70% of the

cities, thus leading to a greater total collected score. As the algorithm

progresses, one node is added to the final path after each iteration. This leads to

an increase in the total collected score and decrease in the given time budget as

shown in Fig. 4.9. Most of the experiments are performed at : = 0.6 because at

0.6, both randomness and greediness come into play and as stated before,

decreasing the value of : makes the algorithm more random and increasing it

makes RWS_OP greedier. RWS_OP uses roulette wheel selection for choosing

a node to be added in the path. Thus, different runs of the same algorithm, with

the same input parameters may result in selection of different nodes for being

added in the final path. The trend in the utilization of time budget and an

increase in the total collected score, for three different runs at : = 0. 2 and -��� = 1500 (for 160 cities instance) has been shown in Fig. 4.10. Fig. 4.11

shows how the time budget is utilized, and the total collected score increases,

with each iteration of RWS_OP (for different values of :) at -��� = 1500. The

proposed heuristic is capable of exploring almost 70% of the search space as

shown in Fig. 4.12 (a). In Fig. 4.12 (b), a box plot has been presented that shows

the percentage of nodes explored and unexplored at -��� = 7000 for different

values of :. As can be observed in 4.12 (b), the percentage of nodes explored

(NE) is higher than the percentage of nodes unexplored (NU). Further, the

percentage of score collected for the explored nodes is higher than the

percentage of score left out (score that could not be collected) for lower values

of :. This happens because, at lower values of : more randomness is induced

into RWS_OP. RWS_OP is efficient both in terms of time and space complexity

when compared to Ostrowski_CG and Ostrowski_IG methods. Therefore,

RWS_OP can be implemented for larger values of -��� which helps in

172

achieving a higher total collected score for the considered instances as shown in

Table 4.6 and Fig. 4.13.

Table 4.3: Comparison of maximum, mean and confidence Interval (CI) for

mean of scores obtained by RWS_OP (keeping �+ = �Y i.e., �+ = �Y = ³)
with those obtained by executing the Ostrowski’s algorithm (Please refer

(Ostrowski & Koszelew, 2011), their Table 5 for Ostrowski_CG and Table

7 for Ostrowski_IG) on Real Road Network database with 306 cities of

Poland

�
���

 RWS_OP(α=0.6)

Ostrowski_CG

(highest

fitness/travelTime)

Ostrowski_IG

(fitnessGain2/travelTimeIncrease)

 Mean
CI for

Mean
Maximum Mean

CI

for

Mean

Maximum Mean
CI for

Mean
Maximum

500 56.56 ±3.5 73 61.9 ±3.5 92 47.5 ±3.3 66

1000 107.9 ±2.64 117 109.5 ±5.4 144 88.3 ±6.0 132

1500 153.3 ±9.29 233 146.7 ±8.8 204 157.4 ±13.5 225

2000 206.5 ±13.1 283 190.6 ±9.7 248 216.6 ±12.8 283

2500 256.9 ±13.07 330 219.1 ±10.7 281 227.2 ±13.9 292

3000 302.7 ±13.4 386 256.9 ±11.4 320 257.3 ±15.2 331

173

(a)

(b)

Fig. 4.6: Comparison of (a) maximum score and (b) mean score of each

method with respect to time budget �{dlm�	

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000

B
e

st
 S

co
re

 F
o

u
n

d

T
max

Ostrowski_CG

Ostrowski_IG

RWS_OP

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000

M
e

a
n

 o
f

S
co

re
 C

o
ll

e
ct

e
d

T
max

Ostrowski_CG

Ostrowski_IG

RWS_OP

174

Fig. 4.7: Comparison of execution time of each method with respect to time

budget ({dlm) based on 30 runs at ¾ = �.ª for Real Road Network
database with 306 cities of Poland

.

(a)

0

50

100

150

200

250

0 1000 2000 3000 4000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
se

c)

T
max

Ostrowski_IG

Ostrowski_CG

RWS_OP

0

50

100

150

200

250

300

0.2 0.4 0.6 0.8 0.9

T
o
ta
l
S
c
o
r
e

���� =1500

← ������� �!	"��#$%���� ������� �!	&���# ���� →

Alpha Value (α)

175

.

(b)

Fig. 4.8: Comparison of score with respect to ¾ for (a) {dlm = ³«��	and
(b) {dlm = §«��	 for a Real Road Network database with 306 cities of
Poland

250

260

270

280

290

300

310

320

330

0.2 0.4 0.6 0.8 0.9

T
o
ta
l
 S
c
o
r
e

���� = 2500
Alpha Value (α)

������� �!	&���# ���� → ← ������� �!	"��#$%����

176

Table 4.4: The Highest Score Collected, Mean of Score Collected, Mean

Time to Traverse the Path and % of Time Budget Utilized values obtained

by RWS_OP at ¾ = �.ª (keeping �+ ≠ �Y i.e.,		�+ = ³	pij	�Y = ©�ª)
when implemented on a Real Road Network database with 306 cities of

Poland

 &'(306 cities (α=0.6)

Highest

Score

Collected

Mean of Score Collected

Mean Time

to Traverse

the Path

% of Time

Budget

Utilized

500 122 120.1 495.1 99.02

750 154 150.3 743.4 99.12

1000 177 174.3 995.1 99.51

1250 210 195.1 1246.53 99.72

1500 243 220.4 1495.33 99.69

1750 261 243.6 1742.72 99.58

2000 286 270 1993.4 99.67

2250 310 291 2244.8 99.77

2500 324 312.4 2493.76 99.75

2750 345 332.5 2744.8 99.81

3000 371 349.6 2993.1 99.77

3500 411 392.1 3495.47 99.87

4000 451 436.9 3995 99.88

4500 502 487.1 4494.3 99.87

5000 537 524.5 4995.2 99.90

5500 574 561 5491.7 99.85

6000 620 593.3 5990.7 99.85

177

Table 4.5: The Highest Score Collected, Mean of Score Collected, Mean

Time to Traverse the Path and % of Time Budget Utilized values obtained

by RWS_OP at ¾ = �.ª (keeping �+ ≠ �Y i.e., 	�+ = ³	pij	�Y = ³ª�)
when implemented on a Real Road Network database with 160 cities of

Poland

 &'(160 cities (α=0.6)

Highest

Score

Collected

Mean of Score Collected

Mean Time

to Traverse

the Path

% of Time

Budget

Utilized

500 49 48.83 496.67 99.34

750 67 65.1 747.07 99.6

1000 88 76.8 990.8 99.08

1250 104 102.3 1230.3 98.42

1500 117 115 1488.37 99.25

1750 129 127.9 1739.1 99.38

2000 145 142.6 1993.63 99.68

2250 162 156.1 2242.4 99.66

2500 185 176.4 2485.8 99.43

2750 202 193.2 2736.4 99.5

3000 214 205.1 2980.3 99.34

3500 250 243.6 3488.9 99.68

4000 271 265.1 3982.7 99.57

4500 306 290.23 4479.4 99.54

5000 314 307.53 4960.9 99.22

5500 322 316.9 5319.9 96.73

6000 322 314.7 5336 88.93

178

.

(a)

.

(b)

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

R
e

m
a

in
in

g
 T

im
e

 B
u

d
g

e
t

Iteration Number

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

To
ta

l
C

o
ll

e
ct

e
d

 S
co

re

Iteration Number

179

.

(c)

Fig. 4.9: Plots showing (a) utilization of the time budget and (b) increase in

the total collected score at ¾ = �.ª and {dlm = ³«�� for a Real Road
Network database with 160 cities of Poland (c) Progression of RWS_OP

algorithm

.

(a)

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600

To
ta

l
C

o
ll

e
ct

e
d

 S
co

re

Remaining Time Budget

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

R
e

m
a

in
in

g
 T

im
e

 B
u

d
g

e
t

Iteration Number

α=0.2, Tmax=1500

Run 1

Run 2

Run 3

180

.

(b)

Fig. 4.10: Plots showing the observation of three different runs of RWS_OP

with ¾ = �.§ and {dlm = ³«�� for a Real Road Network database with
160 cities of Poland. As the algorithm progresses, it results in (a) decrease

in the time budget and (b) increase in the total collected score as shown

above

.

(a)

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

T
o

ta
l

C
o

ll
e

ct
e

d
 S

co
re

Iteration Number

α=0.2, Tmax=1500

Run 1

Run 2

Run 3

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

R
e

m
a

in
in

g
 T

im
e

 B
u

d
g

e
t

Iteration Number

α=0.2

α=0.6

α=0.9

181

.

(b)

Fig. 4.11: Plots showing (a) utilization of the time budget and (b) increase in

the total collected score for three different ¾ values at {dlm = ³«�� for a
Real Road Network database with 160 cities of Poland

.

(a)

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

T
o

ta
l

C
o

ll
e

ct
e

d
 S

co
re

Iteration Number

α=0.2

α=0.6

α=0.9

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000 8000

P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s
E

x
p

lo
re

d

T
max

182

.

(b)

Fig. 4.12: Plots showing (a) the percentage of nodes explored with the

increase in {dlm values at ¾ = �.ª and (b) percentage of nodes explored
and unexplored for different values of ¾ at {dlm = ¶��� for a Real Road
Network database with 160 cities of Poland for 30 runs. Experiments

clearly show the effectiveness of the |¦z_®s algorithm

0

10

20

30

40

50

60

70

80

90

20.6 79.4 30 70 30.7 69.3

% of NU % of NE % of NU % of NE % of NU % of NE

α=0.2 α=0.6 α=0.8

P
e

rc
e

n
ta

g
e

 o
f

S
co

re
 C

o
ll

e
ct

e
d

Percentage of nodes explored (NE) and nodes unexplored (NU)

Score distribution

of explored nodes

Score distribution of

unexplored nodes

183

Table 4.6: The Highest Score Collected, Mean of Score Collected and

confidence interval (CI) for Mean of Score Collected obtained by RWS_OP

when implemented on a Real Road Network database with 306 cities of

Poland for different {dlm values at ¾ = �.ª (keeping �+ = �Y i.e., �+ =�Y = ³)

{dlm RWS_OP(α=0.6)

 Mean of Score Collected
CI for Mean of

Score Collected
Highest Score Collected

500 56.56 ±3.5 73

1000 107.9 ±2.64 117

1500 153.3 ±9.29 233

2000 206.5 ±13.1 283

2500 256.9 ±13.07 330

3000 302.7 ±13.4 386

3500 353.16 ±14.9 430

4000 427.8 ±12.54 460

4500 466.7 ±13.5 508

5000 506.1 ±12.2 548

5500 553.2 ±11.12 593

6000 595.2 ±6.4 645

7000 653.1 ±6.64 686

8000 718.2 ±4.23 743

9000 767.8 ±4.75 784

10000 769 ±8.04 792

11000 769 ±7.33 793

184

Fig. 4.13: Plot showing that RWS_OP can achieve higher total collected

score for larger {dlm values as compared to Ostrowski_CG and

Ostrowski_IG methods when implemented on a Real Road Network

database with 306 cities of Poland at ¾ = �.ª

4.4 Flower Pollination Algorithm for Orienteering Problem

A metaheuristic is a combination of some local improvement methods and

higher level techniques or strategies. It is basically an iterative generation

process that helps in searching, generating or finding a heuristic (partial search

algorithm) that explores and exploits the search space efficiently, avoids getting

trapped in the local optima and performs a robust search to determine the near to

optimal solution for the optimization problem at hand from the solution space

(Yang, 2012; Yang, Karamanoglu, & He, 2013). The advantage of

metaheuristics is that it can also tackle the optimization problems with

0

100

200

300

400

500

600

700

800

900

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

H
ig

h
e

st
 S

co
re

 C
o

ll
e

ct
e

d

Tmax

RWS_OP(α=0.6)

Ostrowski_CG

Ostrowski_IG

185

nonlinearity and multimodality. These days in industry and engineering

applications, the problem under consideration is extremely complex and to

generate an optimal solution for such problems is a challenging task. It has been

found by several researchers that metaheuristic algorithms are quite efficient for

solving such problems and the latest trend is to apply nature-inspired

metaheuristics for solving the critical optimization problems. Several nature-

inspired metaheuristics have been developed by the researchers after studying

the complex biological systems. These metaheuristics include the genetic

algorithm, bat algorithm, firefly algorithm, ant colony optimization algorithm,

particle swarm optimization algorithm etc. (Fister Jr., Yang, Fister, Brest, &

Fister, 2013).

In this chapter, we present an application of the nature-inspired

metaheuristic called the flower pollination algorithm (FPA) introduced by Xin-

She Yang in 2012 and use it to solve the NP-Hard orienteering problem. FPA is

inspired from the pollination process of the flowers. Pollination is the

reproduction process of the flowers which is carried out through agents like

bees, bats, birds, insects and other animals. These agents are called pollinators.

Pollination can be either abiotic or biotic and can take place in two ways,

namely self-pollination and cross-pollination. The pollination that takes place

when pollens are carried through some pollinators like insects then it is called

biotic and about 90% of the pollination activity is biotic. In 10% of the cases,

pollens are carried through natural carriers like wind, water etc. and are termed

as abiotic. If the pollination takes place with pollen from a flower of a different

plant then it is called cross-pollination and if the fertilization happens due to the

pollen from the same flower or a different flower of the same plant then it is

termed as self-pollination. Another term that can be associated with this process

of pollination is the flower constancy. Honeybee is a pollinator that helps in

implementing this phenomenon called flower constancy where the pollinators

tend to visit only a specific species of flowers and ignore the other species that

exist. Pollinators like birds, bees, insects etc. can fly to long distances.

Therefore, biotic, cross-pollination over long distances can be termed as global

pollination. Also, the behaviour of the biotic pollinators i.e., their jumps and

flying distances etc. follows the Levy distribution as stated by Xin-She Yang

(2012).

186

4.4.1 Algorithm vs�_®s

Input: A graph ���,�� with	�	� (time taken to traverse) value of each edge

(�)	connecting vertex �	 and �� ∈ �, �	 (score) value of each vertex �	 ∈ �.

Output: A Hamiltonian path with the highest possible collected score such that

total travel time is within the specified time budget -���.

 T��������		�	����������	��	�	����	�/
/����	�	!��	�	/	���ℎ	���
��	/�������/ ���
	�ℎ		�	/�	/�������	�∗	��	�ℎ		�������	���������� �	���		�	/���1ℎ	���������� 	/�	 ∈ (0,1) klmnh	(� < "�_��_T�	������/) efg	�	 = 	1 ∶ 	�	(���	�	����	�/	��	�ℎ		����������)

 me	���
	 < 	/� ��	!�����	�����������	���	 ��
	�2 = ��
	�1 + 5(��
	���∗� − ��
	�1) hnch

 ���
��� 	1ℎ��/		E	��
	0	����!	���	�ℎ		/�������/

 ��	��1��	�����������	���	��
	�2 = ��
	�1 + ��E − 0� hij	me �������		�	�	/�������/

 T�	�	�	/�������/	��		�	��	�,��
��		�ℎ	�	��	�ℎ		���������� hij	efg ���
	�ℎ		1���	��	�	/�	/�������	�∗	 hij	klmnh

In the above stated algorithm, initially � pollens are generated randomly where

each pollen represents a possible solution i.e., a path satisfying the constraint

that the total time taken by the path is less than the upper bound -���. Then for

the valid paths three values are evaluated: (1) the total time taken by the path,

(2) the total score collected by the path and (3) the ratio of	/1��	/���	(�	/	�	�)

for each of the valid paths. Then these paths are stored in a priority queue on the

187

basis of the (�	/	�	�) ratio. To determine the best solution �∗ in the initial

solution, any of the selection methods stated in section 2.1 can be implemented.

The switch probability	/�	 ∈ (0,1) controls the type of pollination to be

performed i.e., global pollination or local pollination. ���
 is a randomly

generated number and if it is less than /� then global pollination is performed

else local pollination is performed. In case of global pollination, a function is

used that randomly generates the value for ��
	�1. Then using ��
	�1 and

Levy distribution	5 , the value for ��
	�2 is computed. The value for 5 is

calculated using the following equation:

5~
gs�g��	!�tg �⁄ �

t
�

��") (4.10)

Where, � = 1.5	and / denotes the step size. To make the step size appropriate,

so that neither it is too large nor too small, its value is calculated as /��		��	�ℎ		������� 	Q�	�	/5. Similarly, in local pollination again the value

of ��
	�1 is considered and two randomly generated solutions	E and 0 are used

to calculate the value for ��
	�2. The value for � is randomly chosen from the

interval [0,1]. After the two parents are determined (i.e., the paths at ��
	�1

and ��
	�2), a crossover operation is performed to compute the child paths.

Two points are found randomly in the parent2 (at ��
	�2) and the nodes lying

between the two points of parent2 are inserted in parent1, one by one at the best

possible location (which leads to minimum increment in the total time taken).

This way child1 is formulated. In a similar manner, two points are selected in

parent1 and the nodes lying between the two points are added one by one to

parent2 at its best location and this way another path i.e., child2 is created. Then

it is checked whether these new paths (child1 and child2) are valid or not i.e.,

their total time taken is less than -��� or not. If the new path is valid then it is

stored in the queue else it is discarded. If the new path that has been generated

has a better score than the previous best solution, then it is updated in the queue.

At the end, when the algorithm terminates, the path obtained with the highest

value of total collected score forms the final solution.

188

4.4.2 Experimental Analysis

The code for �.#_6. was developed in C++ and compiled using CodeBlocks

on an Intel Core i5 650 at 2.20 GHz. The code was implemented on instances

with 32, 33, 64, 66, 102, 150 etc. nodes. Each instance represents a complete

graph. The results obtained for �.#_6. were compared against the best known

algorithm in the literature for OP viz. the GRASP algorithm suggested in

(Campos, Marti, Sanchez-Oro, & Duarte, 2013). The results obtained (average

of 10 runs) by �.#_6. were compared with the C3 method of GRASP and it

was found that �.#_6. helps in obtaining higher total score collected value for

larger -���. However, at lower -��� values the results obtained through

GRASP were better than �.#_6.. Fig. 4.14 is a plot for a complete graph with

102 nodes, source=1 and destination=102. The results for the total collected

score by GRASP and �.#_6. algorithms are compared for different -���

values and the observation stated above can be clearly seen in the plot. A similar

behavior was observed on comparing the results (average of 10 runs) of �`�_6. and �.#_6. i.e. �.#_6. performs better for higher -��� values.

Therefore, the �.#_6. algorithm can be preferred in the cases were achieving a

higher total collected score is the priority and the delay in time can be tolerated.

189

Fig. 4.14: Comparison of the total collected score value achieved by GRASP

and FPA algorithms for different {dlm values when applied on a graph
with 102 nodes, source=1, destination=102

4.5 Bidirectional Shortest Path Algorithm for the Constrained

Shortest Path Problem with Good Average-Case Behavior

As stated in the earlier chapters, constrained shortest path problem (CSPP) is an

NP-Complete problem and several heuristics and some approximation

algorithms are already present in the literature to tackle the problem. In 2008,

Chen et al. proposed a discretization technique to deal with the problem and

convert it to a polynomial time solvable one. They introduced two types of

discretization, namely randomized discretization and path delay discretization.

We prefer the path delay discretization (PDA) here for implementing the

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 200 400 600 800 1000 1200

To
ta

l
C

o
ll

e
ct

e
d

 S
co

re

Tmax

FPA

GRASP (C3)

190

bidirectional shortest path algorithm with the aim to improve the average-case

complexity of CSPP. The mathematical formulation of CSPP and path delay

discretization technique has been explained in detail in section 3.2.1 (III) and

3.2.1 (IV) of chapter 3.

The traditional shortest path algorithm searches in a forward direction

from the source and the search terminates when the goal vertex is reached.

Bidirectional search proceeds in two directions. It executes both forward

directional search from the source node and backward directional search from

the target node. Thus two trees are formed, one the source tree and the other one

is the destination tree. Both these trees are iteratively expanded, till a cross edge

is found that crosses from one tree to another. Next all such cross edges are

considered to find the shortest path between the source and destination pairs.

With the following assumptions, the bidirectional search presents a significant

improvement in the runtime of the shortest path problem: (1) For each node in

the graph �(�,�) all input edges are provided in an order sorted by their edge

costs and (2) The edges are chosen independently from the exponential

distribution. Bidirectional search has an expected running time of

Θ(√�	log	(�)), as compared to the runtime of unidirectional search Θ�� log n�
(Luby, & Ragde, 1989).

Here a technique has been proposed to solve CSPP that chooses the edge

costs from an exponential distribution and then uses a sorted adjacency lists to

implement a priority queue based algorithm which makes the average running

time of the algorithm faster when compared to similar counterparts.

4.5.1 Algorithm

 ��
��	1������(�, /,
, �)

1. if / =
 then

2. return

3. for � = 0	��	� do

4. �/(�)(�) ∶= �
(�)(�) ∶= �/(�) ∶= �
(�) ∶= 	∞

5. ����/	
(�) ∶= 0

6. ���!(�) ∶= À­�tzt{}�

191

7. �/(/) ∶= �
(
) ∶= 0

8. ���!(/) ∶= z_�tzt{}�

9. ���!(
) ∶= �_�tzt{}�

10. // ∶= /

11. /
 ∶=

12. if
	!�		(/) > 	0 then

13. ��/ℎ	(Q/, /, ��(/)(0),
�/�[/][0])

14. ���/	
(/) ∶= 1

15. if
	!�		(
) > 	0 then

16. ��/ℎ	(Q
,
, ��(
)(0),
�/�[
][0])

17. ���/	
(
) ∶= 1

18. ������ℎ ∶= 	∞

19. while ¬	��� �Q/� 	∨ 	¬	��� (Q
)	do
20. if ¬	��� (Q/) do

21. ��, �, �� ∶= �����1�_���(Q/)

22. if ���!(�) = �_�tzt{}� do

23. ������ℎ ∶= � + �
(�)
24. ��	�0

25. if ���!(�) 	= À­�tzt{}� do
26. �/(�) ∶= �
27. �: ∶= �U>�?<@?g@��H��S?<@?=@� V ∗ ��
28. �/(�)(�:) ∶= �/(�)(�) +
	�� (�)[�]

29. ���!(�) ∶= z_�tzt{}�

30. ��/ℎ(//, �)

31. if
	!�		(�) > 	0 then

32. ��/ℎ	(Q/, �, ��(�)(0),
�/�[�][0])

33. ���/	
(�) ∶= 1

34. if
	!�		(�) > 	���/	
[�] then

35. ��/ℎ	(Q/, �, ��(�)I���/	
(�)J,
�/�[�][���/	
[�]])

36. ���/	
(�) ∶= ���/	
(�) + 1

37. if ¬	��� (Q
) do

38. ��, �, �� ∶= �����1�_���(Q
)

192

39. if ���!(�) = z_�tzt{}� do

40. ������ℎ ∶= � + �/(�)
41. ��	�0

42. if ���!(�) 	= À­�tzt{}� do
43. �
(�) ∶= �
44. �: ∶= �U>�?<@?g@��H��S?<@?=@� V ∗ ��
45. �
(�)(�:) ∶= �
(�)(�) +
	�� (�)[�]

46. ���!(�) ∶= �_�tzt{}�

47. ��/ℎ(/
, �)

48. if
	!�		(�) > 	0 then

49. ��/ℎ	(Q
, �, ��(�)(0),
�/�[�][0])

50. ���/	
(�) ∶= 1

51. if
	!�		(�) > 	���/	
[�] then

52. ��/ℎ	(Q
, �, ��(�)I���/	
(�)J,
�/�[�][���/	
[�]])

53. ���/	
(�) ∶= ���/	
(�) + 1

54. while 8¬	��� �Q/� 	∧ 	¬	��� �/
�9 	∨ (¬	��� �Q
� 	∧	¬	��� �//�)		do

55. if (¬	��� �Q/� 	∨ 	¬	��� �/
�)	then

56. ��, �, �� ∶= �����1�_min	(Q/)

57. if
	!�		(�) > 	���/	
[�] then

58. ��/ℎ	(Q/, �, ��(�)I���/	
(�)J,
�/�[�][���/	
[�]])

59. ���/	
(�) ∶= ���/	
(�) + 1

60. if (���!(�) = 	�_�tzt{}�	 ∧ (� + �
(�) < ������ℎ)) then

61. ������ℎ ∶= 	� + �
(�)
62. if (�	 + 		�
(����/
�) ≥ ������ℎ)	then

63. while (¬	��� �/
� 	∧ (� + �
(����/
�) 	≥ 	������ℎ)) do

64. ���!(����/
�) ∶= 	�_}rtyt­�{}�

65. 	���(/
)

66. break

67. if (¬	��� �Q
� 	∨ 	¬	��� �//�)	then

68. ��, �, �� ∶= �����1�_min	(Q
)

69. if
	!�		(�) > 	���/	
[�] then

193

70. ��/ℎ	(Q
		�, ��(�)I���/	
(�)J,
�/�[�][���/	
[�]])

71. ���/	
(�) ∶= ���/	
(�) + 1

72. if (���!(�) = 	z_�tzt{}�	 ∧ (� + �/(�) < ������ℎ)) then

73. ������ℎ ∶= 	� + �/(�)
74. if (�	 + 		�/(����//�) ≥ ������ℎ)	then

75. while (¬	��� �//� 	∧ 	� + �/(����//�) 	≥ 	������ℎ) do

76. ���!(����//�) ∶= 	z_}rtyt­�{}�

77. 	���(//)

78. break

79. ghdugi	������ℎ

To deal with CSPP using our algorithm, firstly two shortest path trees are

initialized i.e. one from source and other from the destination. In the above

algorithm, lines 1-2 check whether the source and destination are same. Lines 3-

18 constitute the initialization steps. Here, arrays �
	and �/	which store the

distances of a given node in a tree from its source node are initialized to ∞. �/

and �
	are the 2D arrays which store the discretized delays to a given node.

These are also initialized with ∞. Flags viz. S_VISITED, D_VISITED,

S_ELIMINATED, D_ELIMINATED and UNVISITED are used to mark the

presence / absence of nodes in one of the trees. Initially all the flags are marked

as UNVISITED. Two stacks // and /
	store the order in which the nodes have

been covered in their respective trees. These are initialized to the source nodes

of both the trees. ���/	
 is an array which has been initialized with 0. This acts

as a counter that determines the number of nodes explored from the adjacency

list of a given node. Two queues Q/ and Q
 are used to simulate the

bidirectional algorithm on the graph. Source nodes of both the trees are pushed

in their respective stacks. ������ℎ that holds the final output is initialized to ∞.

Lines 19-53 constitutes the Phase 1 of the bidirectional search. In this phase, the

goal is to find out the cross edge between the trees expanding from their

respective source nodes. Line 21 takes the minimum value node from the queue Q/. Lines 22-24 are used to determine the cross edge. If the next node to be

explored is present in the tree growing from the destination node, then we have

encountered a cross edge. Lines 25-36 cover the case of a node being

194

UNVISITED. If this is the case then, using the discretized delay which has

been stored in �/	matrix and the delay matrix, the new discretized delay

parameter �′ is computed. Then the new discretized delay value is updated in

the �/ matrix for the node under consideration. Thereafter, this node is pushed

into the stack and also inserted in the queue. This node is marked S_VISITED.

Lines 37-53 work on similar lines and repeat the above steps for the tree

growing from the destination node. Lines 54-79 mark the phase 2 of the

algorithm. This loop executes till either of the queue-stack pair becomes empty.

In lines 55-66, queue Q/	and stack /
 are considered. Minimum element from

the remaining elements of the queue is extracted out in line 56. If some

undiscovered edges from this node are left, then this node is inserted back into

the queue as shown in lines 57-59. In lines 60-61, we try to make pairs of this

node with the elements in the stack /
 to find whether there exists such a node

pair which gives a better cost than the one already found. If such a pair is found,

our answer is updated. If the above case does not exist then in lines 62-66, the

stack is popped till the stack becomes empty or a path cost which is lower than

the path cost that has been discovered so far, is found. Similar process is

repeated for the queue Q
 and stack // in lines 67-79. This algorithm provides

the most cost efficient path under the given delay constraints. This is clear from

the fact that in phase 1, we find a path with tentatively the minimum cost. If this

is the minimum possible one, then phase two is futile. But if this is not, then

phase 2 tries out each combination of the undiscovered nodes from either of the

queues, by pairing them with the nodes in the stack in order to find out a path

with a lower cost. Hence, it is definite that the resultant minimum cost path

found is the best one available.

4.5.2 Experimental Analysis

The test cases were generated by the random graph generator gengraph-win and

weights were assigned using a random number generator that chose the random

numbers independently from an exponential distribution. The goal is to perform

average case analysis of the bidirectional algorithm. Thus, hundred test cases

were generated for each problem size instance and then the average of these

results was calculated to determine the average case behaviour of the algorithm.

195

The numbers generated from the exponential distribution represents the cost of

the edges in the graph. The delay values of the edges in the graph were chosen

randomly from a uniform distribution. The corresponding edges for each node

were then sorted according to their edge weights. The index of the terminating

node for each edge was maintained separately and provided with the input.

As stated in the earlier section, the bidirectional shortest path algorithm

for CSPP has the following two assumptions and the reason for each of them

has been explained in detail in the following subsections:

(1) For each node in the graph �(�,�) all input edges are provided in an order

sorted by their edge costs.

(2) The edges are chosen independently from the exponential distribution.

(1) Benefit of sorted edge list representation of a graph

Suppose there are two nodes, one with a high branching factor and other with a

lesser branching factor. This branching factor affects the cost of the algorithm.

For the normal unsorted edge list representation, all the outgoing edges from

these nodes need to be added to the list which will take 6(�) time for visiting

each node (� is the branching factor), whereas for the sorted edge list

representation, only the smallest edge from these nodes needs to be added. This

will take only 6(1) time (independent of branching factor of the node). Thus for

sublinear time complexity either we should have sorted edge list representation

or � should be sublinear.

(2) Benefit of exponential distribution

Consider a graph on which a shortest path algorithm is run. The nodes are

considered based on their distance from the source node. In case the edge costs

are drawn from a uniform distribution then on an average most edges are

approximately equal to the average of the interval in which the distribution lies.

A path of length 5 will most probably be 5 times longer that the path of length

1. Consequently, the search tends to branch out rather than proceed away from

the source (first considering smaller paths before moving on to longer paths).

196

In exponential distribution, the cost of a whole path is approximately

equal. Most importantly the cost of the path is independent of its path length.

Thus there is an equal probability of exploring both a shorter and a longer path.

Since there are many longer paths than there are shorter paths, the search gets

pushed away from the source.

(I) Functions for generating the exponential distribution

 Both the following classes require C++11 and –std=c++11 compiler flag must

be passed to compile them.

(a) default_random_engine generator

This is a random number generator that returns numbers in uniform distribution.

It does not accept any parameters in its constructor. These are passed to other

classes, which just transform its output to the desired distribution.

(b) exponential_distribution <double> distribution(lambda)

It is a template of a class. The template parameter accepts the type of random

values to be generated (int, float, double etc.). The parameter lambda is the

parameter for the exponential distribution. Distribution is the name of the object

that we have constructed. To generate the random values we call distribution

(generator).

(II) Results

Constraint shortest path algorithm is implemented using two different methods

viz. using the Dijkstra’s based approach (suggested by Chen et al. (2008)) and

the bidirectional search based algorithm. Theoretically, the bidirectional

algorithm should be faster than PDA algorithm suggested by Chen et al. (2008).

This theoretical analysis was established by the following practical results

which clearly shows that the bidirectional approach in the average case is indeed

faster i.e. the bidirectional search algorithm for CSPP has an average case

complexity of 688√� log�95 4⁄ 9. The graph in Fig. 4.15 shows a comparison

of the bidirectional search method with the Dijkstra’s based method for CSPP

197

and as can be observed from the plot, there is an improvement in the average

execution time of the bidirectional search method when compared to the

Dijkstra’s based method of Chen et al. (2008).

Fig. 4.15: Comparison of the average execution time (s) of the CSPP

algorithm suggested by Chen et al. (2008) with the bidirectional search

algorithm for different network sizes

4.6 Conclusion

In this chapter, a new stochastic greedy heuristic approach (��5_6.) for the

orienteering problem has been introduced which can be applied on both

complete as well as incomplete graphs. It was implemented using four different

selection methods and the results thus obtained were compared on standard

0

1

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

A
v

e
ra

g
e

 E
x
e

cu
ti

o
n

 T
im

e
 (

s)

Number of Vertices

Bidirectional

Dijkstra

198

benchmarks. It was found that roulette wheel selection method performs better

than the other three selection techniques and helps in achieving a better total

collected score for the specified time budget. Then through experimental

analysis, it has been shown that �`�_6. (the algorithm with the roulette wheel

selection method) is more efficient than the previously suggested method by

Ostrowski et al. (2011) for incomplete graphs in terms of execution time. For a

particular time bound, the proposed heuristic (�`�_6.) achieves a higher total

collected score than the genetic algorithm of Ostrowski et al. (2011), utilizes

almost 99% of the given time budget and is capable of exploring 70% of the

considered search space.

Another meta-heuristic called the flower pollination algorithm suggested

by Yang (2012) has been implemented for OP (�.#_6.) and the results thus

obtained for instances with different number of nodes has been compared with

those obtained by running the GRASP algorithm (Campos, Marti, Sanchez-Oro,

& Duarte, 2013) and �`�_6.. It was found that in situations where achieving a

better score is the priority at the cost of time delay, �.#_6. algorithm can be

preferred as it helps in obtaining a higher total collected score than GRASP or �`�_6. for larger values of -��� .

A bidirectional shortest path heuristic was implemented for the

constrained shortest path problem. The results shown in the above section

proves that an improvement has been achieved (for the average case) over the

results present in the literature. The parameter � in the algorithm plays an

important role. The larger the value of �, greater will be the accuracy of the

result as the discretization errors introduced will be lesser.

