
22

CHAPTER 2

Fuzzy Numbers – Their Ranking Methods and

Applications

Abstract

This chapter deals with two types of fuzzy numbers viz. Quasi-Gaussian fuzzy

numbers and trapezoidal fuzzy numbers and their applications. A ranking

method has been proposed for the Quasi-Gaussian fuzzy number called the link

preference index and has been applied on the shortest path, minimum spanning

tree and Steiner tree problem. The ranking methods available in the literature

for the trapezoidal fuzzy numbers have been experimentally analyzed by

applying on the constrained shortest path problem to determine the one which is

most appropriate for practical applications. Also, an application of the

trapezoidal fuzzy numbers has been shown for the wireless sensor networks. A

max-min formulation has been presented for the orienteering problem to deal

with the fuzzy version where the score values associated with the nodes and time

values associated with the edges of the graphs are represented as trapezoidal

fuzzy numbers. Further, to tackle large instances, a parallel formulation of the

fuzzy orienteering problem algorithm has been suggested.

 In section 2.1, the various graphs problems considered and the types of

fuzziness that can be induced in a graph have been discussed. Section 2.2

presents the definition of the Quasi-Gaussian fuzzy number and trapezoidal

fuzzy number, the formulas used for their mathematical operations and their

applications. The max-min formulation and its parallel version for the fuzzy

orienteering problem have been stated in section 2.3 and finally the conclusion

of this chapter has been specified in section 2.4.

23

2.1 Introduction

Graphs are used to depict the pair wise relations between the objects from a

collection. A graph can be represented as � = ��,�� where � is the set of

vertices and � is the set of edges connecting pair of vertices. In this chapter, we

consider several graph problems which includes shortest path, minimum

spanning tree, steiner tree, constrained shortest path and orienteering problem.

 In a network, a path is an alternating sequence of vertices and edges

connecting a source node and a destination node. In general, there can be more

than one path connecting the source node and the destination node, the shortest

path (SPP) is one where the sum of the weights assigned to the edges is

minimum. The problem of finding the shortest path is of great importance in

graph theory as it finds various real life applications like Communication,

Computer Networks, Transport, Routing, Supply Chain Management etc.

(Elizabeth & Sujatha, 2011; Hernandes, Lamata, Verdegay, & Yamakami,

2007). An example of finding the shortest path could be to determine the route

between City A and City B on a road map with minimum travel time. Here the

various connecting cities between City A and City B can be represented as

vertices and their connecting road segments can be represented as edges

connecting the vertices.

 For a given undirected graph	���,��, many spanning trees are possible

that are sub graphs of � connecting each of the vertices present in � without

forming cycles. If the considered graph � is a weighted undirected graph, then a

Minimum Spanning Tree (MST) can be generated which is one among the

several spanning trees possible with the lowest total cost. One example where

MST can be applied is that a cable TV company wants to lay out cable

connections to a new neighbourhood. Thus, a path is to be determined that can

connect the new location to the existing ones with least cost. Several other

applications include network designing while laying out the telephone cables, in

cluster analysis and in solving problems like travelling salesman problem,

Steiner tree problem etc. (Bang, & Kun, 2006).

 For a given undirected graph � = ��,�,�� where � is the weight

function mapping the set � to a set of non negative numbers and a set � where � ⊆ �, the Steiner Tree Problem (STP) is to determine a sub graph of � without

24

cycles that spans S with lowest total cost of its edges (Kou, Markowsky, &

Berman, 1981). Therefore, for a given set of objects, determining the shortest

interconnect is a combinatorial optimization problem STP named after Jakob

Steiner. The STP is a NP-Hard problem with two versions, one is the

optimization problem where a minimum weight Steiner tree is to be found and

the other is the decision problem where the task is to determine whether a

Steiner tree of total weight at most K exists or not. This problem has several

practical applications like in network designing or designing the circuit layout,

in facility location problem, in the fields of wireless communication,

computational biology etc.

 Shortest Path Problem is one of the fundamental optimization problems

in the field of Computer Science, Telecommunications and Operations Research

that is polynomial time solvable. An extension of SPP is Constrained Shortest

Path Problem (CSPP) where the shortest path computed is required to fulfill a

set of constraints which leads to removal of those links from the graph that

violates the constraints and then the Shortest Path algorithm is applied (Chen,

Song, & Sahni, 2008; Xiao, Thulasiraman, Xue, & Juttner). Adding one or more

constraints to the SPP makes it intractable and CSPP is a well-known NP-

Complete Problem (Chen, Song, & Sahni, 2008). Applications of CSPP include

computer networks, cable television networks, communication networks,

transportation networks and multimedia applications like web broadcasting,

video teleconferencing, remote diagnosis etc. (Dou, Zhu, & Wang, 2012; Xiao,

Thulasiraman, Xue, & Juttner).

 The orienteering problem (OP) is an NP-Hard problem, derived from the

game of orienteering where the player is required to start from the initial control

point and arrive at the final control point within the specified time limit, at the

same time collect the rewards (score) assigned to each of the checkpoints that

link the initial control point to the final control point. All those players who

arrive at the final control point after the time expires are disqualified and the

player reaching the final control point within the allotted time and with the

maximum collected score is declared as the winner of the game. This game

reflects many real life situations related to the field of logistics, tourism,

building telecommunication networks, home delivery systems etc., which can

be modelled as OP (Vansteenwegen, Souffriau, & Oudheusden, 2011). There

25

are four types of OP which include the simple orienteering problem, team

orienteering problem, orienteering problem with time window and team

orienteering problem with time window. The OP can be observed as a

combination of two well-known problems, namely the Travelling Salesman

Problem (TSP) and the Knapsack Problem (KP) where the objective of

maximizing the score is derived from KP and the objective of minimizing the

time taken to travel from the initial control point and final control point is

similar to the objective of TSP with the difference that in TSP all the vertices

connecting the source to the target should be visited once but in OP it is not

necessary to visit all the intermediate checkpoints (Vansteenwegen, Souffriau,

& Oudheusden, 2011). One real life application of OP is in the tourism industry

where tourists come to visit the cities which are rich in culture and traditions

and have some historical significance. The aim is to visit as many locations

(including palaces, museums, monuments, restaurants etc.) as possible within

their duration of stay. Due to the restriction of time it is not possible to visit all

the places. Therefore, depending upon the choice and taste of the tourist, the

guide can assign priorities to the various locations to be visited and then explore

as many of them as possible within the time frame available in order to make

their trip as economical and as beneficial as possible (Schilde, Doerner, Hartl, &

Kiechle, 2009).

 In the real world the weights assigned to the edges, in each of the above

stated problems correspond to parameters like cost, time, capacities, demand,

distance, energy etc. which are represented as real numbers. However these

parameters are not naturally precise and the uncertainty involved cannot be

modelled using real numbers. Such a situation can be tackled by introducing the

use of fuzzy numbers as they can model the uncertainty in a much better way

and help in computing a more practical solution to the problems and provide a

quality of service (QoS) assurance in problems like CSPP. In a graph, various

types of fuzziness are possible which are given by Blue et al (2002) as:

• Type I: Fuzzy set of crisp graphs.

• Type II: Crisp vertex set and fuzzy edge set.

• Type III: Crisp vertices and edges with fuzzy connectivity.

• Type IV: Fuzzy vertex set and crisp edge set.

26

• Type V: Crisp graph with fuzzy weights.

Here, Type V graphs are considered where the weights assigned to the edges are

represented as fuzzy numbers instead of crisp numbers. There are several types

of fuzzy numbers viz. triangular, trapezoidal, exponential, quadratic, Gaussian,

Quasi-Gaussian etc. In each of the above stated problems, it is important to rank

the fuzzy numbers to determine their ordering as the requirement is to find the

shortest interconnect in most of the cases taking into consideration certain

constraints. In case of real numbers, there exists a natural ordering which is

absent for fuzzy numbers. Therefore, many ranking methods convert the fuzzy

numbers to real numbers and then analyze them but in this procedure much of

the information is lost. Attempts have been made to determine techniques that

can rank the fuzzy numbers with the minimum loss of information. The concept

of ranking fuzzy numbers was first suggested by Jain (1976). Since then a lot of

methods have been suggested by different researchers. Wang and Kerre (2001a;

2001b) categorized all the methods suggested for ranking the fuzzy numbers

into three classes based on fuzzy mean and spread, fuzzy scoring and preference

relation.

2.2 Fuzzy Numbers

Unlike Boolean logic where two extreme values i.e., true (0) and false (1) is

considered, fuzzy logic is a matter of degree and considers the set of values

lying within the interval [0, 1]. If � is the universal set, then a set � denoted as � = 28�,
����9: � ∈ �3 is called a fuzzy set where
� signifies the

membership function. This membership function assigns a weight to every

element � which is called the grade of membership and lies between 0	��
	1. A

fuzzy set � satisfying the following properties is called a fuzzy number (Bansal,

2011):

(a)
� is piecewise continuous.

(b) � is convex. (
��:�� + �1 − :���� ≥ ���8
�����,
�����9		
 ∀	��, �� ∈ ℝ, ∀	: ∈ (0,1))

27

(c) � is normal. �
����� = 1	, �� ∈ ℝ�
where, ℝ is the universal set of real numbers.

 A fuzzy number is an extension of the crisp or real number which refers

to a set of possible values represented by a membership function, each of which

is assigned a weight called its grade of membership between 0 and 1 whereas

the crisp number is associated with a single value.

 It is used to represent those parameters which are imprecise and for

which it is not possible to specify exact values. In these situations, it is

appropriate to use a fuzzy number instead of a crisp number as they provide a

more practical presentation of the real world. There are several types of fuzzy

numbers, each of which can be defined by a membership function.

2.2.1 Quasi-Gaussian Fuzzy Number (QGFN)

All of the reported research work is based on piece-wise linear membership

functions like Trapezoidal or Triangular (Elizabeth, & Sujatha, 2011). Although

these membership functions are easy to analyze, they are unsuitable for applying

gradient based parameter optimization methods (Dongrui, 2012). Gaussian

membership function is simpler to represent since it requires fewer parameters.

It is continuous and differentiable enabling efficient gradient based optimization

in cases where actual measurement data is used to identify the parameters of

membership functions while using parameter estimation and system

identification techniques, continuity and differentiability and fewer parameters

are highly desirable (Grauel, & Ludwig, 1999). Kashtiban et al. (2008) have

used a recursive extended Kalman filter to obtain very good estimates of

membership function from observed data. Their method also requires the

membership function to be continuous and differentiable leading to a choice of

Gaussian functions.

 Quasi-Gaussian Fuzzy Number is a variation of Gaussian Fuzzy number.

It is highly desirable to have a SPP, MST, STP etc. algorithms that model the

uncertainty in link weights with Gaussian function expressed as

28

��; 	�,; 	<,�� = 	�� =− �
� >���̅� >�?

where, �̅ is the centre, < is the width and � is the fuzzification factor. Various

shapes come into existence by varying the values of these parameters showing

different degrees of fuzziness which are presented in Fig. 2.1. To model the

uncertainty in some graph problems, here we use a variation of Gaussian

membership function called Quasi-Gaussian membership function.

(a): �	; = 5,< = 2,� = 2

(b): �	; = 5,< = 0.5,� = 2

(c): �	; = 5,< = 5,� = 5

Fig. 2.1: Different shapes obtained by varying the value of fuzzification

factor m

29

(I) Membership Function of QGFN

Fuzzy Numbers find a lot of practical applications and Gaussian fuzzy numbers

can be applied in various fields. Hence, it is beneficial to limit the Gaussian

fuzzy numbers and derive a new category called “Quasi-Gaussian Fuzzy

Number” (QGFN). QGFN is a Gaussian fuzzy number with finite support i.e.,

the value of x beyond �̅ - 3<� and �̅ + 3<� is zero where �̅ is the modal value, <�
and <� denote the left and right spreads respectively corresponding to the

Gaussian Distribution’s standard deviation. We use Hanss (2005) notation as

follows:

 p = !��∗ ��̅,<�,<��																																																			 (2.1)

 Here p is a QGFN and the membership function
���� is defined as:
���� =

ABB
C
BBD

		0																								���	�	 ≤ 	 �̅ − 3<�	
exp =− ����̅	��	

���� ? 												���	�̅ − 	3<� 	< �	 < 	 �̅																																																																																																		∀	�	 ∈ �																				
exp =− ����̅	��	

���� ? 											���	 �̅ 	≤ �	 < 	 �̅ + 3<�
0																					���	�	 > 	 �̅ + 3<�

 (2.2)

(II) Fuzzy Arithmetic using QGFN

Definition 1: Decomposed Fuzzy Numbers (DFN)

Fuzzy arithmetical operations like addition, subtraction etc. can be performed in

several ways using Zadeh’s extension principle, LR fuzzy numbers (Dubois, &

Prade,1978; Dubois, & Prade 1979), discretized fuzzy numbers (Hanss,1999;

Hanss, & Willner, 2000) and decomposed fuzzy numbers (Moore, 1966). Here

we use decomposed fuzzy numbers which implements interval arithmetic.

 A fuzzy set A can be represented as sequence of :-cuts. An :-cut �#��
of A is defined as (Hanss, 2005):

 #� = :-cut (A) = ��|
�	��� ≥ 	:� where : ∈ (0,1)

30

To reduce the infinite number of :-cuts and make the decomposed fuzzy

numbers usable for practical applications, the infinite set is reduced to a finite

one by selecting some discrete values :� =
� for : (Hanss, 2005).

 The finite set is created by dividing the interval [0,1] into 0 sub-intervals

by applying the following formula (Hanss, 2005):-

 ∆
 =
�
�

Now the discrete values are

 			
� = 	 ��	 , E = 0,1, … … … … . 0.

with the properties

� = 0,
� = 1,

 			
��� = 	
� + 	∆
,						E = 0,1, … … … … . 0 − 1.

The parameter 0 which controls the degree of refinement is called the

decomposition number. The decomposed form of the fuzzy number �	 that

corresponds to the finite number of :-cuts is represented by the set

.	 = 	 F�	���,�	���, … … … … . . ,�	���G of �0 + 1�intervals (2.3)

Where �	��� = 	 =�	���, �	���	? = 1������	�	,	
 �	��� ≤ 	 �	���,										E = 1,2, … … … … … … . 0.	
These �0 + 1� intervals are called intervals of confidence.

Definition 2: Addition operation using DFN

If two decomposed fuzzy numbers ����� and ����� represented by the interval

=�����, �����? and =�����, �����? respectively, are to be added to form the result H���
shown by the interval I����, ����	J then

31

=�����, �����? + 	 =�����, �����? = K����� + �����		LMMNMMO	
����

, ����� + �����LMMNMMO
 ���

P																																					(2.4)

The concept of interval arithmetic induced by the decomposed fuzzy numbers is

preferred over other methods of performing fuzzy arithmetic operations due to

its less complex implementation (Hanss, 2005).

Definition 3: Minimum operation using DFN

The technique used for determining the minimum of two decomposed fuzzy

numbers using the concept of lattice of fuzzy numbers and :-cuts is preferred

over other ranking methods like those discussed in the paper by Ramli and

Mohamad (2009) using the Centroid Index that falls under the category of fuzzy

scoring techniques. These Centroid Indexes can be used for ranking of

triangular and trapezoidal fuzzy numbers as most of it involves calculating the

area under the curve which requires less number of calculations in case of

triangular and trapezoidal fuzzy numbers and more calculations when Gaussian

fuzzy numbers are involved, thereby increasing the complexity of the

operations. Another reason for using this method of determining the minimum

of two decomposed fuzzy numbers is that the Centroid methods fail to rank

fuzzy numbers with the same centre values ��̅� but different spread or width

values �<� but in our case this situation can be easily handled and the minimum

of two fuzzy numbers can be generated as the concept of :-cuts is used here.

 As stated by Klir and Yuan (1997), the set of real numbers R is linearly

ordered and a pair of value � and Q can be stated as either � ≤ Q or Q ≤ �. Here,

the lattice ��, ≤� can be presented by an operation

 �����, Q� = R�						��	� ≤ QQ						��	Q ≤ � For every �, Q ∈ �

However, this kind of linear ordering cannot be applied on fuzzy numbers and

the minimum operation on two fuzzy numbers #,+ is expressed as �#,+� .
 Let S denote the set of all fuzzy numbers then the triple 〈�,ST",S#�〉
is a distributive lattice in which ST" corresponds to meet and S#� corresponds

32

to join operation (Klir, & Yuan, 1997). It is possible to define partial ordering

on the lattice 〈�,ST",S#�〉. The decomposed fuzzy numbers are represented

in terms of :-cuts and these :-cuts can also be utilized in finding the partial

ordering of the fuzzy numbers.

 For any #,+ ∈ � and : ∈ (0,1) if the :-cut of # is expressed as #� and

that of + as +� where #� = (��, ��) and	+� = (��, ��). Then

 ST"�#�,+�� = (������,���,������, ���)
Similarly, in case of decomposed fuzzy numbers �����	��
	����� represented by

the interval =�����, �����? and =�����, �����? respectively, the minimum of the two

fuzzy numbers can be represented as H�	!
���

 stated as interval I����, ����J then

 H�	!
���

= I����, ����J = =��� U�����, �����V ,��� U�����, �����V?																								(2.5)

Definition 4: Link Preference Index (LPI)

The Link Preference Index defines the ranking order where each path length �H"� is compared with the fuzzy shortest path length �H�	!� which is shown in

Fig. 2.2. The path �H"� with the highest LPI is preferred to all other paths and is

the fuzzy shortest path i.e.,

H� < H�			���				5.T�H�	! < H�� > 5.T�H�	! < H��

Fig. 2.2: Link Preference Index diagram

33

The formula for (LPI) using QGFN is derived as follows:-

H�	! = !��∗��,; 	<�	,<�� H" = 	 !��∗8�"; , <"� , <"�9
Let
� be the membership function.

If �	; 	≤ � < �̅ + 3<�

� = 	��(−�� − �̅��/2<��)
=> log

1
� =
�� − �̅��

2<�� 	
=> 	2<�� Wlog

1
�X = �� − �̅��

=> 	 <�Y2 Wlog
1
�X = � − �̅

	=> � = Z<�[2 Ulog
�
��V + 	 �̅\									 (2.6)

If �̅ − 	3<"� < � < �";

� = 	��I−�� − �";��/2<"��J

	=> 	� = Z<"�[2 Ulog
�
��V + 	�"; \																																			 (2.7)

Equating (2.6) and (2.7)

	=> <�Y2 Wlog
1
�X + 	 �̅ = 	 <"�Y2 Wlog

1
�X + 	�";

 => 	 �̅ − 	�"; = 	 <"�[2 Ulog
�
��V − 	<�[2 Ulog

�
��V

 => 	 �̅ − 	�"; = 	[2 log
�
�� 		8<"� − 	<�9

34

 => 		[2 Ulog
�
��V = 	 ��̅�	�	###�

$�	��	��%

Squaring on both sides,

=> 2 Wlog
1
�X = 	 I��̅ − �";� 8<"� − <�9⁄ J�

 => 		 log
�
�� = 	 �� I��̅ − �";� 8<"� − <�9⁄ J�

� = 	�� =− ��̅ − 	�";�� 28<"� − <�9�] ? ,					�ℎ	�						<"� ≠ <�			 (2.8)

We take:

 5.T = 	�� =− ��̅ − 	�";�� 28<"� − <�9�] ? 																										��	<"� ≠ <�					 (2.9)

The above stated formula can accurately rank the Quasi-Gaussian fuzzy

numbers but cannot tackle situations where the left spread	8<"�9 of H" becomes

equal to the right spread �<�� of	H�	!. To deal with such a situation, we

consider the following three cases:

 ^�/		T:				��			�"; − 3<"� < 	 �̅ + 3<�

 => 		 �"; − �̅ < 38<"� + <�9
 	=> 	 �"; − �̅ = 348<"� + <�9																																													�ℎ	�		0 < 4 < 1

 			=> 	 <"� + <� = 		 (�"; − �̅ 34⁄)		
 5	�	��"; − �̅� 	= 	∆�̅

 	=> 	 <"� + <� = 		 (∆�̅ 34⁄)																							 (2.10)

Squaring on both sides,

 => 	 <"�� + <�� + 2<"�<� = 	 (�∆�̅�� 94�⁄)
 	=> 	 <"�� + <�� = (�∆�̅�� 94�⁄) 	− 2<"�<�		 (2.11)

35

Substituting (2.11) in (2.9), we get,

5.T = 	�� =−�−∆�̅�� 28<"� − <�9�] ?																																																																				
=> 5.T = 	��I−�∆�̅�� 28<"�� + <�� − 2<"�<�9] J
=> 5.T = 	�� K ��∆�̅��

�&�∆
���
�
�

���	������	���'
P

	=> 5.T = 	�� K ��∆�̅��
�&�∆
���

�
�
���	���'

P	 (2.12)

Similarly we get the following equations for ^�/		TT and	^�/		TTT :
^�/		TT:	��		�"; − 3<"� = 	 �̅ + 3<�		
5.T = 	�� K ��∆�̅��

�&�∆
���
�
�

���	���'
P 																					�ℎ	�		4 = 1																																				 (2.13)

^�/		TTT:	��		�"; − 3<"� > 	 �̅ + 3	
	5.T = 	�� K ��∆�̅��

�&�∆
���
�	
�

���	���'
P 																							�ℎ	�			4 > 1																					 (2.14)

5.T =

ABC
BD 																																										��			�"; − 3<"� < 	 �̅ + 3<�		�ℎ	�	1ℎ��/			0 < 4 < 1				
		�� K ��∆�̅��

�&�∆
���
�
�

���	���'
P 		��		�"; − 3<"� = 	 �̅ + 3<�			�ℎ	�	1ℎ��/			4 = 1								(2.15)	

																													��		�"; − 3<"� > 	 �̅ + 3<�		�ℎ	�	1ℎ��/			4 > 1

36

(III) Applications of QGFN

(a) Fuzzy Shortest Path Problem (FSPP)

The fuzzy shortest path is computed using link preference index (LPI).

Fig. 2.3: Network for FSPP

The following steps are applied on the network shown in Fig. 2.3.

Step 1: Construct a Network	� = ��,��.
The above figure shows a network �	with |�| = 6	��
	|�| = 8 where �	��
	�

are the set of vertices and set of edges respectively. The edge weights in the

form of QGFN are as follows:

 � = !��∗(9,3,2)																																																_ = !��∗(20,6,4)
 � = !��∗(10,2,2)																																														� = !��∗(15,5,5)
 � = !��∗(14,4,5)																																													` = !��∗(8,1,2)
 	a = !��∗(16,3,4)																																														� = !��∗(20,6,4)

1

2

3

4

5

6

U

S

Q

R

V

W

Y

G

37

Step 2: Find all possible paths �."�, from source vertex to the destination vertex.

In the considered network � four paths are possible from the source vertex 1 to

the destination vertex 6 which are as follows:

 .� = � + � + ` + �																																																							.� = � + � + a

 	.� = � + � + � + �																																																									.� = _ + � + �

Step 3: Convert the weights (QGFN) of the edges present in the path �."� to

DFN, using Definition 1 of section 2.2.1 (II)

The above stated edge weights are now converted into decomposed fuzzy

numbers which are shown below:

Let the value of	, = 2, and then the following intervals are generated:

 	� = �(0,15)�, (5.5,11.5)�.
, (9,9)��	
 _ = �(2,32)�, (13,25)�.
, (20,20)��
 	� = �(4,16)�, (7.5,12.5)�.
, (10,10)��	
 � = �(0,30)�, (9,21)�.
, (15,15)��
 	� = �(2,29)�, (9,20.5)�.
, (14,14)��
 ` = �(4,14)�, (6.5,10.5)�.
, (8,8)��
 a = �(7,28)�, (12.5,21)�.
, (16,16)��	
 � = �(1,22)�, (4.5,13)�.
, (7,7)��

38

Step 4: Compute the path length �H"� for each of the paths �."� found using

Definition 2 of section 2.2.1 (II) �T = 1,2 … … … … . , ��.
Let the path lengths be denoted by H�,H�,H�,H� of paths .�,.�,.�,.�

respectively. As per the Definition 2 of section 2.2.1 (II), the following path

lengths are generated:

 H� = �(5,81)�, (25.5,56)�.
, (39,39)��
 H� = �(7,73)�, (27,53.5)�.
, (40,40)��
 H� = �(7,82)�, (26.5,57.5)�.
, (40,40)��
 H� = �(5,83)�, (26.5,58.5)�.
, (41,41)��	

Step 5: Compute the fuzzy shortest path length �H�	!� using Definition 3 of

section 2.2.1 (II).

Using Definition 3 of section 2.2.1 (II), the FSPL �H�	!� is calculated

considering	H�,H�, H�	��
	H�.

H�	! = �(5,73)�, (25.5,53.5)�.
, (39,39)��	

Step 6: Convert H" 			���	T = 1,2, … … … … . , � and H�	! to QGFN.

Now the path lengths H�,H�, H�,H�	��
	H�	! are converted back from

decomposed fuzzy numbers to QGFN.

 H� = !��∗(39,11,15)
 H� = !��∗(40,11,11)
 	H� = !��∗(40,10,14)

39

	H� = !��∗(41,13,15)
 H�	! = !��∗(39,11,12)

Step 7: Calculate the LPI between H�	! and H"					���		T = 1,2, … … … . . , � using

Definition 4 of section 2.2.1 (II). Assign ranks to each of the paths �."�.
Using Eq. 2.15, we get the following LPI and ranks:

Table 2.1: LPI value and Ranks of different paths

Path Equation LPI Value Rank .�: 1 − 2 − 4 − 5 − 6 5.T�H�	! < H�� 1 1 .�: 1 − 2 − 4 − 6 5.T�H�	! < H�� 0.98 2 .�: 1 − 2 − 3 − 5 − 6 5.T�H�	! < H�� 0.97 3 .�: 1 − 3 − 5 − 6 5.T�H�	! < H�� 0.136 4

Step 8: Identify the fuzzy shortest path as the one with the highest LPI.

The different paths along with their ranks are shown in Fig. 2.4.

40

Fig. 2.4: Ranking of paths in the network

The fuzzy shortest path in the network considered is .� which has the highest

LPI value and hence the greatest rank 1. If all the weight spreads are set to zero,

the QGFN is reduced to its crisp value and then it can be easily determined that

the shortest path is .� which is the same as generated using LPI. The two path

lengths H� and H� have the same modal values 40. Hence, using the centroid

method, we cannot rank the two path lengths but LPI has the advantage of

ranking these two path lengths.

Extended Dijkstra’s Algorithm using Fibonacci heap and Quasi-Gaussian

Membership Functions

Fuzzy_Dijkstra �b, c, d�

1 efg each vertex � in	�:

41

2 5.T(�) 	← 	−∞	;
// Initialization of the array storing the Link Preference Index (LPI).

3 hij	efg
4 5.T(/) 	← 0	; // s is the source vertex.
5 INSERT �_, �, 5.T(�)� ;
 // Initialize the Priority Queue Q and function INSERT () is used to update the queue.

6 �(← 	∅ ;

// �� is an array storing the sequence of nodes in the shortest path.

7 klmnh	� ≠ �: // t is the destination vertex.
8 �	 ←	 vertex in _ with greatest	5.T()	;
9 me	5.T(�) = −∞

10 oghpq	;
11 hij	me
12 �∗ 	←	DELETE_MAX�_�;
// DELETE_MAX () is used to remove the vertex with the greatest LPI value from the priority

queue Q.

13 �(← 	 �(∪ 	 ��∗� ;
14 efg each neighbour � of	�:

15 ���	 ← rst_ohdkhhi��(,�� ;
// LPI_between () is a function that determines Link Preference Index (LPI) using Eq. (2.15) .

16 me	��� > 5.T(�)
17 5.T(�) 	← ��� ;
18 INCREASE�_, �, 5.T(�)� ;
// INCREASE () function updates the value of LPI for vertex v in the priority queue Q.

19 hij	me
20 hij	efg
21 hij	klmnh
22 ghdugi	�(// the sequence of nodes in the shortest path is returned.

23 hij Fuzzy_Dijkstra

Discussion

The above stated algorithm is an extended version of the Dijkstra’s algorithm

that generates the shortest path for a source-destination pair. If one requires all

the shortest paths emanating from the source, the above algorithm can be rerun

42

using different targets or destination nodes. In steps 1-3, the array maintaining

the value of LPI for each vertex is initialized with	−∞. In the next step, for the

vertex chosen as source the value of LPI is replaced with a zero. In step 5, the

INSERT () function is used to initialize the priority queue Q with the LPI value

of each vertex. In step 6, an array	�(, used to store the sequence of nodes in the

shortest path is initialized. From step 7-21, a while loop runs inside which � is a

variable that holds the vertex with the maximum value of LPI in Q and

DELETE_MAX () is a function used to delete that vertex from Q and store it in

variable �∗ which is then placed in the array	�(. Then in step 14-15, for each

neighbour � of vertex	�, the new LPI value is calculated using the function rst_ohdkhhi	��(,�� that uses Eq. 2.15. For the sequence of nodes in 	�(, first

the weights of the edges connecting them is added then that value is compared

with the weights of the edges connecting the neighbouring vertices � of �. This

new LPI value of vertex � is saved in the variable	���. In steps 16-17, we

compare to see if the new LPI value of � is greater than the previous one stored

in the array LPI, if yes the value LPI [�] is updated and the INCREASE ()

function is used to update the LPI value of vertex � in Q. In step 21 the while

loop is ended when � = � where � is the specified destination vertex. Finally, in

step 22 the array 	�(is returned which stores the shortest path.

When the priority queue Q is implemented as an ordinary array or a

linked list, the running time of the algorithm is	6�|�|��. When an adjacency list

is used for storing a graph and a Fibonacci heap is used for implementing the

priority queue Q, the running time of the algorithm is 6�|�| + |�| log|�|�
(Cormen, Leiserson, Rivest, & Stein, 1990). Also, since exponent is a

monotonic function of its argument, the algorithm can still work if in step 15 of

the above algorithm, exponentiation is avoided and only the argument values

are used.

(b) Fuzzy Minimum Spanning Tree Problem (FMST)

The most commonly used algorithms to solve the MST problem are two greedy

algorithms that run in polynomial time called Prim’s (1957) and Kruskal (1956)

algorithm. Here, the extended Prim’s algorithm using QGFN and LPI is

43

introduced and an illustrative example is presented to show the application of

the algorithm.

vuwwx_yz{_s|ty(b,k, g)

1 efg each �	 ∈ �(�)
2 jf	,	 (�) ← 	−∞

// Initialization of the array that stores the LPI value for each node.

3 *(�) ← "T5

// Initialization of the array that stores the parent of each node.

4 hij	efg

5 ,	 (�) 	← 0 // the value for root is initialized.

6 _	 ← 	�(�)	 // Priority queue is initialized

7 klmnh	_ ≠ 	∅

8 jf	�	 ← }~{|��{_y�~�_�
// Function to extract the node with maximum LPI value from Q.

9 efg		�1ℎ	�	 ∈ #
E(�)
10 jf	me	� ∈ _	��
	rst��, �� > ,	 (�)
11 dlhi	*(�) 	← �

12 ,	 (�) 	← rst��, ��
// The new LPI value of the selected nodes are calculated using Eq. (2.15).

13 hij	me

14 hij	efg

15 hij	klmnh

The above stated algorithm can be implemented using adjacency matrix

in	6�|�|�� time, using binary heap and adjacency list in 6�|�| log|�|�time and

using Fibonacci heap and adjacency list in	6�|�| + |�| log|�|� time.

44

Fig. 2.5: Network for FMST

Step 1: Construct a Network � = ��,��.
Fig. 2.5 shows a network � with |�| = 6	��
	|�| = 10 where �	��
	� are the

set of vertices and set of edges respectively. The edge weights in the form of

QGFN are as follows:

 # = !��∗(6,2,1) 		� = !��∗(20,5,5)
 + = !��∗(10,3,2)									 � = !��∗(8,2,5)
 ^ = !��∗(15,4,5) � = !��∗(12,4,4)
 � = !��∗(18,1,1) 		T = !��∗(11,3,6)
 � = !��∗(5,1,2) � = !��∗(22,3,5)

Step 2: Find the minimum edge weight �H�	!� to which all other edge weights

will be compared and a LPI value will be calculated by converting the weights

(QGFN) to DFN using Definition 1 of section 2.2.1 (II). Let	, = 2.

 # = �(0,9)�, (3.65,7.18)�.
, (6,6)��
 + = �(1,16)�, (6.47,12.35)�.
, (10,10)��
 ^ = �(3,30)�, (10.29, 20.89)�.
, (15,15)��

45

� = �(15,21)�, (16.82,19.18)�.
, (18,18)��
 � = �(2,11)�, (3.82,7.35)�.
, (5,5)��
 � = �(5,35)�, (14.11,25.89)�.
, (20,20)��
 � = �(2,23)�, (5.65,13.89)�.
, (8,8)��
 � = �(0,24)�, (7.29,16.71)�.
, (12,12)��
 T = �(2,29)�, (7.47,18.06)�.
, (11,11)��
 � = �(13,37)�, (18.47,27.89)�.
, (22,22)��

Step 3: We initialize the two arrays storing the parent of each node and its LPI

value as per the vuwwx_yz{_s|ty algorithm (as shown in Table 2.2).

According to Step 5 of the algorithm let the root be Node 1. Thus, ,	 (1) ← 0

after which the two arrays store the values as shown in Table 2.3. Let _ =�1,2,3,4,5,6�
As per the vuwwx_yz{_s|ty algorithm the node in Q with the highest Key

value is extracted and assigned to �. So, now,	� = 1.

Next the neighbours of � present in Q are considered and the LPI value between

them is calculated using Eq. (2.15).

After considering the neighbours of Node 1, Table 2.4 presents the values stored

in the array.

Step 4: Next the node with the greatest key value is selected among the existing

nodes in Q and the node extracted is, � = 3 and the status of the two arrays after

calculation is shown in Table 2.5.

46

The loop continues till the priority queue Q becomes	}ys{�. Finally the array

denoted by * returns the connections of the FMST as depicted in Table 2.6 and

the final Fuzzy Minimum Spanning Tree is shown in Fig. 2.6.

Table 2.2: Initial values of the two arrays

Node 1 2 3 4 5 6 *(�) "T5 "T5 "T5 "T5 "T5 "T5 ,	 (�) −∞ −∞ −∞ −∞ −∞ −∞

Table 2.3: Initializing the LPI value of root node

Node 1 2 3 4 5 6 *(�) "T5 "T5 "T5 "T5 "T5 "T5 ,	 (�) 0 −∞ −∞ −∞ −∞ −∞

Table 2.4: Status of the two arrays after the neighbours of root are

explored

Node 1 2 3 4 5 6 *(�) "T5 1 1 1 "T5 "T5 ,	 (�) 0 0.3800 0.9685 3.3358	
− 86

−∞ −∞

Table 2.5: Status of the two arrays after exploring the next node in the

priority queue Q

Node 1 2 3 4 5 6 *(�) "T5 3 1 3 3 3 ,	 (�) 0 1 0.9685 0.154 0.018 0.106

47

Table 2.6: Final values returning the connections in MST

Node 1 2 3 4 5 6 *(�) "T5 3 1 2 3 3 ,	 (�) 0 1 0.9685 0.688 0.018 0.106

Fig. 2.6: Fuzzy Minimum Spanning Tree for the given network

(c) Fuzzy Steiner Tree Problem (FSTP)

The algorithm for FSTP considers a connected undirected distance graph � = ��,�,
� and a set � where � ⊆ �. Here �	is the set of vertices, � is the set

of edges and
 is the distance function which is represented as a QGFN and

denotes the distance between a pair of vertices8�	, ��9 ∈ �. To determine the

final Steiner tree, a complete undirected distance sub graph �� = ���,��,
�� is

constructed from the given two inputs �	��
	� such that now �� = � and
�8�	 , ��9 of the edge 8�	, ��9 ∈ 	 �� is equal to the fuzzy shortest path from �	 	��	�� in �.

Input: An undirected distance graph � = ��,�,
� and a set of Steiner

points	� ⊆ �.

Output: A Fuzzy Steiner Tree �-)*� for �	��
	�.

Step 1: Construct the fuzzy complete undirected distance graph �� =���,��,
�� from �	��
	�.

48

Step 2: To construct �� consider each vertex �	 ∈ � and find out the fuzzy

shortest path to all other vertices �� ∈ � among all possible paths from �	 to �� ∈ � using Definition 2, 3 of section 2.2.1 (II) and Eq. (2.15).

Step 3: Find the fuzzy minimal spanning tree -�	��	�� using the following

extended Prim’s algorithm for Fuzzy MST (if there are several fuzzy minimum

spanning trees, choose any arbitrary one).

Step 4: Construct the sub graph ��	��	� by replacing each edge in -� by its

corresponding fuzzy shortest path in � (if there are more than one fuzzy shortest

paths then choose any arbitrary one).

Step 5: Find the Fuzzy MST �-�	��	��� using the vuwwx_yz{_s|ty

algorithm (if there are several Fuzzy MST then choose any arbitrary one).

Step 6: Construct the Fuzzy Steiner Tree �-)*� from -� by deleting the edges in -�, if necessary so that all the leaves in -)* are steiner points and not the

terminal nodes.

The above stated heuristic algorithm for the FSTP runs in 6�|�||�|�� time.

 An Illustrative Example

Fig. 2.7: Network for FSTP with Steiner points shown as double circles

49

Step1: For the given graph � with	|�| = 6	��
	|�| = 8 and	� = �1,2,3,6�. The

value of
 for each edge i.e., fuzzy edge weights are as follows:

	- = !��∗(9,3,2)																																														_ = !��∗(20,6,4)
	� = !��∗(10,2,2)																																											� = !��∗(15,5,5)
� = !��∗(14,4,5)																																												` = !��∗(8,1,2)
a = !��∗(16,3,4)																																												� = !��∗(7,2,5)

From the given graph, the fuzzy complete undirected distance graph �� =���,��,
�� is constructed following the below stated procedure:

Vertex set �� = � = �1,2,3,6� and using these vertices, the fuzzy complete

graph �� is created.

The Edge weights are converted from QGFN to DFN using Definition 1 of

section 2.2.1 (II). Let	, = 2

 - = �(0,15)�, (5.5,11.5)�.
, (9,9)��
 _ = �(2,32)�, (13,25)�.
, (20,20)��
 � = �(4,16)�, (7.5,12.5)�.
, (10,10)��
 � = �(0,30)�, (9,21)�.
, (15,15)��
 � = �(2,29)�, (9,20.5)�.
, (14,14)��
 ` = �(4,14)�, (6.5,10.5)�.
, (8,8)��
 a = �(7,28)�, (12.5,21)�.
, (16,16)��
 � = �(1,22)�, (4.5,13)�.
, (7,7)��

50

Step 2: All possible paths between pair of nodes in �� are explored and the

fuzzy shortest path between them is determined using the given graph	�,

Definition 2, 3 of section 2.2.1 (II) and Eq. (2.15).

Between Node 1-2 possible paths are:

���	- = �(0,15)�, (5.5,11.5)�.
, (9,9)�� 	= !��∗(9,3,2)
���	_ + � = �(6,48)�, (20.5,37.5)�.
, (30,30)�� = !��∗(30,8,6)
�1�	_ + � + ` + � = �(8,105)�, (37.5,77)�.
, (57,57)�� = !��∗(57,16,16)
�
�	_ + � + � + a + � = �(12,141)�, (48,100.5)�.
, (72,72)�� 												

= !��∗(72,20,23)	
Now, H�	! = �(0,15)�, (5.5, 11.5)�.
, (9,9)�� = !��∗(9,3,2)
Hence, the fuzzy shortest path from Node1-2 is	-.

Fig. 2.8: Fuzzy complete undirected distance graph	b+

Similarly, the fuzzy shortest path between all pair of nodes in the vertex set �� is

determined and the fuzzy complete undirected distance graph �� shown in Fig.

2.8 is generated.

51

Step 3: The minimal spanning tree -�	��	�� is constructed using extended

Prim’s algorithm for Fuzzy MST.

- = �(0,15)�, (5.5,11.5)�.
, (9,9)�� 	= !��∗(9,3,2)
- − � = �(4,31)�, (13,24)�.
, (19,19)�� 	= !��∗(19,5,4)
- − � − ` − � = �(5,81)�, (25.5,56)�.
, (39,39)�� = !��∗(39,11,15)
� = �(4,16)�, (7.5,12.5)�.
, (10,10)�� 	= !��∗(10,2,2)
� − ` − � = �(5,66)�, (20,44.5)�.
, (30,30)�� = !��∗(30,8,12)
� − � = �(3,51)�, (13.5,33.5)�.
, (21,21)�� 	= !��∗(21,6,10)
Now, H�	! = �(0,15)�, (5.5, 11.5)�.
, (9,9)�� = !��∗(9,3,2)

Following are the status of the two arrays used in the extended Prim’s

algorithm, after each run of the loop till the priority queue Q becomes EMPTY.

Table 2.7 shows the initial status of the two arrays, Table 2.8 shows the status

after the root is initialized, Table 2.9 shows the status of the two arrays after the

neighbours of the root are explored and Table 2.10 shows the final connections

in the fuzzy minimal spanning tree -�	��	�� and Fig. 2.9 shows the final

connections in the Fuzzy Minimal Spanning Tree.

Table 2.7: Initial status of the two arrays

Node 1 2 3 6 *(�) "T5 "T5 "T5 "T5 ,	 (�) −∞ −∞ −∞ −∞

52

Table 2.8: LPI value for the root is initialized

Node 1 2 3 6 *(�) "T5 "T5 "T5 "T5 ,	 (�) 0 −∞ −∞ −∞

Table 2.9: Showing the status of the two arrays after the neighbours of the

root are explored

Node 1 2 3 6 *(�) "T5 1 1 1 ,	 (�) 0 1 0.111 0.0014

Table 2.10: Showing the final connections in the fuzzy minimal spanning

tree {+fe	b+

Node 1 2 3 6 *(�) "T5 1 2 3 ,	 (�) 0 1 0.9695 0.044

53

Fig. 2.9: Fuzzy Minimal Spanning Tree {+fe	b+

Fig. 2.10: Final Fuzzy Steiner Tree�{,-�

Step 4: Now the connections in -� are replaced by their corresponding shortest

paths in � and we get the �� and because there are no cycles and no terminal

node becomes a leaf node, the fuzzy minimum spanning tree -� becomes the

final fuzzy Steiner tree �-)*� as shown in the Fig. 2.10.

2.2.2 Trapezoidal Fuzzy Number (TFN)

Out of the several types of fuzzy numbers that exist, most of the times

trapezoidal fuzzy numbers are used for tackling the imprecise nature of the

parameters associated with the real life applications for two important reasons.

54

Firstly, it is the most generic class of fuzzy numbers and has a linear

membership function. Therefore, it is widely used in modelling the uncertainty

of the scientific and applied engineering problems. Secondly, its simplicity both

in terms of concept and computation increases its use while dealing with

problems like CSPP (Bansal, 2011).

(I) Membership Function of TFN

A Trapezoidal Fuzzy Number # = ���, ��, ��, ��� can be represented by the

following membership function where	�� ≤ �� ≤ �� 	≤ �� (Bansal, 2011).

���� = 	
AB
C
BD 0,																		� < ������

����� ,							 		�� 	< �	 ≤ ��
1, 														�� < 	�	 < ������
����� , 							�� 	≤ 	�	 < ��

0,																		� > ��
																																			 (2.16)

(II) Fuzzy Arithmetic using TFN

Definition 1: Addition of TFN

In problems where the goal is to determine the shortest interconnect, we need to

find out the sum of the weights assigned to the edges and when the weights are

fuzzy numbers; the procedure is not the same as that for real numbers. As stated

in section 2.2.2 (I), each TFN is represented by a set of four values and if we

have two such TFN represented as = ���,��, ��, ���		��
		+ = ���,��, ��, ��� ,
then the formula for their addition is as follows (Bansal, 2011):

#	 + + = 	 ���,��, ��, ��� 	+ 	 ���,��, ��, ���	
													= 	 ��� + ��	, �� + ��	, 	�� + ��	, �� + ���	 (2.17)

55

Definition 2: Ranking of TFN

As discussed earlier, one important property that exists in case of real numbers

is that of natural ordering which is lacking in case of fuzzy numbers. Several

methods have been suggested for ranking TFN. In the literature, these methods

are usually compared against each other using small handpicked examples.

Three recently introduced techniques of ranking TFN are discussed below and

their behaviour is compared on a non-trivial constrained fuzzy shortest path

problem in subsequent sections.

(a) Circumcenter of Centroids (COC)

Many of the methods proposed use the centroid of the trapezoid for ranking of

TFN as it can be considered the balancing point but the technique suggested by

Rao and Shanker (2011) considers the COC to be a better reference point as it is

determined by joining the centroids of the three sub parts of the trapezoid i.e.,

two triangle and one rectangle. We get another triangle on joining the three

centroids and the circumcenter of this resultant triangle when used as a

reference point for ranking of TFN, gives a more accurate result. For details see

Fig. 2.12.

 According to Rao and Shanker (2011), the following formula can be

used to determine the COC of any given TFN. If		# = ���,��, ��, ���, then

^6^�#� = ��, � = U�������������. ,
�������������������������

�� V (2.18)

This value of ^6^�#�	is then used to determine the rank of fuzzy number #

using the following formula:

��#� = ��� + �	 (2.19)

For two given fuzzy numbers	#	��
	+, ��#� > ��+�	implies # > + and ��#� < ��+�	implies # < +. In the third case, when	��#� = ��+�, we need

some additional information to determine the rank of #	��
	+ and for that we

use the following procedure:

56

Index of Optimism: An index was defined by Rao and Shanker (2011) that

relates to the decision maker’s view point by considering his degree of

optimism. If we have a fuzzy number # = ���, ��, ��, ��� and ^6^�#� then the

index of optimism can be stated as:

T/�#� = � + �1 − ��� where		��(0, 1) (2.20)

If the value of � is large, it shows that the decision maker is more optimistic and

vice versa.

Index of Modality: Another index called index of modality was proposed by Rao

and Shanker (2011) for ranking of fuzzy numbers	#	��
	+ which considers the

importance of both the central value as well as the extreme values. The index of

optimism alone was not sufficient enough for ranking as it considered only the

extreme values of ^6^. The index of modality can be represented as:

T/,0�#� = ���� + � 2⁄ � + �1 − ��T/�#� where		� ∈ (0, 1) (2.21)

Following the index stated above we can tackle the situation where ��#� =��+� by calculating T/,0�#�	and	T/,0�+�. If T/,0�#� > T/,0�+� it implies	# > +

and vice versa.

(b) Maximizing Set (MAS) and Minimizing Set (MIS)

A concept of total utility (combination of left and right utility values) using

MAS and MIS was proposed by Chen (1985) for ranking fuzzy numbers but

some shortcomings were discovered in this method like the incapability of

ranking those fuzzy numbers which had the same left, right or total utility

values. To overcome these limitations, Chou et al. (2011) suggested a revised

ranking approach in which two left and right utilities were considered instead of

just single left and right utility value while calculating the total utility. In

addition, the revised approach also considers the degree of optimism of the

decision maker and has the capability of differentiating between various types

of fuzzy numbers.

57

 In (Chou, Dat, & Yu, 2011), for a TFN # = ���, ��, ��, ���, ��1 and ��

are used to represent the left and right membership functions, which according

to Eq. 2.16 are as follows:

 ��1��� =
����
����� and ��
��� =

����
����� (2.22)

If n trapezoidal fuzzy numbers are considered i.e., #	, � = 1,2, … … � with

membership function
�� then the S#��S�	��
	ST���� with membership

functions �2 	��
	�3 respectively are represented as follows:

�2��� = R(�� − ��	!� ����� − ��	!�⁄)�	, ��	! ≤ � ≤ ����
0																																												,			��ℎ	���/	 (2.23)

�3��� = R(����� − �� ����� − ��	!�⁄)�	, ��	! ≤ � ≤ ����	
0																																												,			��ℎ	���/	 (2.24)

Where		��	! = inf � , ���� = sup � , � =∪	4�! �		, �	 =2�
����� ≻ 0⁄ 3	��
	0 = 1

As stated earlier, in this revised approach suggested by Chou et al. (2011), pair

wise computation is performed and for each #	, two left utilities and two right

utilities are calculated. The formulas for utilities are stated below:

Right Utilities.

�2�� = sup� U�2��� ∧ ���
���V , � = 1,2. (2.25)

�3�� = sup� U�3��� ∧ ���
���V , � = 1,2. (2.26)

Left Utilities.

�3�� = sup� U�3��� ∧ ���1���V , � = 1,2. (2.27)

�2�� = sup� U�2��� ∧ ���1���V , � = 1,2. (2.28)

The formula for total utility which also considers the decision maker’s degree of

optimism by using the parameter : is as follows:

58

�(���� = � :I�2����� + 1 − �3�����J +�1 − :�I�2����� + 1 − �3�����J� 2] � = 1,2.					 (2.29)

The functions �2	��
	�3 of 	S#��S�	��
	ST���� respectively intersects the

left membership function ��1 and the right membership function ��
 of the fuzzy

number	#. The points of intersection for a TFN #	 =	(�	� ,�	� , �	� , �	�) can be

denoted as S	�,S	�	��
	�	�,�	� and the following equations can be used to

determine their values:

�2�� =
������
��������

5�������6�����
������
 (2.30)

�2�� =
�������
5�������6

=
��������

5�������6�����
������
 (2.31)

�3�� =
������
��������

5�������6�����
������
 (2.32)

�3�� =
�������
5�������6

=
���
����

5�������6�����
������
 (2.33)

Thus, for each fuzzy number #	, the total utility value is given by:

�(���� =
�
� W: Z ��������

5�������6�����
������
+

��������
5�������6�����
������

\ + �1 −

:� Z ��������
5�������6�����
������

+
��������

5�������6�����
������
\X,	� = 1, 2. (2.34)

For two given fuzzy numbers #�	and	#�, if �(��#�� > �(��#�� then #� > #�

and vice versa.

(c) Weighting Function (WF)

Another method of ranking fuzzy numbers was proposed by Saeidifar (2011).

The interesting fact about this ranking technique is that it uses two things i.e.,

fuzzy numbers are defuzzified and a weighting function is applied. In this

approach a weighted distance measure is defined on fuzzy numbers and then

this distance is minimized to obtain the point approximations and the weighted

interval of fuzzy numbers.

59

 According to Saeidifar (2011), a few definitions for a fuzzy number #

with (#)7 = I����,����J and a weighting function ���� = W����,����X are as

follows:

(i) Nearest e = Ue, eV − weighted interval approximation (NWIA):

"`T#8�#� = =� ��������	
�, � ���������
�

�
� 	
�? (2.35)

(ii)e − weighted mean:

58�#� =
9 8�7���7��8�7���7��

�

�
� (2.36)

Therefore, for the fuzzy number, the weighting mean 58�#� is denoted as:

58�#� =
�
�� ��������	
� + ���������

� 	
�

 =
9 8�7���7�	�7�9 8�7���7��

�

�

�
	�7

9 8�7���7��9 8�7���7��

�

�

�

 (2.37)

If we have two fuzzy numbers #	��
	+ and a WF ��� then the ranking can be

determined in the following way:

# ≺ +	��	��
	��� 	��	58�#� < 58�+�	,
# ∼ +	��	��
	��� 	��	58�#� = 58�+�	,	
# ≻ +	��	��
	��� 	��	58�#� > 58�+�

(III) Application of TFN

(a) Constrained Fuzzy Shortest Path Problem (CFSPP)

As stated earlier CSPP is an NP-Complete problem. Techniques suggested to

solve this problem reduce the number of different values (cost or delay) by

using the process of discretization so that the problem can be reduced to a

60

polynomial time solvable problem (Chen, Song, & Sahni, 2008). The amount of

error introduced during the process of discretization determines the

effectiveness of these techniques. Taking into consideration two factors, (1) the

utilization of limited resources and (2) improving the efficiency of network

functions, Chen et al. (2008) suggested two methods of discretization, namely

randomized discretization and path-delay discretization.

(i) Path Delay Discretization

Here we use the path-delay discretization technique to solve CFSPP. Instead of

working with individual link delays as in case of randomized discretization

which leads to the problem of error accumulation. Path-delay discretization

deals with path delays and discretization is performed using interval partitioning

method so the problem of error accumulation is eliminated (Chen, Song, &

Sahni, 2008). For a given path	.,

:�.� = ���;�� �� (2.38)

Where ��� = �������� is the largest integer not greater than �.
�.� denotes

the delay of the path	., � is the given delay requirement and the delay

requirement is bounded by an integer	�.

(ii) Problem Formulation

Given network is denoted as ���,�� where � is a set of � nodes and � is a set

of � links. Each edge ��, �� ∈ �	has a delay and a cost value associated with it

denoted as
��, �� and 1��, �� respectively. For a path	., the delay and cost of

the path are denoted as
�.� and 1�.� respectively where

�.� = 	 ∑ 	
��, ���<,=�	∈	; (2.39)

1�.� = 	 ∑ 	1��, ���<,=�∈; (2.40)

The length of the longest path in the network is denoted by	5. A path 	. is called

a feasible path if
�.� ≤ � where � is the given delay requirement and the

61

cheapest feasible path is one that not only satisfies the delay requirement but for

which the cost 18.�,�9 is the minimum among all possible paths connecting the

source node / and the destination node � (Chen, Song, & Sahni, 2008).

 In case of CFSPP, the cost values 1��, �� are trapezoidal fuzzy numbers.

Therefore, the cost of the path 1�.� can be determined using Eq. 2.17 and the

cheapest possible path can be determined using the ranking methods discussed

in Definition 2 of section 2.2.2 (II).

(iii) CFSPP Problem

Given a graph b��,}� with a fuzzy cost and a crisp delay associated with each

edge, find the cheapest path that satisfies the given delay constraint.

(iv) Proposed Algorithm for CFSPP

 bhd_po�j(pn�lp, cdghd�l, �fcd)

1. �� = 1�/� − /��	�1ℎ

2. �� = �� + ���ℎ�

3. �� = 1�/� + /��	�1ℎ

4. �� = �� − ���ℎ�

 timdmpnmwh	��, c, ��

1.efg		�1ℎ	�	��	�	�	�	�, 	�1ℎ	m	�	(�, … … , �)
2. bhd_po�j(pn�lp, cdghd�l, �fcd)

3. �(�, �) ≔ 	∞, *(�, �) ≔ "T5, �(�, �) ≔ 	∞

4. �(/, 0) ≔ 0, �(/, �) ≔ 0

5. hij	efg
 |hnp�_vs���u,�, m, ��

1. �: ≔ 	����� U>?<,	@�	��<,=�� �V

62

2. bhd_po�j(pn�lp, cdghd�l, �fcd)

3. me	�: ≤ 	�	��
	�(�, �:) > �(�, �) + 1��, ��

// Compare 1 using Definition 2(a) of Section 2.2.2 (II) and Eq. 2.18, 2.19, 2.20 and 2.21.

// Compare 2 using Definition 2(b) of Section 2.2.2 (II) and Eq. 2.34.

// Compare 3 using Definition 2(c) of Section 2.2.2 (II) and Eq. 2.37.

4. �(�, �:) ≔ �(�, �) + 1��, ��
5. *(�, �:) ≔ �

6. �(�, �:) ≔ �����(�, �:), �(�, �) +
��, ���
7. hij	me
 vs��_�m�qcdgp�b, c, ��

1.timdmpnmwh	��, c, ��
2. efg	i = 0 to �

3. _ ≔ �

4. klmnh	_ ≠ �

5. � ≔ �����1�_S���_�
6. me	�(�, �) = ∞

7. oghpq	���	��	�ℎ		klmnh	����

8. hij	me

9. _ ≔ _ − �	�	�
10. efg		�	� 	�
E�1	��	��
		�	��	u

11. |hnp�_vs���u,�, m, ��
12. hij	efg

13. hij	klmnh

14. hij	efg
 vs���b, c�

1.� ≔ ��

2. jf

3. � ≔ 2�

63

4. vs��_�m�qcdgp�b, c, ��
5. klmnh	∃�	�	�,
�.=� > �1 + ���

// where �� is the path with ������	, �
|	�	
	�0… . . �
�

The above stated algorithm is an extension of the Path Delay Discretization

Algorithm (PDA), presented by Chen et al. (2008). The algorithm is capable of

handling the fuzzy environment. Here we are dealing with two constraints,

namely cost and delay. Each edge of the graph has two values associated with it

(cost and delay) and in the fuzzy version of the algorithm we consider one of the

parameters i.e., cost as a fuzzy number and the other parameter which is delay is

represented as a real number. Both the values are initially generated randomly

using gpij(). From these crisp values, the trapezoidal fuzzy number for each

cost value is generated using bhd_po�j(). pn�lp	and cdghd�l are the two

constant values supplied by the user for the formulation of TFN. �(�, �),*(�, �)	��
	�(�, �) are the three two dimensional arrays used which are

all initialized by the function timdmpnmwh	��, c, ��. The cost of the cheapest path . connecting /	��
	� with
�.=� = � is stored in the array �(�, �),
, ∀	�	�	�	��
	�	�	(0, … … , �). �(�, �) is an array that keeps a track of the

minimum delay of paths connecting /	��
	� for which discretized delays are �. *(�, �) is another array storing the last link of the path. vs��_�m�qcdgp�b, c, �� evaluates �(�, �) and *(�, �) for any target � and any

given �. This function determines the cheapest path among different delay

paths,
�.=��	(0, … … , �). Let the cheapest path be denoted as	.=. The function vs���b, c� calls vs��_�m�qcdgp�b, c, �� iteratively with increasing value of � (as can be observed in the lines 1-4 of the function vs���b, c� of CFSPP algorithm) till
�.=� is less than �1 + ��� for all �	�	�.

 We use three different methods for ranking of fuzzy numbers with the

aim to compare their performances. The experimental analysis along with the

result is presented in the next section. The time complexity of the algorithm

remains the same as specified in (Chen, Song, & Sahni, 2008), i.e., 6��� + � log��5 4⁄ � since the number of arithmetic operations in the fuzzy

version increases only by a constant factor.

64

(v) Experimental Analysis

We implemented CFSPP algorithm in C language and compiled using

CodeBlocks for running on an i5 based system running at 3.20 GHz with 3GB

RAM. Three versions of the program were written with the three different

ranking methods as per Eqs. 2.18, 2.19, 2.20, 2.21, 2.34 and 2.37. These

programs were verified by comparison with hand calculations on small graphs.

Also, it was verified that for large graphs when the width of fuzzy numbers is

set to zero the path obtained agrees with algorithm for the crisp case as given in

(Chen, Song, & Sahni, 2008).

 Many real networks like the World Wide Web links, biological networks,

and social networks are known to be scale-free, i.e., the fraction of nodes in the

network having a given degree follows a power law. Therefore, we created test

cases using power law random graph model. The test graphs were generated

using gengraph-win. The parameters used for the random graph generation were

(n, alpha, min, max, z), where n is an integer denoting the count of degree

number or the number of nodes, min is the minimum degree, max is the

maximum degree and alpha is the exponent of the power law distribution which

is a random number between 1-2.5. The command “distrib n alpha min max z”

was used to generate a sample of n integers in the range specified by min-max

from a heavy-tailed distribution of exponent alpha and average z. The

experiments were repeated sufficient number of times with n = 250, alpha = 2.5,

min = 25, max = 75 and z = 45 and conclusions were drawn based on the

average behaviour. The graph generator gengraph-win gave un-weighted power

law graphs with random structure. Random weights were assigned to the edges

using uniformly distributed random numbers in the range 10 to 100 obtained

using the C rand() function.

 The results are shown in the following figures. In Fig. 2.11(a), the

defuzzified cost of the shortest path found is plotted against the delay

requirement. It was observed that as we relax the delay requirement, the cost of

the shortest path found by the algorithm decreases and finally at very large

values of delay requirement, the delay constraint becomes insignificant and the

algorithm runs like the classical shortest path algorithm viz. Dijkstra’s algorithm

giving the same result for both the algorithms. In terms of cost, MAS/MIS and

65

WF methods provide better results than COC. In Fig. 2.11(b), the path

discretization error that comes into existence due to discretization is shown for

all the three methods and it was observed that in terms of path discretization

error, COC shows better performance than the other two methods. This may be

due to the fact that COC is equidistant from each vertex (i.e., centroids of the

two triangles and central rectangle) as shown in Fig. 2.12. Fig. 2.11(c) shows

how the change in delay requirement, affects the CPU execution time of the

three methods and from the graph it is visible that WF is better than the other

two techniques in this aspect. We also notice that the CPU execution time

generally increases when the delay requirement is relaxed (increased). This is

because with relaxed delay constraint, there is an increase in number of feasible

paths thereby increasing the size of search space that has to be explored by the

algorithm.

As the delay requirement is relaxed, the cost of cheapest path found

decreases and for very high delay requirement value, the cost of shortest path

reduces and tends to Dijkstra’s values as shown by the blue part of the plot in

Fig. 2.13. In the same figure, the green and red regions of the surface

demonstrate the effect of the proposed algorithm and shows how the cost of

shortest path found by the algorithm increases with stricter delay constraint. The

behaviour of the proposed algorithm shows a marked deviation from Dijkstra’s

algorithm when delay constraint is strict (i.e., small), as is clearly seen in Fig.

2.13. The cost obtained by all the three methods in the form of trapezoidal fuzzy

numbers with respect to a constant delay constraint of 30 is shown using a box

and whisker plot in Fig. 2.14. As visible in Fig. 2.14, the cost obtained by COC

method of ranking is much higher than the cost obtained by the other two

methods, namely MAS/MIS and WF.

66

Fig. 2.11(a): Behavior in terms of cost of shortest path shown by different

ranking methods by varying the delay requirement on a random graph

with 250 nodes generated by gengraph-win

Fig. 2.11(b): Behavior in terms of path discretization error shown by

different ranking methods by varying the delay requirement on a random

graph with 250 nodes generated by gengraph-win

0

100

200

300

400

500

600

700

4

1
0

3
0

5
0

7
0

9
0

1
5

0

3
0

0

1
0

0
0

2
0

0
0

Delay Requirement

C
o

st
 o

f
C

h
e

a
p

e
st

 P
a

th

Cicumcenter of Centroids

Maximizing Set/Minimizing

Set

Weighting function

Cost value obtained matches with the

crisp case reported by Dijkstra's

algorithm when delay requirement is
relaxed too much.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4

1
0

3
0

5
0

7
0

9
0

1
5

0

3
0

0

1
0

0
0

2
0

0
0

Delay Requirement

P
a

th
 D

is
cr

e
ti

za
ti

o
n

 E
rr

o
r

Cicumcenter of

Centroids

Maximizing

Set/Minimizing Set

Weighting function

67

Fig. 2.11(c): Behavior in terms of CPU Execution time shown by different

ranking methods by varying the delay requirement on a random graph

with 250 nodes generated by gengraph-win

Fig. 2.12: The point considered as Circumcenter of Centroid (COC) is

shown by X

0

5

10

15

20

25

30

35

40

45

4

1
0

3
0

5
0

7
0

9
0

1
5

0

3
0

0

1
0

0
0

2
0

0
0

Delay Requirement

C
P

U
 E

x
e

cu
ti

o
n

 t
im

e
 (

m
s)

Cicumcenter of

Centroids

Maximizing

Set/Minimizing Set

Weighting function

68

Fig. 2.13: A surface plot with the delay requirement, cost and CPU

execution time of WF

Fig. 2.14: Box and Whisker plot showing the fuzzy cost as a TFN with four

parameters at the delay requirement = 30 units

0

200

400

600

800

1
3

5
7

9

11

13

C
o

st
600-800

400-600

200-400

0-200

Delay

Requirement

0

20

40

60

80

100

120

140

160

COC MAS/MIS WF

F
u

zz
y

 c
o

st
 o

f
sh

o
rt

e
st

 p
a

th
 f

o
u

n
d

LEGEND

69

(b) Wireless Sensor Networks

Recent technological advancement has given rise to the necessity of establishing

a connection or a relationship between the physical world and the digital world

and a wireless sensor network (WSN) plays an important role in creating such a

connection. A WSN is a collection of nodes (called motes) interfaced with an

array of diverse sensors and possessing the ability to perform limited

computations. The sensor nodes are connected through wireless links to

communicate the sensor outputs to a designated destination. These sensor

networks are capable of fulfilling the demands of the end user by providing

precise and reliable information in terms of time and space of the

process/system under consideration obtained through sensor measurements.

These WSN are ad hoc in nature as they do not have a predefined architecture

like the one that exists in case of wired networks (Meguerdichian, Koushanfar,

Qu, & Potkonjak, 2001).

Each mote in a WSN has (1) a microprocessor and some memory for

processing of signals and scheduling of tasks, (2) an array of sensors which is

capable of measuring the changes in the physical environment like the presence

of toxic gases, seismic activity, temperature, humidity, pressure etc., (3) a

transceiver for transmitting and receiving data and is responsible for forwarding

the data to its neighbouring nodes (lying within its radio range). The advantage

of WSN is that it is decentralized in nature which makes the network scalable

and more robust but because these networks are battery operated, energy is to be

conserved to save the motes from dying out. Another limitation of WSN is the

communication bandwidth which is restricted to its wireless frequency range

(Zhao, & Guibas, 2004). A simplified view of a mote is shown in Fig. 2.15.

A WSN can be represented as a graph where motes and wireless links of

WSN correspond to the nodes and edges of the graph respectively. WSNs can

be modelled using both a directed as well as an undirected graph. If the radio

range of all the nodes is same / different then they are modelled using an

undirected / directed graph. A WSN with motes lying in a plane can be signified

by a unit disc graph (UDG) in which a circle is used to symbolize a mote (centre

of the circle) and its radio range (radius of the circle) as shown in Fig. 2.16. All

70

the nodes within a circle are adjacent to the node at the centre (Shukla, & Sah,

2013).

WSN has a wide range of applications which includes environmental

monitoring, battlefield awareness, infrastructure protection, industrial sensing

and diagnostics, context-aware computing etc. (Capella, Bonastre, Ors, & Peris,

2013; Lee, & Chung, 2009; Shepherd, Beirne, Lau, Corcoran, & Diamond,

2007; Zhao, & Guibas, 2004; Zhuiykov, 2012) and as stated earlier, WSNs are

battery operated, so these networks have a life till the battery can supply power.

This leads to the need of determining shortest paths (SP) for the routing of data

such that energy can be utilized optimally and the network lifetime can be

increased. Another method of preserving the network energy and increasing the

throughput is to reduce the energy consumption and at the same time maintain

appropriate end to end delay. This additional constraint of delay along with that

of energy consumption makes the determination of SP an intractable problem

which can be stated as the constrained shortest path problem (CSPP) (Chen,

Song, & Sahni, 2008). Considering the fields where WSN finds its applications,

we observe that the network parameters involved like energy and delay cannot

be assessed precisely since the characteristics of radio links depends upon a

number of conditions including weather conditions like temperature and

humidity. This gap can be filled by using fuzzy numbers to represent the

network parameters and tackle the uncertainty involved.

 We use TFN to represent the parameters energy and delay and determine

a constrained shortest path in a WSN by using the path delay discretization

technique suggested by Chen et al. (2008). Though the algorithm presented here

is most suitable for the network-flow and QoS aware routing protocols of

WSNs, it can still be adapted for other routing protocols available for WSNs

like location-based protocols, hierarchical protocols, data-centric protocols etc.

with small and appropriate modifications (Akkaya, & Younis, 2005; Xiangning,

& Yulin, 2007).

71

Fig. 2.15: Block diagram of a typical Wireless Sensor node (mote)

Fig. 2.16: A Wireless Sensor Network (WSN) represented as a Unit Disc

Graph (UDG)

T/R: Radio Transceiver I/O: Input / Output Interface

��, ��, �� : Sensors CPU: Central Processing Unit
RAM: Random Access Memory ROM: Read Only Memory

72

(i) Proposed Algorithm

The CFSPP algorithm stated in section 2.2.2 (III) (a) (iv) can be used in WSNs

with the difference that the function for creating the TFN accepts “energy” as its

input value instead of cost i.e., (pn�lp, cdghd�l, hihg x) function is used

and the structure of TFN is shown in Fig. 2.17.

Fig. 2.17: Pictorial representation of trapezoidal fuzzy number

(ii) Experimental Analysis

CFSPP algorithm was implemented in C language and compiled using

CodeBlocks. All experiments were performed on an Intel® i7 based system

running at 3.40 GHz with 2GB RAM. The test cases were generated using the

power law random graph generator gengraph-win (http://www-

rp.lip6.fr/~latapy/FV/generation.html). This network model is scale free, i.e.,

the fraction of nodes in the network having a given degree follows a power law

(M. Faloutsos, P. Faloutsos, & C. Faloutsos, 1999). Since radio range of motes

is small, the probability of nodes with high degree is low. Therefore the power

law graph is an appropriate model for WSN. We generated our test cases using

gengraph-win which gave an un-weighted power law graph having a random

structure and then uniformly distributed random numbers ranging from 10 to

100 were assigned to the edges of these graphs. The random edge weights were

generated using the C rand() function. We applied the CFSPP algorithm on

graphs with 50, 100, 150 and 200 nodes and observed the effect of fuzzifying

73

both the parameters viz. energy and delay. It was seen that when the delay

constraint value (input) was small, the energy consumption of the path obtained

was very high. As the value of delay constraint was increased, the energy

consumption of the path obtained kept on decreasing up to a certain point after

which the delay constraint was almost insignificant and the energy consumption

of the path became constant. At this point the behaviour of CFSPP algorithm

was similar to the classical shortest path Dijkstra’s algorithm. We verified our

results with the one obtained by applying the Dijkstra’s algorithm on the same

test cases. Fig. 2.18(a) shows the above stated observation for a graph with � = 200, ���ℎ� = 2.5,��� = 20,��� = 30	��
	� = 23. The comparison for

all the four networks with number of nodes (n) as 50, 100, 150 and 200 is

shown in Fig. 2.18(b). The deviation of energy consumption from the optimum

value (i.e., the one obtained using Dijkstra’s algorithm) is presented in Table

2.11. As can be observed, for n = 50, no feasible path could be found for strict

values of delay constraint i.e., between 9 to 30 as denoted by * in Table 2.11. As

the delay constraint value was relaxed i.e., between 40 to 80, feasible paths

connecting the source and target were found but with high energy consumption

values. This energy consumption value decreased with an increase in the delay

constraint value and for higher values of delay constraint i.e., between 90 to

500, the energy consumption value for the obtained feasible path was the

optimum and agreed with the value obtained by applying the Dijkstra’s

algorithm (as shown by value 0 in Table 2.11). A similar behaviour was seen for

other network sizes with n = 100, n = 150 and n = 200. Fig. 2.19 shows how the

energy consumption value increases with each iteration (as a new edge is added

to the path) for two cases i.e., one satisfying the strict and the other satisfying

the relaxed delay constraint. In Fig. 2.20, it was observed that as the path is

formed, with each iteration an edge is added to form the final path so the path

delay value keeps on increasing with each iteration but the final path satisfies

the input delay constraint which in our case is taken as 350 and a comparison

for four different network sizes (n = 50, n = 100, n = 150, n = 200) is presented.

74

(a)

(b)

Fig. 2.18: (a) Behaviour of the CFSPP algorithm when applied on a graph

with 200 nodes generated using gengraph-win with source �¡� = 45 and
target �¢� = 68, (b) Comparison of the same behaviour for four different

network sizes with source �¡� = 4 and target �¢� = 45

75

Table 2.11: The energy deviation from unconstrained optimum for

increasing delay constraint

Delay

Constraint

Energy Deviation From Unconstrained

Optimum

n = 50 n = 100 n = 150 n = 200

9 * * * 400

10 * * * 234

15 * * * 148

20 * 48 767 122

25 * 48 441 122

30 * 48 283 122

40 304 48 178 22

50 251 48 91 22

60 173 16 51 22

70 173 16 0 22

80 173 16 0 22

90 0 0 0 22

100 0 0 0 0

150 0 0 0 0

200 0 0 0 0

300 0 0 0 0

500 0 0 0 0

76

Fig. 2.19: Progress of the CFSPP algorithm in terms of energy consumption

with a strict and a relaxed delay constraint when applied on a graph with

200 nodes generated using gengraph-win

Fig. 2.20: Progress of the CFSPP algorithm in terms of path delay with

delay constraint= 350 when applied on a graph with 50, 100, 150, 200 nodes

generated using gengraph-win

77

2.3 Max – Min Formulation for Orienteering Problem

In engineering design or decision making problems, a large number of feasible

solutions are available and to choose the solution which is the best one from this

set, we need to concentrate on the uncertainty associated with the variables that

lead to the optimal solution. Probabilistic concepts can take care of the

randomness that arises due to natural fluctuation or natural variations but the

uncertainty that comes into existence due to qualitative statements, vague

statements, vague nature of the objective, linguistic statements showing the

willingness of the decision maker (like the solution is acceptable, low,

satisfactory etc.) cannot be addressed through probabilistic concepts.

Consequently, we introduce the concept of fuzzy logic in solving the

optimization problems. In the crisp definition of optimization problems, we

have crisp conditions where solutions violating the constraints or not satisfying

the objective function are completely unacceptable but in fuzzy optimization,

the concept of degree is introduced. The solution becomes a matter of degree

i.e., degree of acceptability or degree of satisfaction is associated with the

constraints and the objective functions, and this way we provide a latitude to the

acceptability of a solution. This degree of acceptability linked with the objective

functions and constraints can be reflected through fuzzy membership functions.

To deal with the situations where several stakeholders vaguely state their

preferences as constraints or objective functions using linguistic statements, we

convert these statements into fuzzy sets or fuzzy membership functions and then

using some technique find out the best “compromise solution”. In fuzzy

optimization, we do not distinguish between the objective functions and the

constraints instead refer to them as fuzzy goals, represented in the form of fuzzy

sets defined by their respective membership functions. Therefore, the latitude or

uncertainty present in the decision making is tackled through these membership

functions. In addition to the fuzzy goals, we can also have crisp constraints

modelling the physical conditions or technological feasibility that have to be

met in a particular solution.

The whole idea of fuzzy optimization is to allow for latitude in the

constraints and flexibility in the objective function. Instead of a 0-1 type

solution, we allow for some violation of the original constraints to some degree,

78

set certain limit for the objective function and accept solutions on both sides of

the limit to different degrees. The objective function and the set of constraints

are converted into fuzzy sets, their associated membership functions are defined

and then all the membership functions are combined to determine the fuzzy

decision. Through fuzzy optimization, the preferences of the decision maker are

quantified and the uncertainty due to vagueness, imprecision etc. which is

common in decision making problems are tackled using membership functions

(Kaymak, & Sousa, 2001; Loucks, & Beek, 2005; Ramik, 2001).

2.3.1 Basic Definitions

(a) Expected Value of Trapezoidal Fuzzy Number (EV)

To determine the grade of membership of a TFN i.e., to find out the degree to

which the TFN satisfies the specified requirement we need to calculate its

expected value and then use definition in section 2.2.2 (I). The formula for

expected value is as follows (Jimenez, Arenas, Bilbao, & Rodriguez, 2007):

For a given TFN	# = ���,��, ��, ���,
���#� =

�
� ��� + �� + �� + ��� (2.41)

(b) Fuzzy Decision Set (£)
Fuzzy decision set is a set of elements providing a feasible solution to the stated

problem. The fuzzy linear programming problem can have several goals each

represented by a membership function and a fuzzy set (��) containing the

elements along with their grades of membership obtained using the membership

function (Jimenez, Arenas, Bilbao, & Rodriguez, 2007).

We define the fuzzy decision as:

H = �� ∩ �� ∩ … … … ∩ ��
i.e.,							
A��� =
)���� ∗
)���� ∗ … … … … . .∗
)���� (2.42)

79

where 	∗ represents a � − ���� which can be any operation like �������, ��!	����1	���
�1�, 	�1. In case of OP, ∗ represents �������

operation. To obtain the most desirable solution, we determine the element with

the highest membership degree in the fuzzy decision set H i.e., the value of �

that maximizes the membership function of fuzzy decision H denoted by �∗
using the equation stated below:

A∗��∗� = ����
A���� (2.43)

Where H∗ denotes the fuzzy set of the most desirable solution.

2.3.2 Problem Definition

The orienteering problem can be represented by a completely connected

undirected graph ���,�� where � = ���, … … , �B� is the set of vertices and E is

the set of edges. A score �	 is associated with every vertex �		�	� and the time

taken to traverse each edge 		�	�	� is denoted by �	�. The goal here is to

determine a path . connecting any subset of � that necessarily includes the start

vertex ���� and the end vertex ��B�, satisfies the time bound -��� and also

maximizes the total collected score (Vansteenwegen, Souffriau, & Oudheusden,

2011).

In this chapter, we present the fuzzy orienteering problem (FOP) where

the two quantities involved, namely time and score are considered to be fuzzy

numbers. The reason to introduce fuzziness into the formulation of OP is that

the crisp mathematical formulation is very strict in three ways: (1) the objective

function should be either maximized or minimized; (2) none of the constraints

should be violated as it leads to an infeasible solution and (3) all constraints are

given equal importance. However, these three necessary requirements lead to an

unrealistic representation of the real world. By partly relaxing these using fuzzy

logic, we can model the physical world in a more realistic manner. Several

situations might exist in real life applications that can be easily represented in

the fuzzy environment which may include the following (Zimmermann, 2010):

The decision maker is not willing to maximize or minimize the objective

function; instead he wants to reach some aspiration level like ‘improve the

present fuel consumption situation to some extent’ in transportation problems

80

which cannot even be defined or stated in the crisp case. May be the decision

maker is willing to accept small violations in the constraints especially when the

objective function deals with the aspiration levels and the less than or greater

than relation is not required to be followed in the strict mathematical sense.

Moreover, the parameters or variables involved may have vagueness which

cannot be expressed in the crisp formulation. In the crisp representation, all

constraints are of equal importance but may be for the decision maker, different

constraints have different importance and small violations of different

constraints may be acceptable to different degrees.

In this fuzzy formulation of OP, we have recognized that the parameters

time and score are fuzzy in nature and in the fuzzy version we provide latitude

to the desired solution by relaxing the constraints to some extent and stating the

degree up to which they are feasible. Here we do not distinguish between

objective function and constraints instead the two necessary conditions of

maximizing the total collected score and following the time bound are

represented as two goals which are conflicting as one is to be maximized and

the other one is to be minimized. These are represented as linear membership

functions and the rest of the constraints are considered to be crisp. The detailed

explanation of the fuzzy formulation is presented in the next section.

2.3.3 Fuzzy Formulation of OP

The fuzzy version can be represented in the following way showing by tilde the

parameters that have a fuzzy character:

∑ ∑ �C¤B�4�B��	4� �	� ≿ 	 ��	!																																																																																							 (2.44)

∑ ���B�4� = 1				,			 ∑ �	BB��	4� = 1																																																																										 (2.45)

∑ �	�B��	4� ≤ 1						∀	0 = 2, … … . ," − 1																																									 (2.46)

∑ ���B�4� ≤ 1						∀	0 = 2, … … . ," − 1																																																															 (2.47)

∑ ∑ �CD¥�	�	B�4�B��	4� 	≾ 	 -���																																																																																				 (2.48)

2 ≤ �	 ≤ "					∀	� = 2, … … . ,"																																																																											 (2.49)

81

�	 − �� + 1 ≤ �" − 1�81 − �	�9											∀	�, E = 2, … … … ,"																									 (2.50)

�	� 	�	�0,1�			∀	�, E = 1, … … ," (2.51)

As stated above, the constraints represented by Eqs. 2.44 and 2.48 are

considered to be fuzzy and represent the two conflicting goals of maximizing

the total collected score and minimizing the time taken to traverse a path

respectively. The remaining constraints represented by Eqs. 2.45, 2.46, 2.47,

2.49, 2.50 and 2.51 remain crisp. The variable �	 denotes the position of vertex �	 in the path and if vertex �� is visited after vertex �	 , then �	� = 1 else �	� = 0.

The necessary condition that each path starts in �� and ends in �B is ensured by

Eq. 2.45. The constraint that each path remains connected and no vertex is

visited more than once in a path is taken care by Eqs. 2.46 - 2.47 and the

requirement of eliminating sub tours is implemented by Eqs. 2.49 - 2.50

(Vansteenwegen, Souffriau, & Oudheusden, 2011). The symbols ‘≿’ and ‘≾’

are the fuzzy version of ‘≥’ and ‘≤’ representing the ‘fuzzy greater than or

equal to’ and ‘fuzzy less than or equal to’ respectively. The meaning of these

symbols is that the constraints can be violated to some extent and depending on

the importance of the constraint, this violation leads to different degree of

acceptance (Jarray, 2011). For example, in Eq. 2.44, the symbol ‘≿’ indicates

that the total collected score of a particular path should be greater than ��	!

(most desirable case) but those paths which have their total collected score

slightly less than ��	! i.e., up to ��	! − 	. are also acceptable but to a lesser

degree. Similarly, in Eq. 2.48, the total time taken to traverse a path should be

less than -��� (most acceptable case) but paths having their total time greater

than -��� are also acceptable to different degrees up to the limit of -��� + 	5 as

signified by the symbol ‘≾’. The two fuzzy goals can be represented by their

membership functions as shown in Fig. 2.21 and 2.22. The fuzzy decision set H	��
	H∗ is depicted in Fig. 2.23. It denotes the best ‘compromise solution’

which is obtained by the following max-min formulation:

H = �� ∩ �� (2.52)

A��� = ����
(���,
*���� (2.53)

82

A∗��∗� = ����
A���� = ���2����
(���,
*����3 (2.54)

The intersection of the two fuzzy sets (��	��
	��) is the minimum value of the

two fuzzy sets for each �, which forms the fuzzy decision set H (as shown by

dark straight lines) and the maximum value of this decision set Z forms the

other set H∗ which holds the most desirable solution (as shown by the dashed

line) of Fig. 2.23.

Fig. 2.21: Membership Function for total collected score of a path

Fig. 2.22: Membership Function for total time taken to traverse a path

83

Fig. 2.23: Fuzzy decision set £	pij	£∗

2.3.4 FOP Algorithm

Following are the steps to determine the path that maximizes the total collected

score within the specified time limit for a given ���,�� with " nodes:

1) Determine all the possible paths (�̀) connecting �� and �B (using Eqs. 2.45,

2.46, 2.47, 2.49, 2.50 and 2.51).

2) For each possible path:

(a) Calculate the total time taken to traverse the path and the total collected

score (using Eq. 2.17).

(b) Calculate the expected value of the total time taken to traverse the path and

the total collected score (using Eq. 2.41).

(c) Calculate its membership degree for the membership function of time (using

Eq. 2.48 and Fig. 2.22). Let it be denoted as fuzzy set	��.

(d) Calculate its membership degree for the membership function of score

(using Eq. 2.44 and Fig. 2.21). Let it be denoted as fuzzy set	��.

84

3) Determine the feasible paths denoted by the fuzzy decision set H obtained

using definition in section 2.3.1 (b) and Eq. 2.42.

4) Most desirable path (final solution) is denoted by the fuzzy decision set H∗

obtained using definition in section 2.3.1 (b) and Eq. 2.43.

5) If the fuzzy decision set H∗ contains more than one paths, the total collected

score (�) for each of the paths in H∗ can be ranked (using definition 2(a) of

section 2.2.2 (II) and Eqs. 2.18, 2.19, 2.20 and 2.21) to determine the path that

maximizes the total collected score.

2.3.5 Illustrative Example

Consider the following network ���,�� with total number of nodes		" = 5.

Fig. 2.24: Input Graph b��,}� with source vertex = 1 and destination
vertex = 5

85

Table 2.12: The value of edge weights (time taken to travel from one node

to another)

Edge Label Fuzzy Time

Values 	�� A �1,4,6,9� 	�� B �6,9,13,16� 	�� D �14,15,21,22� 	�
 C �4,6,8,10� 	�� E �2,3,3,4� 	�� G �5,8,8,11� 	�
 H �14,18,22,26� 	�� I �5,8,12,15� 	�
 J �0,2,10,12� 	�
 K �1,2,2,3� -��� = 20, 5 = 15

Table 2.13: The value of node weights (score values)

Node Label Fuzzy Score

Values �� 1 �1,2,8,9� �� 2 �8,9,11,12� �� 3 �3,5,9,11� �� 4 �17,20,24,27� �
 5 �1,2,4,5� ��	! = 25,. = 13

86

Step 1: All possible paths connecting �� and �
 are found that satisfy the Eqs.

2.45, 2.46, 2.47, 2.49, 2.50 and 2.51 and are as follows:

�̀: 1 − 5

�̀: 1 − 2 − 5

�̀: 1 − 3 − 5

�̀: 1 − 4 − 5

̀: 1 − 2 − 3 − 5

.̀: 1 − 3 − 2 − 5

È: 1 − 2 − 4 − 5

F̀: 1 − 4 − 2 − 5

G̀: 1 − 3 − 4 − 5

�̀�: 1 − 4 − 3 − 5

�̀�: 1 − 2 − 3 − 4 − 5

�̀�: 1 − 2 − 4 − 3 − 5

�̀�: 1 − 3 − 4 − 2 − 5

�̀�: 1 − 4 − 3 − 2 − 5

�̀
: 1 − 4 − 2 − 3 − 5

�̀.: 1 − 3 − 2 − 4 − 5

Step 2(a): Table 2.14 shows the total time taken to traverse and total collected

score for each of the above stated paths which is calculated using Eq. 2.17.

Step 2(b): Next we calculate the expected value of the total time taken to

traverse the path and the total collected score (using Eq. 2.41) for each of the

paths �̀	��	 �̀. as shown in Table 2.15.

Step 2(c) and 2(d): The grade of membership of each possible path from

�̀	��	 �̀.	is determined for both the membership functions (time and score)

using Eqs. 2.44, 2.48 and Fig. 2.21 and 2.22. The values for the same are shown

in Table 2.16.

87

Hence, the two fuzzy sets ��	��
	�� for the total time taken and total collected

score respectively, are as follows:

�� = { �̀ 1⁄ , �̀ 0.67, �̀ 1, �̀ 1⁄⁄⁄ ,
̀ 1, .̀ 0.06, È 1, F̀ 0, G̀ 0.8,⁄⁄⁄⁄⁄

�̀� 0.06, �̀� 1, �̀� 0.4,⁄⁄⁄ �̀� 0,⁄ �̀� 0, �̀
 0,.�. 0.73⁄⁄⁄ }

�� = { �̀ 0⁄ , �̀ 0.23, �̀ 0, �̀ 1⁄⁄⁄ ,
̀ 0.77, .̀ 0.77, È 1, F̀ 1, G̀ 1,⁄⁄⁄⁄⁄ 	
 �̀� 1, �̀� 1, �̀� 1,⁄⁄⁄ �̀� 1⁄ , �̀� 1, �̀
 1, �̀. 1⁄⁄⁄ }

Step 3: Now the fuzzy decision set H	is obtained using definition in section

2.3.1 (b) and Eq. 2.42 to determine all the feasible paths along with the

membership grades stating the degree up to which each of the feasible paths is

acceptable.

Here,
A��� = ����
(���,
*����		�ℎ	�		� = �̀	��	 �̀. is used calculate	H .

H = { �̀ 0⁄ , �̀ 0.23, �̀ 0, �̀ 1⁄⁄⁄ ,
̀ 0.77, .̀ 0.06, È 1, F̀ 0, G̀ 0.8,⁄⁄⁄⁄⁄ 	
										 �̀� 0.06, �̀� 1,⁄⁄ �̀� 0.4, �̀� 0⁄⁄ , �̀� 0, �̀
 0,.�. 0.73⁄⁄⁄ }

Step 4: Finally, the fuzzy decision set H∗ that contains the desirable path is

obtained using definition in section 2.3.1 (b) and Eq. 2.43.

H∗ = � �̀ 1⁄ , È 1⁄ , �̀� 1⁄ �

Step 5: As can be observed from Step 4, there are three paths that are desirable

as they satisfy all the crisp constraints and the two fuzzy goals. To conclude

with the most desirable path among the three available in H∗, we use the ranking

method described using definition 2(a) of section 2.2.2 (II) and Eqs. 2.18, 2.19,

2.20 and 2.21 to rank the score of each path in H∗ and determine the best one.

The values for which are shown in Table 2.17.

88

Table 2.14: The total time taken and total collected score for each of the

paths

Path Total Time Taken To

Traverse

Total Collected

Score

�̀ �4,6,8,10� �1,2,8,9�
�̀ �15,22,28,35� �9,11,19,21�
�̀ �6,11,23,28� �4,7,17,20�
�̀ �15,17,23,25� �18,22,32,36�

̀ �3,9,19,25� �12,16,28,32�
.̀ �22,30,38,46� �12,16,28,32�
È �7,14,16,23� �26,31,43,48�
F̀ �33,41,51,59� �26,31,43,48�
G̀ �12,19,27,34� �21,27,41,47�
�̀� �19,25,43,49� �21,27,41,47�
�̀� �9,17,23,31� �29,36,52,59�
�̀� �11,22,36,47� �29,36,52,59�
�̀� �30,43,55,68� �29,36,52,59�
�̀� �35,44,58,67� �29,36,52,59�
�̀
 �21,28,42,49� �29,36,52,59�
�̀. �14,22,26,34� �29,36,52,59�

89

Table 2.15: The expected value of the total time taken to traverse the path

and the total collected score for each of the paths

Path EV(Total Time Taken) EV(Total Collected

Score)

�̀ 7 5

�̀ 25 15

�̀ 17 12

�̀ 20 27

̀ 14 22

.̀ 34 22

È 15 37

F̀ 46 37

G̀ 23 34

�̀� 34 34

�̀� 20 44

�̀� 29 44

�̀� 49 44

�̀� 51 44

�̀
 35 44

�̀. 24 44

90

Table 2.16: The grade of membership of each possible path for both the

membership functions of time and score

Path � �̀�
(� �̀�
*� �̀�
�̀ 1 0

�̀ 0.67 0.23

�̀ 1 0

�̀ 1 1

̀ 1 0.77

.̀ 0.06 0.77

È 1 1

F̀ 0 1

G̀ 0.8 1

�̀� 0.06 1

�̀� 1 1

�̀� 0.4 1

�̀� 0 1

�̀� 0 1

�̀
 0 1

�̀. 0.73 1

Table 2.17: Showing the ranks of the desirable paths

Path Score Rank

�̀ �18,22,32,36� 3

È �26,31,43,48� 2 ¦++ �§¨,©ª,«§,«¨� 1

Thus, the most desirable path is �̀� as it has the highest rank.

91

2.3.6 Parallel Formulation of FOP

To solve the FOP more efficiently and to yield a better and improved

performance when applied on large instances, we present a parallel algorithm

for FOP that uses the CREW PRAM (Concurrent Read Exclusive Write Parallel

Random Access Machine) model. In a PRAM model, several processors are

connected to a common block of shared memory. This shared memory can be

accessed by all the processors and these processors communicate with each

other by reading from or by writing to the shared memory. In a PRAM model,

each processor is like a sequential RAM and can perform the arithmetic

operations, assignment, comparison, memory access etc. in unit time. In CREW

PRAM, more than one processor can read concurrently from the same cell of the

shared memory but cannot write into the same cell concurrently i.e., write

operation has to be exclusive (Blelloch, 1996; Horowitz, Sahni, & Rajasekaran,

1999). For each parallel algorithm, the following terms are computed to

determine whether it is work-optimal or not (Horowitz, Sahni, & Rajasekaran,

1999):

���	/�		
	�� =
�<!�	�H	I8	�JH	 H��	�!IK!	�HL<H!�	��	��MI�	�J�

�<!�	�H	I8	�JH	������H�	��MI�	�J�	8I�	�	����INH��I�	��NJ	!H (2.55)

���	�����	���0	
��	 = � ∗ ������		��	�ℎ		������	�	��!����ℎ�	���	�	� −���1	//��	��1ℎ��	 (2.56)

�1�		���1�	�1 = 	 �<!�	�H	I8	�JH	 H��	�!IK!	�HL<H!�	��	��MI�	�J�
�I���	KI��	�I!H (2.57)

#� 	������	�	��!����ℎ�	�/	/��
	��	�		���0	�������	��	��	ℎ�/	�	���	��	
/�		
	��	��
	��		���1�	�1 	��	1.		
If we have a graph with � nodes, then the maximum number of edges possible

in the path connecting the source vertex (��) and the destination vertex (�!) is � − 1. Hence, the total number of possible paths can be calculated using the

following formula:

-����	��. ��	���ℎ/	��� = ∑ �!���!
?!��	���@!

!��	4� (2.58)

92

Fig. 2.25 shows the several steps of the proposed parallel algorithm for FOP:

Fig. 2.25: Several steps of the parallel formulation of FOP

In the parallel formulation of FOP, the module z}¬ − ­®s computes

the total number of possible paths (�) for a given input graph ��, ��, �!� using

Eq. 2.58 sequentially. We assume the number of processors is equal to the total

number of paths (�). This value is utilized by the following parallel modules to

output the path in � connecting �� and �! that maximizes the total collected

score and minimizes the total travel time. If the module s�| − y�~ returns

more than one path with the same maximum membership value (MV) then the

93

module z}¬ − |�s sequentially ranks the total collected score (TS) of the

paths with the same maximum value of MV using the COC method of ranking

fuzzy numbers (using definition 2(a) of section 2.2.2 (II) and Eqs. 2.18, 2.19,

2.20 and 2.21). Finally, the path with the highest rank is returned as the most

desirable path.

 The entire operation that is performed in parallel has been divided into

modules, namely s�| − s�{¯,s�| − {®{,s�| − y}y°,s�| −yt­,s�| − y�~. The output of one parallel module forms the input for the

other parallel module. The module s�| − s�{¯ computes all the valid paths

in parallel and is stored in an array of arrays �. This array is then used by the s�| − {®{ module to compute the total time taken (TTT) and total collected

score (TS) of each valid path in � in parallel. The TTT and TS values generated

for each path in � are then stored in a 2D array #. This array # is then taken as

input by the next parallel module s�| − y}y°. In s�| − y}y°, the

membership value of TTT and TS of each path is calculated and stored in

another 2D array +. The next parallel module s�| − yt­ considers array + as

input and for each path the minimum membership value is determined out of the

two membership values (one for TTT and the other for TS) in parallel. These

minimum membership values are then stored in an array 5. The last parallel

module s�| − y�~ generates those paths which have the maximum

membership values (can be more than one path) using the array 5 as input. The

pseudo code for each parallel module is presented below. For each parallel

module, a theoretical analysis has been performed and the speed up and total

work done has been computed to determine the efficiency and work optimality

of the parallel module.

 s�| − s�{¯ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��	jfhc:

{ 1� ≔ 1�����		�	���Q�		���ℎ	1���	1���!	��	��
	�!	;
 ���1� == �#5T��	�ℎ	�

// A path is valid if it satisfies the constraints stated in the Eqs. 2.45, 2.46, 2.47, 2.49, 2.50 and

2.51.

 �� ≔ 1�;

94

 	�/	

 �T�^#��	1�;

}

The � valid paths can be computed in 6�1� time using � CREW PRAM

processors.

Therefore,

/�		
	�� =
6���6�1� = 6���

�����	���0	
��	 = 6�1� ∗ � = 6���
	���1�	�1 =

6���6��� = 1

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������.
 s�| − {®{ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��	jfhc:

{

 ����	E = 0�	
�:

 {

 #�� ≔ ^��1����		�ℎ		---	���		�1ℎ	�#5T�	���ℎ	��	��;

 // TTT (Total Time Taken) for each VALID path is calculated using Eq. 2.17.

 }

 ����	E = 1�
�:

 {

 	#�� ≔ ^��1����		�ℎ		-�	���		�1ℎ	�#5T�	���ℎ	��	��;

 // TS (Total Collected Score) for each VALID path is calculated using Eq. 2.17.

 }

}

The values for TTT and TS for each of the paths in �� can be obtained in 6�1�
time using � CREW PRAM processors.

95

Therefore,

/�		
	�� =
6���6�1� = 6���

�����	���0	
��	 = 6�1� ∗ � = 6���
	���1�	�1 =

6���6��� = 1

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������.
 s�| − y}y° .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��jfhc:

{

 ����	E = 0�	
�:

 {

 +�� ≔ ^��1����		�ℎ		S�	���	---		in		#�� 	���		�1ℎ	�#5T�	���ℎ	��	��;

// MV (Membership Value) for TTT (Total Time Taken) is calculated using Eqs. 2.41, 2.48 and

Fig. 2.22.

 }

 ����	E = 1�
�:

 {

 +�� ≔ ^��1����		�ℎ		S�	���	-�		in		#�� 	���		�1ℎ	�#5T�	���ℎ	��	��;

// MV (Membership Value) for TS (Total Collected Score) is calculated using Eqs. 2.41, 2.44

and Fig. 2.21.

 }

}

The membership values for TTT and TS for each of the paths in �� can be

calculated in 6�1� time using � CREW PRAM processors.

Therefore,

/�		
	�� =
6���6�1� = 6���

�����	���0	
��	 = 6�1� ∗ � = 6���
	���1�	�1 =

6���6��� = 1

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������.

96

s�| − yt­ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��jfhc:

{

 ����	E = 0�	
�:

 {

 L(k) ≔ MIN�B(k)(j), B(k)(j + 1)�
 // Compute the minimum of the two values using definition in section 2.3.1 (b) and Eq. 2.42.

 }

}

The minimum of the two membership values for TTT and TS for each of the

paths in �� can be computed in 6�1� time using � CREW PRAM processors.

Therefore,

/�		
	�� =
6���6�1� = 6���

�����	���0	
��	 = 6�1� ∗ � = 6���
	���1�	�1 =

6���6��� = 1

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������.

 s�| − y�~ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��jfhc:

{

 �(0) ≔ ��#��	��	5(0);
// GRADE of any element L��
 in � is equal to one plus the number of elements in � smaller

than L��
.

 PRINT the path in D with the greatest ��#�� in �.

}

The maximum value amongst the values present in the array 5 can be

determined in 6��� time using � CREW PRAM processors.

97

Therefore,

/�		
	�� =
6����6��� = 6���

�����	���0	
��	 = 6��� ∗ � = 6����
	���1�	�1 =

6����6���� = 1

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������.

2.4 Conclusion

In this chapter, we have considered the fuzzy version of a few graph problems

and presented some solutions to those problems using fuzzy numbers and their

ranking methods. We have suggested a method of ranking for the Quasi-

Gaussian Fuzzy Numbers called the Link Preference Index. This was applied to

the problems shortest path, minimum spanning tree and steiner tree and a

solution for the fuzzy environment was generated. The method chosen for the

intermediate Fuzzy Arithmetic operations leads to simpler calculations and

satisfactory results. At the same time, the method can be applied in varied

situations like when the value for 0 is small, the number of sub intervals are less

but the evaluation is faster and can be implemented on a slower machine.

However, for a faster machine by increasing the value of 0 we can get more

accurate results. Also, an Extended Dijkstra’s algorithm and Extended Fuzzy

Prim’s algorithm has been proposed. The LPI proposed in this paper is a

monotonic decreasing function of	∆�̅. It can also take care of non symmetry in

the membership function. It tends to increase if H�	! is long tailed towards right

or H	 is long tailed towards left (i.e., the two functions lean towards each other).

This chapter also deals with the representation of trapezoidal fuzzy

number and its application to the constrained shortest path problem. We have

dealt with two aspects viz. uncertainty and multiple constraints in the shortest

path problem. The original PDA algorithm was suggested by Chen et al. (2008)

and its fuzzy version for CFSPP is capable of tackling the uncertainty by

representing the parameter cost as a fuzzy number and the other parameter viz.

delay, is represented by the crisp value in the same manner as in (Chen, Song, &

Sahni, 2008). To determine the ranking of the fuzzy numbers we have used

98

three different techniques which include Circumcenter of Centroids,

Maximizing Set / Minimizing Set and Weighting Function and by comparing

different output values of cost, path discretization error and CPU execution time

with respect to varying delay requirement, it has been concluded that the most

efficient method of them, is the WF technique. Thus, the shortest path between

a specified source and target, taking into consideration the multiple delay

constraints and the uncertainty, can be most efficiently and accurately

determined using WF as it is the best method in terms of execution time and

cost. However, the method that gives minimum path discretization error is

Circumcenter of Centroid method. Also, an application in wireless sensor

networks was presented. As WSN’s are battery operated, we require a path that

consumes minimum energy and also satisfies an end-to-end delay constraint. As

discussed in the above section, we can compute one path for every situation

using CFSPP i.e., if the WSN does not have enough battery power then we

compromise with the path that consumes more energy but can be obtained with

lesser delay else the most desirable path that consumes minimum energy can be

obtained but this increases the delay. The value of the two parameters involved,

namely delay and energy cannot be predicted precisely. Therefore, here we

represent them using TFN and use the ^6^ method of ranking for determining

the cheapest feasible path. Thus we show that the CFSPP algorithm performs

well in transmitting the sensor outputs like temperature, pressure, gas

concentration etc. to the designated destination with minimum delay while

conserving the energy. Although, in this chapter we have used trapezoidal fuzzy

numbers, our method can be easily extended to any other type of fuzzy numbers

by choosing an appropriate ranking method. The fuzzy algorithm proposed has

the same complexity as the crisp version yet the number of arithmetic

operations increases. This is the price one has to pay for modelling uncertainty.

Another problem that has been dealt with was the orienteering problem

and a method was suggested to solve the fuzzy orienteering problem. In the

literature, the integer program formulation of OP has been stated. For these

kinds of formulations, the objective function (either maximization or

minimization) and the constraints are to be followed strictly in mathematical

sense. However, this may not be the case in real life application where the

decision maker may be willing to relax the constraints to some extent to

99

generate a solution that can achieve a level of satisfaction which cannot be

represented by the crisp formulation but the fuzzy version can take care of these

requirements. In our work, the two necessary conditions of maximizing the total

collected score and that too within the specified time bound is represented by

two fuzzy goals and to take care of the other requirements like each vertex is

visited once, no sub tours are formed etc. are represented in the form of crisp

constraints. By representing the two necessary conditions in the form of fuzzy

goals we provide latitude to the desired solution by relaxing the constraints. To

make the proposed method applicable to large instances, we also present a

work-optimal parallel formulation of FOP. When provided with several graphs

as input, further speedup can be expected since the stages will form a 5 stage

linear pipeline providing a speed up of 5 ideally when all the stages are busy. In

this way the method suggested above provides a more practical illustration of

the physical world and generates a solution that is more appropriate and

realistic.

