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CHAPTER 3 

 

Intuitionistic Fuzzy Numbers and Intuitionistic Fuzzy 

Point 

 

Abstract 

This chapter is based on the concept of intuitionistic fuzzy sets introduced by 

Atanassov.  A new type of intuitionistic fuzzy number called the Quasi-Gaussian 

intuitionistic fuzzy number has been proposed. As the intuitionistic fuzzy 

numbers lack the property of natural ordering, few ranking methods have been 

introduced. A centroid based ranking method for trapezoidal intuitionistic fuzzy 

number has been stated here which uses an eight variable representation and 

another ranking method called the Centroid of Centroids has been proposed. 

Similarly, for the Quasi-Gaussian fuzzy number a centroid based ranking 

method is introduced. The application of these fuzzy numbers and their ranking 

methods have been presented and experimentally verified for the constrained 

intuitionistic fuzzy shortest path problem. Also, the orienteering problem which 

is an NP-Hard problem has been considered and stated as a fuzzy integer 

program with fuzzy goals and crisp constraints and a fuzzy optimization 

technique for solving the intuitionistic fuzzy orienteering problem has been 

introduced that considers the hesitancy, aspiration levels etc. of the decision 

maker and provides some latitude to the solution process. Also, an intuitionistic 

fuzzy metric space has been proposed using the concept of intuitionistic fuzzy 

point and intuitionistic fuzzy scalars and the distance measure thus proposed 

has been applied on the orienteering problem.   

 In section 3.1, the concept of intuitionistic fuzzy sets is described. 

Section 3.2 presents the definition and application of trapezoidal intuitionistic 

fuzzy number and Quasi-Gaussian fuzzy number. The max-min formulation of 

intuitionistic fuzzy orienteering problem has been presented in section 3.3. The 
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concept of intuitionistic fuzzy metric space using intuitionistic fuzzy point and 

intuitionistic fuzzy scalars has been stated in section 3.4. Finally, the chapter is 

concluded in section 3.5. 
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3.1 Introduction 

The idea of intuitionistic fuzzy sets (IFS) which is a generalization of fuzzy sets 

was proposed by Atanassov (1983). Though IFS is an extension of fuzzy sets 

proposed by Zadeh, there are several situations that can be modelled using IFS 

but cannot be represented using ordinary fuzzy sets. For example, let us 

consider a travelling salesman who has a limit on distance travelled that 

prevents him from visiting all the cities but he has some information about the 

cities where maximum sales can take place. Therefore, the aim here is to 

maximize the total sales within the limit on the distance travelled. If � is a set 

consisting of all those cities which can be visited by the salesman and � ∈ � 

represents a city visited by the salesman, then the membership degree of the 

cities visited by the salesman can be stated as 
���. In this case, an ordinary 

fuzzy set can be used but this ordinary fuzzy set cannot represent the situation 

where the need is to evaluate the number of cities that could not be visited by 

the salesman. For this, we need IFS where the degree of non-membership can be 

computed as %��� = 1 − 
���. Moreover, there can be a situation where the 

salesman visited a city but could not sell his product due to unavailability of the 

customer or shop being closed, then such situations can be represented through 

the hesitancy degree as *��� = 1 − 8
��� + %���9. Also, there are a few 

operators like the modal operators that can be defined for IFS but not for 

ordinary fuzzy sets. These operators provide for a detailed estimation of the 

available information. Also, IFS is more powerful as it allows geometrical 

interpretation and helps in managing the existing uncertainty in a much better 

way (Atanassov, 2003). In IFS, two values are associated with every element of 

the set, one depicting the degree of belongingness and the other being the degree 

of non-belongingness. Both these values lie within the real unit interval [0,1] 

(Ye, 2011).  

In this chapter, we consider two types of intuitionistic fuzzy numbers 

(IFN) viz. trapezoidal intuitionistic fuzzy number (TIFN) and Quasi-Gaussian 

intuitionistic fuzzy number (QGIFN). In  applications like constrained shortest 

path problems (CSPP) which can be applied in several real life situations, the 

major obstacle is to tackle the uncertainty that comes into play due to the 

parameters involved like cost, delay, time, energy etc. and at the same time 
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provide the assurance of quality of service (QoS). The best way to deal with this 

imprecise nature of these parameters present in the network is to use fuzzy 

numbers. Here, we present a model where the parameters are represented as IFN 

and hence provide a more realistic picture of the practical situation as the 

uncertainty can be analyzed in a better way using the degrees of belongingness 

and non-belongingness. One problem that exists in the case of fuzzy 

representation also applies to IFN i.e., ranking of IFN as they also cannot be 

ordered naturally. Therefore, a centroid based ranking method for trapezoidal 

intuitionistic fuzzy number and Quasi-Gaussian intuitionistic fuzzy number has 

been proposed. 

Also we consider the orienteering problem which is an NP-Hard 

problem. Several heuristics and approximation algorithms have been proposed 

to tackle the problem but here, for the first time the intuitionistic fuzzy version 

of the problem has been formulated and solved using the max-min formulation 

and a work-depth analysis of its parallel formulation has also been presented. 

The concept of intuitionistic fuzzy point (IFP) was introduced by Coker and 

Demirci (1995). The idea of IFP was then used by researchers to prove some 

relations and theorems (Akram, 2012; Sardar, Mandal, & Majumder, 2011). The 

concept of IFP can be used to study some general structures like those 

introduced in (Bustince, Barrenechea, & Pagola, 2006; Bustince, Barrenechea, 

& Pagola, 2008). In this chapter, we use the concept of IFP and intuitionistic 

fuzzy scalars for proposing a new definition of the intuitionistic fuzzy metric 

space. The proposed definition of distance metric is then applied to the 

orienteering problem. 

 

3.2 Intuitionistic Fuzzy Numbers (IFN)  

For an IFS, if the real line is the universe of discourse i.e., � = ℛ, then it is 

termed as an intuitionistic fuzzy number (IFN). An IFN can be represented as H = �〈�, 
A���, %A���〉: � ∈ ℛ� and has the following properties 

(Grzegorzewski, 2003): 

(1) The membership function and the non-membership function is fuzzy convex 

and fuzzy concave respectively. 
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(2) 
A���� = 1 and  %A���� = 1 for at least two points ��	��
	�� belonging in �. 

(3) The membership function �
�� and the non-membership function �%�� is 

upper semi-continuous and lower semi-continuous respectively. 

 

3.2.1 Trapezoidal Intuitionistic Fuzzy Number (TIFN) 

The definition of a trapezoidal intuitionistic fuzzy number is presented below: 

Let # = 〈��, �, 1,
�, �	, �,!, ℎ�〉 be a TIFN �ℎ	�		�, �, 1, 
, 	, �,!, ℎ	 ∈ 	ℛ 

such that 	 ≤ � ≤ � ≤ � ≤ 1 ≤ ! ≤ 
 ≤ ℎ and the functions 5�,S�,"�,,�	:	ℛ → (0, 1), then (Ye, 2011) 

 


���� =

ABC
BD 0				��	� < �5����			��	� ≤ � < �

1										��	� ≤ � ≤ 1S����		��	1 < � ≤ 

0			��	
 < �

                                                                   (3.1a) 

%���� =

ABC
BD 1				��	� < 	"����			��		 ≤ � < �

0										��	� ≤ � ≤ !,����		��	! < � ≤ ℎ

1			��	ℎ < �
                                                                   (3.1b)    

Where 5���� =
���
 �� 	 ,S���� =

���
N�� 	 ,"���� =

��8
H�8	, ,���� =

��M
J�M 

 

Fig. 3.1: Trapezoidal intuitionistic fuzzy number (TIFN) 
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(I) Addition of two TIFNs 

In problems like constrained intuitionistic fuzzy shortest path problem 

(CIFSPP), the two important mathematical operations involved are addition and 

ranking for determining the delay constrained least cost path present in the 

network. Ranking of TIFNs has been discussed in detail in the next section. 

Here we state the equation for addition of TIFNs (Ye, 2011). 

Let #� = 〈���, ��, 1�,
��, �	�,��,!�, ℎ��〉	��
 

	#� = 〈���,��, 1�,
��, �	�,��,!�, ℎ��〉		 
be two TIFN, then 

#� + #� = 〈���,��, 1�,
��, �	�,��,!�, ℎ��〉 + 〈���,��, 1�,
��, �	�,��,!�, ℎ��〉 
= 〈��� + ��, �� + ��, 1� + 1�,
� + 
��,�	� + 	�, �� + ��,!� + !�, ℎ� + ℎ�� 〉                                                        (3.2)        

                                                 

(II) Ranking of TIFNs 

(a) Centroid Method 

To rank the TIFNs we introduce a centroid method of ranking in this chapter. 

Several other methods of ranking are also available in the literature and in 

(Varghese & Kuriakose, 2012), authors suggested a technique to compute the 

centroid of an IFN. However, they use a six parameter representation for an IFN 

and here we represent the TIFN using eight parameters as shown in Eqs. 3.1a, 

3.1b and Fig. 3.1, taking into consideration the hesitancy involved and 

providing a better modelling of the practical situation. 

     To determine the centroid of a TIFN, let us consider a new fuzzy number �: ℝ → (0,1) such that  

���� =
���O������

�                                                                                             (3.3) 

where 
 and % represent the membership function and non-membership function 

respectively. 
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Now, the centroid �^� =
9 >����	���

�

9 >����

�
��                                                                  (3.4) 

Using (3.3), we can say that 

�^� =
9 �� !��
�"�

�
�	���

�

9 �� !��
�"�

�

�

�
��                                                                                        (3.5) 

Integrating the membership and non-membership functions separately, we get: 

From (3.1a) and (3.1b), we can say  

� 
���J
H �	
� = 			 � U��� ��V 

� �	
� + � �1�N
 �	
� + � U���N��V�

N �	
�                

                      =
5N�����N�6�5��� ��� 6

.                                                            (3.6) 

Similarly on integrating� (1 − %���)J
H �	
�, we get 

� (1 − %���)J
H �	
� =

5M��J��MJ6�5H��8��H86
.                                                   (3.7) 

Therefore, � �����	
�J
H = 	 5N�����N�6�5M��J��MJ6�5��� ��� 6�5H��8��H86�� 	   (3.8) 

Similarly using (3.1a), (3.1b) and integration, we evaluate the function in the 

denominator of (3.4) and get the following equations: 

� 
���J
H 
� =

�N������� �
�                                                                                 (3.9) 

� (1 − %���)J
H 
� =

�M�J���H�8�
�                                                                      (3.10) 

Therefore, 

� ����	
� =
�N���M�J����� �H�8�

�
J
H                                                                (3.11) 

The formula for calculating the centroid of a TIFN is derived using (3.4), (3.8) 

and (3.11) and is presented below: 

�^� =
P5N�����N�6�5M��J��MJ6�5��� ��� 6�5H��8��H86Q

�?�N���M�J����� �H�8�@                                  (3.12)     
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(b) Centroid of Centroids Method (CoC) 

To rank the TIFN, we introduce a technique called Centroid of Centroids (CoC). 

The centroid of a fuzzy number signifies its geometric centre and is denoted 

using the formula: � �����
�R
�R � ����
�R

�R] . A trapezoid can be divided into 

three figures (two triangles and a rectangle) and finding out the centroid of each 

and joining them forms a triangle. The centroid of this resultant triangle can be 

considered to be a balancing point and a better point of reference. As the task 

here is to rank a trapezoidal intuitionistic fuzzy number, we evaluate the 

centroid for both the trapezoids using the following formula and Fig. 3.2. 

 

 

Fig. 3.2: The point of reference used for ranking a TIFN 

 

The centroid of the triangle !�!�!� ± �̂       

     

�̂ ± ���,  �� ± =���� �EN�����F , E�F?                                                               (3.13) 

 

The centroid of the triangle !�!
!. ± ^�                

              

^� ± ���,  �� ± =��H�8��J�EM��F , ���F?                                                               (3.14) 

 

Then, the value that can be used for ranking can be evaluated using the 

following formula: 
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^	�����
	��	1	�����
/	(^�^) = [U������ V� + US��S�� V�                           (3.15)  

 

After the ^�^ values are computed for the parameter involved i.e., the total cost 

or the total collected score of each feasible path, then ���0	(�) is assigned to 

each of the paths i.e., the path with higher ^�^ value gets a higher rank. 

 

(III) Path Delay Discretization 

As stated in chapter 2, CSPP is an NP-Complete problem and the technique 

suggested by Chen et al. (2008) to reduce it to a polynomial time solvable one is 

discretization. They proposed two types of discretization, namely randomized 

discretization and path delay discretization with the aim to provide better and 

accurate network functions and best utilization of limited resources. However, 

the effectiveness of this method depends upon the amount of error induced as a 

result of discretization. 

For CIFSPP, we prefer path delay discretization algorithm (PDA) over 

randomized discretization because the problem of error accumulation is absent 

in case of PDA as it uses the method of interval partitioning for discretization of 

path delays (Chen, Song, & Sahni, 2008). The discretized delay for any path can 

be computed using the following equation: 


:�.� = ���;�� ��                                                                                            (3.16) 

Where ��� = �������� is the largest integer not greater than �. 

Here, 
�.�, � and � signifies the total delay consumption value of a path, the 

delay constraint and the integer that bounds the delay constraint respectively. 

 

(IV) Problem Definition 

Networks can be modelled using graphs and can be denoted by the ordered pair ���,�� where � and � represents the set of nodes and edges respectively such 

that |�| = �	��
	|�| = �. The cost and delay consumption value of each edge 
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can be stated as 1��, �� and 
��, �� where ��, ��	�	� symbolizes each edge of 

the graph �. To compute the total cost and total delay consumption value of 

each path represented as 1�.� and 
�.� respectively, the following equations 

can be used (Chen, Song, & Sahni, 2008): 


�.� = 	 ∑ 	
��, ���<,=�∈;                                                                               (3.17) 

1�.� = 	 ∑ 	1��, ���<,=�∈;                                                                                (3.18) 

A path ., connecting the specified source �/� and target ��� is said to be 

feasible if it satisfies the condition 
�.� ≤ �, and is called the cheapest feasible 

path if it obeys the constraint i.e., 
�.� ≤ � and fulfils the objective of 

achieving the minimum cost 18.�,�9 amongst the available paths linking the 

origin and the destination (Chen, Song, & Sahni, 2008). As we are considering 

the intuitionistic fuzzy version of the problem CSPP, the cost of each edge is 

represented as either TIFN or QGIFN and to compute the cost of the path, the 

formula for addition of TIFN (Eq. 3.2) or addition of QGIFN (Eq. 3.23) is used 

depending upon the application. Also, to conclude with the cheapest feasible 

path, any of the ranking method suggested in section 3.2.1 (II) for TIFN and 

3.2.2 (II) for QGIFN can be used. 

 

(V) Application 

(a) CIFSPP Algorithm (using TIFN) 

bhd_po�j(	pn�lp³, cdghd�l³, �fcd) 

1. � = 1�/� − /��	�1ℎ1 

2. � = � + ���ℎ�1 

3. 
 = 1�/� + /��	�1ℎ1 

4. 1 = 
 − ���ℎ�1 bhd_he l(	pn�lp§, cdghd�l§, �fcd) 

1. 	 = 1�/� − /��	�1ℎ2 

2. � = 	 + ���ℎ�2 

3. ℎ = 1�/� + /��	�1ℎ2 

4. ! = ℎ − ���ℎ�2 
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timdmpnmwh	��, c, �� 
1. efg		�1ℎ	�	��	�	�	�	�, 	�1ℎ	m	�	(�, … … , �) 
2. bhd_po�j(	pn�lp³, cdghd�l³, �fcd),	 
    bhd_he l(	pn�lp§, cdghd�l§, �fcd)   

3. �(�, �) ≔ 	∞, *(�, �) ≔ "T5, �(�, �) ≔ 	∞ 

4. �(/, 0) ≔ 0, �(/, �) ≔ 0 

5. hij	efg |hnp�_vs���u,�, m, �� 
1. �: ≔ 	����� U>?<,	@�	��<,=�� �V 

2. bhd_po�j(	pn�lp³, cdghd�l³, �fcd), 

    bhd_he l(	pn�lp§, cdghd�l§, �fcd)                                         

3. me	�: ≤ 	�	��
	�(�, �:) > �(�, �) + 1��, �� 
// Compare using Eq. 3.12 of section 3.2.1 (II) (a). 

4.      �(�, �:) ≔ �(�, �) + 1��, �� 
5.       *(�, �:) ≔ � 

6.       �(�, �:) ≔ �����(�, �:), �(�, �) + 
��, ��� 
7. hij	me vs��_�m�qcdgp�b, c, �� 
1. timdmpnmwh	��, c, �� 
2. efg	i = 0 to � 

3.     _ ≔ � 

4.     klmnh	_ ≠ � 

5.         � ≔ �����1�_S���_� 
6.         me	�(�, �) = ∞ 

7.              oghpq	���	��	�ℎ		klmnh	���� 

8.         hij	me 

9.  _ ≔ _ − �	�	� 
10.         efg		�	� 	�
E�1	��	��
		�	��	u 

11.                 |hnp�_vs���u,�, m, �� 
12.         hij	efg 

13.      hij	klmnh 

14. hij	efg vs���b, c� 
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1. � ≔ �� 

2. jf 

3.  � ≔ 2� 

4.      vs��_�m�qcdgp�b, c, �� 
5. klmnh	∃�	�	
�.=� > �1 + ���  

// where .= is the path with �����(�, �)|	�	�	(0 … . . �)� 
This algorithm is an extension of the Path Delay Discretization Algorithm 

(PDA) suggested by Chen et al. (2008). Here, it is modified to deal with the 

intuitionistic fuzzy parameter cost. Two functions  �	�_��1
(	���ℎ�1, /��	�1ℎ1, 1�/�) and �	�_	�!ℎ(	���ℎ�2, /��	�1ℎ2, 1�/�) 

are used to create TIFN from the randomly generated cost values and TIFNs are 

ranked using the proposed centroid method of ranking in section 3.2.1 (II) (a). 

The detailed explanation of the algorithm has been presented in section 2.2.2 

(III) (a) (iv) of chapter 2. The analysis of the solution generated from the 

intuitionistic fuzzy version of Chen’s algorithm has been presented in the next 

section. Since in the intuitionistic fuzzy version, the number of arithmetic 

operations increase by a constant factor, the worst case complexity of the 

algorithm remains 6��� + � log��5 4⁄ �, same as stated by Chen et al. (2008). 

 

(b) Experimental Analysis 

CIFSPP algorithm was implemented in C language using CodeBlocks for 

running on an i5 based 3.20 GHz system with 3 GB RAM. Many practical 

networks like social networks, biological networks, world wide web etc. are 

scale-free networks which follow the power law. Therefore, we generated our 

test cases using a random graph generator (gengraph-win) that follows the 

power law random graph model. The parameters required to generate a random 

graph using gengraph-win are n, alpha, min, max, z.  Here, n denotes the 

number of nodes, min and max represent the minimum degree and maximum 

degree respectively, alpha is a random number ranging from 1-2.5 and denotes 

the exponent of the power law distribution. Sample graphs with n nodes and 

degrees within the stated range of min-max were generated from a heavy-tailed 

distribution of exponent alpha and average z using the command “distrib n 
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alpha min max z”. After generating the random graph, crisp cost and delay 

values within the range of 1 to 100 were assigned to each edge of the graph 

using the C ���
() function. Then these cost values were converted into 

intuitionistic fuzzy numbers using the �	�_��1
() and �	�_	�!ℎ() function of 

the above stated algorithm. The algorithm was implemented for graphs with 

different sizes i.e., n = 50, 100, 150, 200 and here we present a plot for a graph 

with �	 = 	200, 	���ℎ�	 = 	2.5, ���	 = 	10, ���	 = 	20, �	 = 	12, /��	�1ℎ1 =

2, ���ℎ�1 = 1, /��	�1ℎ2 = 3.5, ���ℎ�2 = 1, /���1	 = 15, ��
	���!	� = 95. 

It was observed in all the cases that as the delay constraint was relaxed, the cost 

of the cheapest path decreased. After a point, the cost became constant (for very 

large delay constraint value) and was the same as obtained using the classical 

Dijkstra’s algorithm for the stated source-target pair. Fig. 3.3 clearly shows the 

observation discussed above. As can be seen, that when delay constraint is less 

than 90, no path is found and beyond 90 as the delay constraint value is 

increased, the cost starts decreasing and becomes constant beyond delay 

constraint = 220. We also verified that the results generated by the intuitionistic 

fuzzy version agrees with those obtained using the crisp case of the algorithm 

suggested by Chen et al. (2008) by setting the width of the intuitionistic fuzzy 

number representing the cost of the final path equal to zero. 
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Fig. 3.3: Behaviour shown by the cost of the shortest path on varying the 

input delay constraint for a graph with 200 nodes generated using 

gengraph-win 

 

 

3.2.2 Quasi-Gaussian Intuitionistic Fuzzy Number (QGIFN) 

Fuzzy numbers can be applied in various real life areas and Gaussian fuzzy 

numbers (GFN) find a lot of practical applications. Therefore, considering the 

various fields where GFN can be applied, it is favourable to limit the GFN and 

define a new variant called the Quasi-Gaussian fuzzy numbers (QGFN) which is 

a GFN with a restriction that the value of x beyond �̅ - 3<� and �̅ + 3<� is zero. 

Here, �̅, 	<� and <� denotes the modal value, left spread and right spread 

respectively corresponding to the standard deviation of the Gaussian 

distribution. The notation used by Hanss (2005) to represent a QGFN is as 

follows: 

	�	 = 	!��∗��̅,<�,<�� 
 Here	� signifies a QGFN and its membership function 
���� is defined as: 
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���� =

ABB
C
BBD

		0																								���	�	 ≤ 	 �̅ − 3<�	
exp =− ����̅	��	

���� ? 												���	�̅ − 	3<� 	< �	 < 	 �̅																																																																																																		∀	�	 ∈ �					
exp =− ����̅	��	

���� ? 											���	 �̅ 	≤ �	 < 	 �̅ + 3<�
0																					���	�	 > 	 �̅ + 3<�

														(3.19) 

 

In this chapter, we follow the notation used by Hanss (2005) for QGFN to 

introduce the Quasi-Gaussian intuitionistic fuzzy number (QGIFN) and use it 

for modelling the parameter cost involved in CSPP, leading to the intuitionistic 

version of CSPP called constrained intuitionistic fuzzy shortest path problem 

(CIFSPP). The definition for the membership and non-membership function of 

QGIFN is presented below: 

 


���� =

ABB
C
BBD

		0																								���	�	 ≤ 	 �̅ − 3<� 	
exp =− ����̅	��	

���� ? 												���	�̅ − 	3<� 	< �	 < 	 �̅																																																																																																∀	�	 ∈ �				
exp =− ����̅	��	

���� ? 											���	 �̅ 	≤ �	 < 	 �̅ + 3<�
0																					���	�	 > 	 �̅ + 3<�

															(3.20a) 

 

%���� =

ABB
C
BBD

		1																								���	�	 ≤ 	 �̅ − 3<�:
1 − exp =− ����̅	��	

���� ? 												���	�̅ − 	3<�: 	< �	 < 	 �̅																																																																																																	∀	�	 ∈ �																		
1 − exp =− ����̅	��	

���� ? 											���	 �̅ 	≤ �	 < 	 �̅ + 3<�:
1																					���	�	 > 	 �̅ + 3<�:

(3.20b) 
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Fig. 3.4:  Quasi-Gaussian Intuitionistic Fuzzy Number 

 

(I) Addition of two QGIFNs 

Addition of two QGIFNs is performed using decomposed intuitionistic fuzzy 

numbers which implements interval arithmetic. An intuitionistic fuzzy set H can 

be represented as a sequence of :,� − 1��/. An :,� − 1�� of H can be defined 

as (Mahapatra, & Roy, 2013): 

H�,7 = 28�, 
A���, %A���9: � ∈ �, 
A��� ≥ :, %A��� ≤ �3                          (3.21)    

where,  :,� ∈ (0,1)                                                                             
The infinite number of :,� − 1��/ are reduced to a finite set to make it more 

appropriate for practical applications by choosing some discrete values :� = 
� 
for : and �	 = %	 for � (Hanss, 2005). To create the finite set, the (0,1) interval 

is divided into 0-subintervals and can be denoted using the following notation: 

H� = FU�����,�����, … … ,�����V, U��#���, … . . ,��#���,��#���VG                                (3.22) 

Where, ����� = =�����, �����?, ��#�	� = =��#�	�, ��#�	�? such that ����� ≤ �����, ��#�	� ≤ ��#�	�, E + � ≤ 1. 
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If we have two decomposed intuitionistic fuzzy numbers 

����,	� = U=�����, �����? , =��#�	�, ��#�	�?V and ����,	� = U=�����, �����? , =��#�	�, ��#�	�?V, then 

their addition can be performed using the following formula: 

� = ����,	� + ����,	� = U=�����, �����? , =��#�	�, ��#�	�?V + U=�����, �����? , =��#�	�, ��#�	�?V  

                              = U=����� + �����, ����� + �����? , =��#�	� + ��#�	�, ��#�	� + ��#�	�?VLMMMMMMMMMMMMMMMNMMMMMMMMMMMMMMMO
$P����, ���Q,T�#���, #���U%

  (3.23) 

 

(II) Ranking of QGIFNs 

The general method for calculating the centroid of a curved area utilizes the 

following formulas: 

Centroid �^� = ��N ,  N� 
Here, �N =

�I���	�I�H!��		!	���	�HN�	I!
�I���	��H�   and  N =

�I���	�I�H!��		!	V��	�HN�	I!
�I���	��H� . 

 

 

 

 

Fig. 3.5: Centroid method of ranking for QGIFN 
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We extend the general formula for computing the centroid to be applied on 

QGIFN. As shown in Fig. 3.5, the total moments in the � and a direction over 

the total area can be stated as (Marghitu & Dupac, 2012): 

 

�N =
�I���	�I�H!��		!	���	�HN�	I!

�I���	��H� =
�
�� �� � −  ��!

� 
�                                (3.24) 

 N =
�I���	�I�H!��		!	V��	�HN�	I!

�I���	��H� =
�
�� ?S�@��?S�@�

�
!
� 
�                                   (3.25) 

 

Integrating a bell shaped curve or a Gaussian curve is not possible by using 

simple mathematical techniques. Therefore, few advanced techniques like series 

expansion and integration as summation is used to integrate these bell shaped 

and Gaussian curves. Here, we prefer the integration as summation method to 

integrate the Quasi-Gaussian curve. 

We assume 
� = 0.000001��-�._�TH�� where �-�._�TH� is a 

minute value and to integrate the curve, the following formula is used: 

� ����!
� 
� = lim!→R∑ ���	∗�!	4� ∆�	                                                          (3.26) 

Also, we consider the critical cases where the value of spreads (either 

left or right) is zero. For the computation ease and to remove the complexities 

that may arise due to the zero value, the spread (either left or right) that is zero 

is replaced by a very small � value. 

After the centroid �^� is obtained, the distance ��� is computed using 

the following formula: 

� = ���N�� + � N��                                                                                     (3.27) 

Then the paths are ranked ��� according to their distance ��� values, that is a 

path having lesser ��� value gets a higher ranking and vice versa. If we have 

two QGIFNs # and + with the same distance ��� value then they are ranked 

according to their spreads i.e., the number with a smaller spread gets a higher 

ranking ���. 
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(III) Application 

(a) CIFSPP Algorithm (using QGIFN) 

bhd_po�jh(	�fcd,´W,´X,´W:,´X: )	 
1. � = 1�/�  
2. � = � − 3 ∗ <� 
3. 1 = � + 3 ∗ <� 

4. 
 = � − 3 ∗ <�:  
5. 	 = � + 3 ∗ <�: 
 timdmpnmwh	��, c, �� 
1.efg		�1ℎ	�	��	�	�	�	�, 	�1ℎ	m	�	(�, … … , �) 
2.  bhd_po�jh(�fcd,´W,´X,´W:,´X: ) 

3.  �(�, �) ≔ 	∞,*(�, �) ≔ "T5, �(�, �) ≔ 	∞ 

4.  �(/, 0) ≔ 0, �(/, �) ≔ 0 

5.hij	efg 
 |hnp�_vs���u,�, m, �� 
1. �: ≔ 	����� U>?<,	@�	��<,=�� �V 
2. bhd_po�jh(	�fcd,´W,´X,´W:,´X: )     

3. me	�: ≤ 	�	��
	�(�, �:) > �(�, �) + 1��, �� 
// Compare using Equation 3.24,3.25,3.26,3.27 of section 3.2.2 

(II). 

4.       �(�, �:) ≔ �(�, �) + 1��, �� 
5.       *(�, �:) ≔ � 
6.       �(�, �:) ≔ �����(�, �:), �(�, �) + 
��, ��� 
7. hij	me 
 vs��_�m�qcdgp�b, c, �� 
1.timdmpnmwh	��, c, �� 
2. efg	i = 0 to � 
3.     _ ≔ � 
4.     klmnh	_ ≠ � 
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5.         � ≔ �����1�_S���_� 
6.         me	�(�, �) = ∞ 

7.              oghpq	���	��	�ℎ		klmnh	���� 
8.         hij	me 
9. _ ≔ _ − �	�	� 
10.         efg		�	� 	�
E�1	��	��
		�	��	u 
11.                |hnp�_vs���u,�, m, �� 
12.         hij	efg 
13.      hij	klmnh 
14. hij	efg 
 vs���b, c� 
1.� ≔ �� 
2. jf 
3.    � ≔ 2� 
4.    vs��_�m�qcdgp�b, c, �� 
5.    klmnh	∃�	�	
�.=� > �1 + ���    

// where .= is the path with �����(�, �)|	�	�	(0 … . . �)� 
 

The above stated algorithm is the extended version of the path delay 

discretization algorithm (PDA) suggested by Chen et al. (2008), which is 

capable of tackling the intuitionistic fuzzy environment. Amongst the two 

parameters cost and delay of constrained intuitionistic fuzzy shortest path 

problem (CIFSPP), cost is represented as a Quasi-Gaussian intuitionistic fuzzy 

number (QGIFN). In this algorithm, the function  �	�_��1
		(1�/�, /�!��1, /�!��2, /�!��3, /�!��4)	generates the QGIFN 

using the randomly generated cost and sigma values. A detailed explanation of 

the algorithm has been stated in section 2.2.2. (III) (a) (iv) of chapter 2. The 

analysis of the intuitionistic version of PDA has been presented in the next 

section. The worst case complexity of the above algorithm remains the same as 

stated by Chen et al. (2008) i.e., 6��� + � log��5 4⁄ � where 5 signifies the 

longest path in the network. 
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(b) Experimental Analysis 

The CIFSPP algorithm has been implemented in C language and compiled using 

CodeBlocks for running on an i7 based system running at 3.40 GHz with 4GB 

RAM. The algorithm was implemented for large test graphs generated using the 

power law random graph generator gengraph-win. Initially, using the command 

“distrib n alpha min max z” several unweighted power law sample graphs with a 

random structure were generated with different network sizes i.e., different 

number of nodes like 50, 100, 150, 200, 225, 250 etc. Then random weights 

were assigned to the edges of the graph from the uniformly distributed random 

numbers ranging from 1 to 100 created using C rand() function. After that 

QGIFNs were generated for the cost values using the function �	�_��1
	() of 

the CIFSPP algorithm. To show the behaviour of the output cost with the 

varying input delay constraint (Fig. 3.6), we include the plot of a graph 

with	�	 = 	100, ���ℎ�	 = 	2.5, ���	 = 	7, ���	 = 	15, �	 = 	10, source =

23	and	target = 75. By repeating the experiments sufficient number of times, it 

was observed that on relaxing the delay constraint, the cost of the cheapest path 

decreases. The reason for this behaviour is that if the delay constraint is strict, 

the algorithm does not find enough time to obtain the best possible path 

however, among the feasible paths, the cheapest one is selected.  On relaxing 

the delay constraint to some extent, it was observed that the cost of the best path 

decreases because the algorithm found more time to explore the solution space. 

Therefore, a cheaper path could be computed. Although beyond a point (for a 

very large delay constraint value), even after relaxing the delay constraint, the 

cost does not decrease, becomes constant and is the same as obtained by the 

Classical Dijkstra’s algorithm i.e., no cheaper path than this is available for the 

stated source-target pair. 
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Fig. 3.6: Trend observed in the cost of the shortest path on varying the 

input delay constraint for a graph with 100 nodes generated using 

gengraph-win 

 

 

3.3 Max – Min Formulation for Intuitionistic Fuzzy 

Orienteering Problem 

Here, we introduce the intuitionistic fuzzy orienteering problem (IFOP) where 

the parameters (score and time) are represented using TIFN. In IFOP, the strict 

requirements of the crisp formulation which include the maximization or 

minimization of the objective function, satisfying each and every constraint and 

giving equal importance to all the constraints are relaxed to some extent by 

using fuzzy logic with the aim to provide a more accurate and practical 

modeling of the real world. In the fuzzy formulation we consider the willingness 

of the decision maker, his aspiration levels and the degree up to which a 

solution is acceptable or its degree of satisfaction. This modeling is made more 

apt by using intuitionistic fuzzy numbers as the degree of non-belongingness is 

also considered along with the degree of belongingness and this is the best way 

to tackle the vagueness (Zimmermann, 2010). 
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3.3.1 IFOP Algorithm 

Following are the steps to determine the most appropriate path for a given graph ���,�� with " nodes. The steps are explained in the next section with the help 

of an illustrative example: 

Step 1: Compute all the paths �.�� that connect the source node (��) and the 

destination node (�B) and fulfil the condition stated by the Eqs. 2.45, 2.46, 

2.47, 2.49, 2.50 and 2.51 of chapter 2. 

Step 2: The following values are calculated for each of the possible paths 

computed in Step 1: 

(a) The total collected reward or score and the total time taken (using Eq. 3.2 of 

section 3.2.1 (I)). 

(b) The expected value for the total time taken and the total collected score 

using the following formula: 

For a given TIFN # = 〈��, �, 1, 
�, �	, �,!, ℎ�〉 
���#� =

�
F �� + � + 1 + 
 + 	 + � + ! + ℎ�	                                             (3.28) 

(c) The membership value for the total time taken and the total collected score 

represented by the fuzzy set ��and ��respectively (using Eq. 2.48 and Fig. 2.22 

and Eq. 2.44 and Fig. 2.21 of chapter 2 ). 

Step 3: Compute the set of feasible paths depicted by the fuzzy decision set H 

(using definition in section 2.3.1 (b) and Eq. 2.42 of chapter 2). 

Step 4: The final solution representing the most desirable path is denoted by the 

fuzzy decision set H∗ (obtained using definition in section 2.3.1 (b) and Eq. 2.43 

of chapter 2). If the set H∗ contains more than one path then to conclude with the 

path that maximizes the total collected score, the paths in H∗ are ranked 

according to their total collected score (using Eqs. 3.13, 3.14, 3.15). 
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3.3.2 Illustrative Example 

 

 

 

Fig. 3.7: The input graph with ­ ± «, �+ ± ³, �Y ± « and the time and 

score values associated with each edge and vertex respectively 
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Step1: For the given graph �, following are the possible paths: 

s+: 1 − 5	; sZ: 1 − 2 − 5	; s[: 1 − 3 − 5	; s\: 1 − 4 − 5	; s]: 1 − 2 − 3 − 5	; s^: 1 − 3 − 2 − 5	;	 s_: 1 − 2 − 4 − 5	; s`: 1 − 4 − 2 − 5	; sa: 1 − 3 − 4 − 5	; s+b: 1 − 4 − 3 − 5	; s++: 1 − 2 − 3 − 4 − 5	; s+Z: 1 − 2 − 4 − 3 − 5	; s+[: 1 − 3 − 4 − 2 − 5	; s+\: 1 − 4 − 3 − 2 − 5	; s+]: 1 − 4 − 2 − 3 − 5	;	 s+^: 1 − 3 − 2 − 4 − 5 

 

 

Step 2:  The actual values for the stated example obtained as a result of step 2 

(a), (b), (c) of the IFOP algorithm are shown in the Table 3.1 (a), (b), (c). 
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Table 3.1(a): The values of total time taken and total collected score 

obtained for each possible path 

 

Path Total Time Taken Total Collected Score .� 〈�4,6,8,10�, �2,4,10,12�〉 〈�1,2,8,9�, �0,2,8,10�〉 .� 〈�15,22,28,35�, �12,18,32,38�〉 〈�9,11,19,21�, �6,10,20,24�〉 .� 〈�6,11,23,28�, �5,9,25,29�〉 〈�4,7,17,20�, �1,6,18,23�〉 .� 〈�15,17,23,25�, �12,16,24,28�〉 〈�18,22,32,36�, �14,20,34,40�〉 .
 〈�3,9,19,25�, �0,6,22,28�〉 〈�12,16,28,32�, �7,14,30,37�〉 .. 〈�22,30,38,46�, �17,27,41,51�〉 〈�12,16,28,32�, �7,14,30,37�〉 .E 〈�7,14,16,23�, �4,12,18,26�〉 〈�26,31,43,48�, �20,28,46,54�〉 .F 〈�33,41,51,59�, �28,38,54,64�〉 〈�26,31,43,48�, �20,28,46,54�〉 .G 〈�12,19,27,34�, �8,16,30,38�〉 〈�21,27,41,47�, �15,24,44,53�〉 .�� 〈�19,25,43,49�, �15,21,47,53�〉 〈�21,27,41,47�, �15,24,44,53�〉 .�� 〈�9,17,23,31�, �3,13,27,37�〉 〈�29,36,52,59�, �21,32,56,67�〉 .�� 〈�11,22,36,47�, �7,17,41,51�〉 〈�29,36,52,59�, �21,32,56,67�〉 .�� 〈�30,43,55,68�, �24,38,60,74�〉 〈�29,36,52,59�, �21,32,56,67�〉 .�� 〈�35,44,58,67�, �27,39,63,75�〉 〈�29,36,52,59�, �21,32,56,67�〉 .�
 〈�21,28,42,49�, �16,26,44,54�〉 〈�29,36,52,59�, �21,32,56,67�〉 .�. 〈�14,22,26,34�, �9,21,27,39�〉 〈�29,36,52,59�, �21,32,56,67�〉 
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Table 3.1(b): The expected value for the total time taken and the total 

collected score of each possible path 

 

Path 
EV 

(Total Time Taken) 

EV 

(Total Collected Score) .� 7 5 .� 25 15 .� 17 12 .� 20 27 .
 14 22 .. 34 22 .E 15 37 .F 46 37 .G 23 34 .�� 34 34 .�� 20 44 .�� 29 44 .�� 49 44 .�� 51 44 .�
 35 44 .�. 24 44 
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Table 3.1(c): The membership value for the total time taken and the total 

collected score for each possible path 

 
 

Path µc�sd� µ-�sd� .� 1 0 .� 0.67 0.23 .� 1 0 .� 1 1 .
 1 0.77 .. 0.06 0.77 .E 1 1 .F 0 1 .G 0.8 1 .�� 0.06 1 .�� 1 1 .�� 0.4 1 .�� 0 1 .�� 0 1 .�
 0 1 .�. 0.73 1 

 

 

The fuzzy set ��	and �� (as shown below) denotes the membership value for the 

total time taken and the total collected score respectively: 

 �� = {.� 1⁄ ,.� 0.67,.� 1,.� 1⁄⁄⁄ ,.
 1,.. 0.06,.E 1,.F 0,.G 0.8,.�� 0.06,⁄⁄⁄⁄⁄⁄  

          .�� 1,⁄ .�� 0.4,.�� 0⁄⁄ ,.�� 0,.�
 0,.�. 0.73⁄⁄⁄ } 

 �� = {.� 0⁄ ,.� 0.23,.� 0,.� 1⁄⁄⁄ ,.
 0.77,.. 0.77,.E 1,.F 1,.G 1,.�� 1,⁄⁄⁄⁄⁄⁄       

          .�� 1,⁄ .�� 1,.�� 1⁄ ,.�� 1,.�
 1,.�. 1⁄⁄⁄⁄ } 
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Step 3: For the considered input, following is the fuzzy decision  H: 

H = {.� 0⁄ ,.� 0.23,.� 0,.� 1⁄⁄⁄ ,.
 0.77,.. 0.06,.E 1,.F 0,.G 0.8,⁄⁄⁄⁄⁄                    

        .�� 0.06,⁄ .�� 1,⁄ .�� 0.4,.�� 0⁄⁄ ,.�� 0,.�
 0,.�. 0.73⁄⁄⁄ } 

 

Step 4: Following are the paths in H∗ and their corresponding ranks obtained for 

the given network: 

H∗ = �.� 1⁄ ,.E 1⁄ ,.�� 1⁄ �  
 

Table 3.2: Ranks of the desirable paths 

Path Score Rank .� 〈�18,22,32,36�, �14,20,34,40�〉 3 .E 〈�26,31,43,48�, �20,28,46,54�〉 2 s++ 〈�§¨,©ª,«§,«¨�, �§³,©§,«ª,ª¶�〉 1 

 

 

 

The most desirable path is .�� as it has the highest rank. To check the 

correctness of our result, we set the spreads of the TIFN (for both score and 

time) to zero in order to convert each input to its crisp equivalent and then 

perform exhaustive search. This gives the same solution as our algorithm. 

 

3.3.3 Work-depth Analysis of IFOP 

We present the work-depth analysis of IFOP here, to achieve a better 

performance and solve it more efficiently for large instances. There are several 

ways for organizing parallel computers. Therefore, it becomes difficult to 

determine one multiprocessor model that is apt for all machines. The method to 

deal with this situation is to focus on algorithms than on machines. As stated in 

(Blelloch, 1996), work-depth model is a technique of modelling the parallelism 

of an algorithm. For any algorithm, the following terms can be calculated 

(Blelloch, 1996): 
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Work (¦): Total number of operations performed. 

Depth (�): Longest chain of dependencies among its operations. 

Parallelism (·): The ratio 
e
f  

Algorithms with efficient work-depth models can be converted into efficient 

multiprocessor models and then to actual parallel computers. Work-depth 

models can be represented in three possible ways: 

• Circuit Model. 

• Vector Machine Model. 

• Language-based Model. 

For the parallel formulation of IFOP we use the circuit model which is the most 

abstract one when compared to the other two models. A circuit has two 

important components: nodes and directed arcs. The directed arcs and the nodes 

denote the flow of values and the operations to be performed respectively. Fan-

in and fan-out are two terms associated with each node signifying the number of 

incoming and outgoing arcs respectively. The input to the circuit is provided 

through input arcs which do not originate from any node. Similarly, the output 

arcs carry the result out of the circuit and do not have any destination node. The 

number of nodes denotes the work of the circuit, also called the size of the 

circuit. A circuit should not contain directed cycles and the count of the nodes 

on the longest directed path connecting the input and output arc specifies the 

depth of the circuit. If the parallelism computed for the work-depth model is at 

least as large as the number of processors, then it is said to be work-preserving 

and can be translated into an efficient multiprocessor model like the PRAM 

model (Blelloch, 1996).  

For the circuit of IFOP we assume two things: ���	����	�	��	���1	//��/ ="���	�	��	
�/���1�	���ℎ/	�	��		�	/���1		����	��
	destination	��B�.  
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���	�����		
�	�
��
���	���ℎ�	��� =

																																														∑
�����!

������	�
!

��	
��	 							�ℎ�	�	�	
�	�ℎ�	�����		
�	�
���	
�	�ℎ�	  

                                                                     �
���	�	��ℎ	�. 

 

The first step of the IFOP of determining all the possible distinct paths is 

performed sequentially as shown below:  

 

 

 

Fig. 3.8: The sequential module executing step 1 of IFOP that computes all 

the distinct paths in the given graph b 
 

 

Fig 3.9 presents the circuit of IFOP. The parallelism for IFOP is as follows: 

Work (¦) =	«� + §. 
Depth (�) =	«. 
Parallelism (·) =	ef =


���

 = U� +

�

V. 

Therefore, IFOP is work-preserving because the parallelism (·) is U� +
�

V 

which is at least as large as the number of processors viz. �. Thus, it is seen that 

the intuitionistic fuzzy formulation of the orienteering problem is efficiently 

parallelizable. 
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Fig. 3.9: The parallel version of IFOP along with its work-depth analysis 

stating the work and depth value of each step 

 

TTT = Total Travel Time.                        

TS = Total Score. 

EV = Expected Value. 

MV = Membership Value. 

A = A two dimensional array of size p x 2. 

B = A two dimensional array of size p x 2. 

L = A one dimensional array of size p. 
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3.4 Intuitionistic Fuzzy Metric Space using Intuitionistic Fuzzy 

Point 

In this chapter, we use the concept of IFP and intuitionistic fuzzy scalars for 

proposing a new definition of the intuitionistic fuzzy metric space. The 

proposed definition of distance metric is then applied to the orienteering 

problem resulting in the formulation of the intuitionistic fuzzy orienteering 

problem (IFOP) where for a given graph ���,��, the task is to compute a 

Hamiltonian path . that connects the stated source ���� and target ��B� along 

with a subset of vertices ��:� of the vertex set � and also satisfies the upper 

limit on the distance covered ������. The intuitionistic fuzzy version of the 

problem has been considered for the first time and we deal with both, the 

uncertainty in the parameter score using trapezoidal intuitionistic fuzzy number 

and the uncertainty in the position / location of the point of interest using 

intuitionistic fuzzy points. Further, an algorithm for solving IFOP has been 

suggested in section 3.3.1 of this chapter. An intuitionistic fuzzy point 1��,:� 
can be defined in the following form (Coker & Demirci, 1995): 

1��,:� = �〈�, 1g, 1 − 1���〉|� ∈ �� 
(Here, 1 ∈ � is the support of 1��,:� and � and : represents the degree of 

membership and degree of non-membership respectively of 1��,:�). 
� is a nonempty set and 1 ∈ �. � ∈ �	0, 1	) and : ∈ [	0	, 1) are two real numbers 

such that � + : ≤ 1.  

    In this chapter, the notation used to signify an intuitionistic fuzzy point is ��, �, ��. .")��� denotes the set of all intuitionistic fuzzy points defined on �. 

When, � = �, intuitionistic fuzzy points are called intuitionistic fuzzy scalars 

and �")��� denotes the set of all intuitionistic fuzzy scalars. An intuitionistic 

fuzzy point is said to belong to an intuitionistic fuzzy set K if  

 , = ���, �, ��|
h��� ≥ �, %h��� ≤ �	� 
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3.4.1 Intuitionistic Fuzzy Metric Space 

In this section a few necessary definitions are presented: 

 

Definition 1: Let ��, �, �� and ��, �, E� be two intuitionistic fuzzy scalars then 

we say that: 

(1) ��, �, �� ≽ ��, �, E�  if � > � or ��, �, �� = ��, �, E� . 
(2) ��, �, �� is said to be no less than ��, �, E� if � ≥ � denoted by ��, �, �� ≻��, �, E� or ��, �, E� ≺ ��, �, ��. 
(3) ��, �, �� is said to be non-negative if � ≥ 0. The set of all the non-negative 

intuitionistic fuzzy scalars is denoted by �")� ���. 
Here, both the operators ≻ and ≽ denote partial ordering. 

 

Definition 2: Let � be a nonempty set and 
"):	.")���	�		.")��� → �")� ��� be a 

mapping. For any ���, �, ��, � , �, E�, ��, ¸, ��� ⊂ .")���, if 
") satisfies the 

following three conditions: 

(1) Non Negative: 
")8��, �, ��, � , �, E�9 ≥ 0 and 
")8��, �, ��, � , �, E�9 = 0 iff  

� =  , � = � = 1, � = E = 0 ( in 
")8��, �, ��, � , �, E�9 = 0, 0 denotes the 

intuitionistic fuzzy scalar with membership degree 1 and non-membership 

degree 0). 

(2) Symmetric: 	
")8��, �, ��, � , �, E�9 = 
")8� , �, E�, ��, �, ��9 . 
(3) Triangle Inequality:  
")8��, �, ��, ��, ¸, ��9 ≺ 
")8��, �, ��, � , �, E�9 + 
")8� , �, E�, ��, ¸, ��9 . 
 

Here, the summation is defined as: ��, �, �� + � , �, E� = �� +  ,�����, ��,�����, E�� . 
 

Then, �.")���,
")� is called an intuitionistic fuzzy metric space. Here, ��, �, ��, � , �, E�, ��, ¸, �� are intuitionistic fuzzy points, 
") is the intuitionistic 

fuzzy metric defined in .")��� and 
")8��, �, ��, � , �, E�9 is the intuitionistic 

fuzzy distance between two intuitionistic fuzzy points. 
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Proposition 1: Let ��, 
� be an ordinary metric space. If ��, �, �� and � , �, E� 
are two intuitionistic fuzzy points in .")���, then we define the distance 

between them as 


")8��, �, ��, � , �, E�9 = �
��,  �,�����, ��,�����, E�� 
 

Here, 
��,  � denotes the distance between � and   defined in ��, 
�. 
Therefore, �.")���, 
")� is an intuitionistic fuzzy metric space if it satisfies the 

three necessary conditions stated in Definition 2 of section 3.4.1. 

 

Proof: Here we show that 
") obeys the three conditions given in Definition 2 

of section 3.4.1: 

(a) Non-Negative: Let ��, �, �� and � , �, E� be two IFPs in .")���. If 
��,  � is 

the distance between � and   then we can say 
��,  � ≥ 0.  

From Definition 1 of section 3.4.1, it follows that 
")8��, �, ��, � , �, E�9 =�
��,  �,�����, ��,�����, E�� is a non-negative intuitionistic fuzzy scalar 

and 
")8��, �, ��, � , �, E�9 = 0 iff 
��,  � = 0, �����, �� = 1, �����, E� =

0 i.e., � =  , � = � = 1, � = E = 0. 

 

(b) Symmetric: Let ��, �, �� and � , �, E� be two IFPs in .")���, then we have  
")8��, �, ��, � , �, E�9 = �
��,  �,�����, ��,�����, E��  
                                    = �
� , ��,�����, ��,����E, ���		 	                                   = 
")8� , �, E�, ��, �, ��9. 
 

(c) Triangle Inequality: Let ��, �, ��, � , �, E�	��
	��, ¸, �� be three IFPs, then 

 
")8��, �, ��, ��, ¸, ��9 = �
��, ��,�����, ¸�,�����, ��� 
                                       ≺ �
��,  � + 
� , ��,�����, ¸, ��,�����, �, E��		                                                                 
                   = �
��,  �,�����, ��,�����, E�� + 	 �
� , ��,�����, ¸�,����E, ��� 

                                 = 
")8��, �, ��, � , �, E�9 + 
")8� , �, E�, ��, ¸, ��9 
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Proposition 2: Let �! be the � −dimensional Euclidean space and - an 

intuitionistic fuzzy linear space defined in �!. Suppose ��, �, �� and � , �, E� be 

two arbitrary intuitionistic fuzzy points �	���!��!	��	-, then the distance 

between them can be defined as: 
")i8��, �, ��, � , �, E�9 = �
i��,  �,�����, ��,�����, E��  
 

Here, 
i denotes the Euclidean distance. Therefore, �-, 	
")i� is also an 

intuitionistic fuzzy metric space, where - can be considered as the set of 

intuitionistic fuzzy points that �	���!	�� the intuitionistic fuzzy set -. 

 

Proof: In the ordinary sense, �! is a metric space and - can be viewed as a 

subset of .")��!�. Therefore, 
")i is an intuitionistic fuzzy metric. (from the 

proof of Proposition 1).  

�")� ��� is not a complete ordered set. Therefore, in Definition 2 of section 3.4.1 

for triangle inequality ≤ is replaced by ≺. ≺ is much weaker than ≤, so the 

natural query that arises is as follows: 

Is there some kind of intuitionistic fuzzy metric space that can satisfy the 

triangle inequality with some partial order which is stronger than ≺ like ≼. 

The answer to the query is YES and such kind of metric spaces are called strong 

intuitionistic fuzzy metric spaces. 

 

Definition 3: Let � be a nonempty set and 
"):	.")���	�		.")��� → �")� ��� be a 

mapping. �.")���, 	
")� can be called a strong intuitionistic fuzzy metric space 

if it fulfils the first two conditions of Definition 2 in section 3.4.1 and for any ��, �, ��, � , �, E�	��
	��, ¸, �� in .")��� we have: 

�3:�	
")8��, �, ��, ��, ¸, ��9 ≼ 	 
")8��, �, ��, � , �, E�9 + 
")8� , �, E�, ��, ¸, ��9  
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Proposition 3: Suppose - is an intuitionistic fuzzy linear space defined in �!, 

then the distance between any two intuitionistic fuzzy points on - can be stated 

as:   


")i8��, �, ��, � , �, E�9 = �
i��,  �,�����, ��,�����, E��                          (3.29) 

 
i denotes the Euclidean distance, �-, 
")i� is a strong intuitionistic fuzzy 

metric space and - is the set of intuitionistic fuzzy points on the intuitionistic 

fuzzy set -. 

 

Proof: Here we only consider the third property of triangle inequality as the first 

two properties can be proved in the similar way as shown in Proposition 1 of 

section 3.4.1. 

Suppose ��, �, ��, � , �, E�	��
	��, ¸, �� are three arbitrary intuitionistic fuzzy 

points on -. As stated earlier, ��!,
i� is a metric space. Therefore,  


i��, �� ≤ 	 
i� , �� + 
i��,  �                                                                   (3.30) 

If the above stated inequality (3.30) holds strictly, then condition (3:) is 

obviously satisfied from Definition 1(1) of section 3.4.1. For the other case, 

where the “ = ” relation is considered, there must exist some � ∈ �0,1) such that  = �1 − ��� + ��. Let : = �����, ¸� and � = �����, ��. Then we can say 

that ��, �� ⊂ -�,7. As, - is an intuitionistic fuzzy linear space, -�,7 is a linear 

subspace of �!. It follows that  ∈ -�,7 i.e., � = 
(� � ≥ : = �����, ¸�. This 

implies that �����, ¸, �� = �����, ¸�. Similarly,	E = %(� � ≤ � = �����, ��. 
This implies that �����, �, E� = �����, ��. 
Thus it can be stated that: 


")i8��, �, ��, ��, ¸, ��9 = �
i��, ��,�����, ¸�,�����, ���                                      
                                     = �
i��,  � + 
i� , ��,�����, ¸, ��,�����, �, E��                    
                                     = 
")i8��, �, ��, � , �, E�9 + 
")i8� , �, E�, ��, ¸, ��9 
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3.4.2 Intuitionistic Fuzzy Orienteering Problem using Intuitionistic Fuzzy 

Points 

We apply the above derived formula of distance between two IFPs (Proposition 

1 of section 3.4.1) on Orienteering Problem (OP) which can be represented as 

an undirected graph ���,�� where � signifies the set of edges and � =���, … … . . , �B� is the set of vertices. Let the two functions viz. distance function 

on edges be denoted as 
:� → ℜ� and the function for score on vertices can be 

stated as �:� → ℜ�. The goal here is to determine a Hamiltonian Path �.� that 

satisfies the distance bound ������, connects the source ����, target ��B� and a 

subset of vertices ��:� of � such that the total collected score is maximized 

(Vansteenwegen, Souffriau, & Oudheusden, 2011). OP finds several real life 

applications which include the fields of logistics, home delivery system, disaster 

management system, tourism industry etc. In each of the stated applications, the 

parameters involved viz. score and distance cannot be determined precisely. 

Also, there exists some uncertainty in the position or location of the point of 

interest. Therefore, some technique is required to tackle this uncertainty. One 

such method is the use of intuitionistic fuzzy points to model the uncertainty in 

the position and intuitionistic fuzzy numbers to tackle the imprecise nature of 

the parameter score. 

 

(a) Algorithm 

Input: A given graph � with nodes represented as intuitionistic fuzzy points 

and score of each node represented as a trapezoidal intuitionistic fuzzy number. 

Output: A path �.� that satisfies the distance bound ���� and maximizes the 

total collected score. 

 

Step 1: Calculate the intuitionistic fuzzy distance values (i.e., the weight of each 

edge denoted as (
	�) using the following formula: 


")8��, �, ��, � , �, E�9 = �
��,  �,�����, ��,�����, E��                             (3.31) 
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Where, 
��,  � denotes the Euclidean distance between two nodes. 

Step 2: Determine all possible paths connecting the source and target. For each 

path calculate: 

(i) The total distance covered by the path using the following formula: (addition 

of two intuitionistic fuzzy points)                       

 ��, �, �� + � , �, E� = 8�� +  �,�����, ��,�����, E�9                                 (3.32) 

(ii) The total score collected on traversing a path using Eq. 3.2 of section 3.2.1 

(I).                        

Step 3: Discard those paths from the set of all possible paths that do not satisfy 

the ���� values (using Definition 1(1) of section 3.4.1). 

Step 4: Rank the scores of the remaining paths to determine the most desirable 

path (i.e., the path that satisfies the upper limit on the distance covered and has 

the best total collected score value using Eqs. 3.13 - 3.15). 

Thus, the path with � = 1 is considered to be the most desirable path and 

returned as output. If two paths have the same score values then their rank 

values are computed on the basis of the total distance covered by those paths 

(i.e., the path that covers less distance, gets higher ranking). 
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(b) Illustrative Example 

Consider the network in Fig. 3.10. 

 

 

Fig. 3.10: Input graph b with number of nodes �­� = « , source	��+� = ³, 
target ��Y� = « and the co-ordinate values (intuitionistic fuzzy points) and 
the score values (trapezoidal intuitionistic fuzzy numbers) of each node 

 

Step 1: The 
	� value of each edge is computed using Eq. 3.31 and the values 

are presented in Table 3.3. 

Step 2: All the possible paths are determined and the following values are 

calculated and presented in Table 3.4. 
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(i) Total distance covered by the path using Eq. 3.32. 

(ii) Total score collected on traversing a path using Eq. 3.2. 

 

Step 3: Those paths that do not satisfy the distance bound ������ are discarded 

using Definition 1(1) of section 3.4.1 and the remaining paths that form the 

solution set are stated in Table 3.5. 

Step 4: The paths obtained after Step 3 are ranked using Eqs. 3.13 - 3.15 to 

determine the most desirable path and the values are stated in Table 3.6. 

Hence, the most desirable path is .�� that collects the maximum possible score 

within the specified distance constraint. 

 

Table 3.3: The jjk value of each edge 
Edge Label Distance Values of each Edge 8jjk9 
1 − 2 A �0.76, 0.6, 0.3� 
1 − 3 B �7.64, 0.5, 0.5� 
1 − 4 D �7.88, 0.6, 0.3� 
1 − 5 C �9.38, 0.6, 0.3� 
2 − 3 E �7.03, 0.5, 0.5� 
2 − 4 G �7.14, 0.7, 0.2� 
2 − 5 H �7.15, 0.8, 0.2� 
3 − 4 I �2.62, 0.5, 0.5� 
3 − 5 J �6.77, 0.5, 0.5� 
4 − 5 K �4.39, 0.7, 0.1� 
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Table 3.4: The value of total distance covered and total score collected on 

traversing each path 

 

Path Total Distance 

Covered by the 

Path 

Total Score Collected by the 

Path 

.�: 1 − 5 �9.38, 0.6, 0.3� 〈�1,2,8,9�, �0,2,8,10�〉 .�: 1 − 2 − 5 �7.91, 0.6, 0.3� 〈�9,11,19,21�, �6,10,20,24�〉 .�: 1 − 3 − 5 �14.41,0.5,0.5� 〈�4,7,17,20�, �1,6,18,23�〉 .�: 1 − 4 − 5 �12.27,0.6,0.3� 〈�18,22,32,36�, �14,20,34,40�〉 .
: 1 − 2 − 3 − 5 �14.56,0.5,0.5� 〈�12,16,28,32�, �7,14,30,37�〉 ..: 1 − 3 − 2 − 5 �21.82,0.5,0.5� 〈�12,16,28,32�, �7,14,30,37�〉 .E: 1 − 2 − 4 − 5 �12.29,0.6,0.3� 〈�26,31,43,48�, �20,28,46,54�〉 .F: 1 − 4 − 2 − 5 �22.17,0.6,0.3� 〈�26,31,43,48�, �20,28,46,54�〉 .G: 1 − 3 − 4 − 5 �14.65,0.5,0.5� 〈�21,27,41,47�, �15,24,44,53�〉 .��: 1 − 4 − 3 − 5 �17.27,0.5,0.5� 〈�21,27,41,47�, �15,24,44,53�〉 .��: 1 − 2 − 3 − 4 − 5  �14.8,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 .��: 1 − 2 − 4 − 3 − 5  �17.29,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 .��: 1 − 3 − 4 − 2 − 5  �24.55,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 .��: 1 − 4 − 3 − 2 − 5  �24.68,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 .�
: 1 − 4 − 2 − 3 − 5  �28.82,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 .�.: 1 − 3 − 2 − 4 − 5  �26.2,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 
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Table 3.5: The solution set after discarding those paths that do not satisfy 

the distance bound ��dlm� 
Path Total Distance 

Covered by the 

Path 

Total Score Collected by the 

Path 

.�: 1 − 5 �9.38, 0.6, 0.3� 〈�1,2,8,9�, �0,2,8,10�〉 .�: 1 − 2 − 5 �7.91, 0.6, 0.3� 〈�9,11,19,21�, �6,10,20,24�〉 .�: 1 − 3 − 5 �14.41,0.5,0.5� 〈�4,7,17,20�, �1,6,18,23�〉 .�: 1 − 4 − 5 �12.27,0.6,0.3� 〈�18,22,32,36�, �14,20,34,40�〉 .
: 1 − 2 − 3 − 5 �14.56,0.5,0.5� 〈�12,16,28,32�, �7,14,30,37�〉 .E: 1 − 2 − 4 − 5 �12.29,0.6,0.3� 〈�26,31,43,48�, �20,28,46,54�〉 .G: 1 − 3 − 4 − 5 �14.65,0.5,0.5� 〈�21,27,41,47�, �15,24,44,53�〉 .��: 1 − 4 − 3 − 5  �17.27,0.5,0.5� 〈�21,27,41,47�, �15,24,44,53�〉 .��: 1 − 2 − 3 − 4 − 5  �14.8,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 .��: 1 − 2 − 4 − 3 − 5  �17.29,0.5,0.5� 〈�29,36,52,59�, �21,32,56,67�〉 
 

 

Table 3.6: Ranks assigned to the paths to determine the most desirable path 

Path Total Distance 

Covered by the 

Path 

CoC Values for 

Score 

Rank 

.�: 1 − 5 �9.38, 0.6, 0.3� 4.417 10 .�: 1 − 2 − 5 �7.91, 0.6, 0.3� 11.51 8 .�: 1 − 3 − 5 �14.41,0.5,0.5� 9.846 9 .�: 1 − 4 − 5 �12.27,0.6,0.3� 20.006 6 .
: 1 − 2 − 3 − 5 �14.56,0.5,0.5� 17.396 7 .E: 1 − 2 − 4 − 5 �12.29,0.6,0.3� 27.171 3 .G: 1 − 3 − 4 − 5 �14.65,0.5,0.5� 25.504 4 .��: 1 − 4 − 3 − 5 �17.27,0.5,0.5� 25.504 5 s++:³ − § − © − ¹ − « �14.8,0.5,0.5� 32.670 1 .��: 1 − 2 − 4 − 3 − 5  �17.29,0.5,0.5� 32.670 2 
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3.5 Conclusion 

In this chapter, we have modified the PDA algorithm suggested by Chen et al. 

for CSPP to deal with the intuitionistic fuzzy environment. The algorithm 

suggested for CIFSPP is capable of tackling the uncertainty involved in the 

parameters and provides a better picture of the real world. Also the problem 

deals with multiple constraints, namely cost and delay. We represent cost using 

TIFN and the other parameter viz. delay remains crisp. We introduced a 

centroid method of ranking for TIFNs which is different from the techniques 

available in the literature as it uses eight variable representation for TIFN 

instead of the already existing six variable representation and provides a more 

generalized representation than the existing methods. Therefore it is a better 

method to manage the imprecise nature of the parameters involved. Another 

method of ranking called the centroid of centroids (CoC) has also been 

proposed for the TIFN. Also, we have introduced the concept of Quasi-Gaussian 

intuitionistic fuzzy number and tackled the uncertainty that exists in case of 

practical applications like the CIFSPP by representing one of the parameters 

viz. cost as a QGIFN while the other parameter that is delay, remains crisp. 

Also, a centroid based ranking method has been proposed to rank the QGIFNs 

and determine the cheapest feasible path for CIFSPP. 

In this chapter, we have also considered the orienteering problem which 

is an NP-Hard problem and formulated the intuitionistic fuzzy version of this 

problem accounting for uncertainty in the real life areas where this problem 

finds its application like the tourism industry, logistics etc. The problem has 

been stated as a fuzzy integer program with fuzzy goals and crisp constraints 

and a fuzzy optimization technique for solving IFOP has been presented. The 

method suggested here considers the hesitancy, aspiration levels, degree of 

acceptability and satisfaction of the decision maker, thus providing latitude to 

the solution process. The generated solution is capable of tackling the 

uncertainty and vagueness involved in the two parameters score and time. To 

deal with larger instances efficiently, we presented the work-depth analysis of 

IFOP and showed that the algorithm is work-preserving and thus can be 

efficiently implemented on a multiprocessor model like the PRAM. 
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Here, a new definition for intuitionistic fuzzy metric space using the idea 

of intuitionistic fuzzy point and intuitionistic fuzzy scalars has been proposed. 

The concept of IFP and the distance measure thus proposed has been applied for 

the first time on the intuitionistic fuzzy orienteering problem to model the 

uncertainty present in the position or location and the two parameters involved 

viz. distance and score. Also, with the help of an illustrative example, we 

suggested a method to solve IFOP. In future, some heuristic or meta-heuristic 

algorithm like the ant colony optimization algorithm, firefly algorithm, flower 

pollination algorithm etc. can be used to replace the exhaustive search method 

and apply the proposed technique for larger graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 


