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CHAPTER 2 

 

Fuzzy Numbers – Their Ranking Methods and 

Applications 

 

Abstract 

This chapter deals with two types of fuzzy numbers viz. Quasi-Gaussian fuzzy 

numbers and trapezoidal fuzzy numbers and their applications. A ranking 

method has been proposed for the Quasi-Gaussian fuzzy number called the link 

preference index and has been applied on the shortest path, minimum spanning 

tree and Steiner tree problem. The ranking methods available in the literature 

for the trapezoidal fuzzy numbers have been experimentally analyzed by 

applying on the constrained shortest path problem to determine the one which is 

most appropriate for practical applications. Also, an application of the 

trapezoidal fuzzy numbers has been shown for the wireless sensor networks. A 

max-min formulation has been presented for the orienteering problem to deal 

with the fuzzy version where the score values associated with the nodes and time 

values associated with the edges of the graphs are represented as trapezoidal 

fuzzy numbers. Further, to tackle large instances, a parallel formulation of the 

fuzzy orienteering problem algorithm has been suggested. 

 In section 2.1, the various graphs problems considered and the types of 

fuzziness that can be induced in a graph have been discussed. Section 2.2 

presents the definition of the Quasi-Gaussian fuzzy number and trapezoidal 

fuzzy number, the formulas used for their mathematical operations and their 

applications. The max-min formulation and its parallel version for the fuzzy 

orienteering problem have been stated in section 2.3 and finally the conclusion 

of this chapter has been specified in section 2.4. 
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2.1 Introduction 

Graphs are used to depict the pair wise relations between the objects from a 

collection. A graph can be represented as � = ��,�� where � is the set of 

vertices and � is the set of edges connecting pair of vertices. In this chapter, we 

consider several graph problems which includes shortest path, minimum 

spanning tree, steiner tree, constrained shortest path and orienteering problem.  

 In a network, a path is an alternating sequence of vertices and edges 

connecting a source node and a destination node. In general, there can be more 

than one path connecting the source node and the destination node, the shortest 

path (SPP) is one where the sum of the weights assigned to the edges is 

minimum. The problem of finding the shortest path is of great importance in 

graph theory as it finds various real life applications like Communication, 

Computer Networks, Transport, Routing, Supply Chain Management etc. 

(Elizabeth & Sujatha, 2011; Hernandes, Lamata, Verdegay, & Yamakami, 

2007).  An example of finding the shortest path could be to determine the route 

between City A and City B on a road map with minimum travel time. Here the 

various connecting cities between City A and City B can be represented as 

vertices and their connecting road segments can be represented as edges 

connecting the vertices.  

 For a given undirected graph	���,��, many spanning trees are possible 

that are sub graphs of � connecting each of the vertices present in � without 

forming cycles. If the considered graph � is a weighted undirected graph, then a 

Minimum Spanning Tree (MST) can be generated which is one among the 

several spanning trees possible with the lowest total cost. One example where 

MST can be applied is that a cable TV company wants to lay out cable 

connections to a new neighbourhood. Thus, a path is to be determined that can 

connect the new location to the existing ones with least cost. Several other 

applications include network designing while laying out the telephone cables, in 

cluster analysis and in solving problems like travelling salesman problem, 

Steiner tree problem etc. (Bang, & Kun, 2006). 

 For a given undirected graph � = ��,�,�� where � is the weight 

function mapping the set � to a set of non negative numbers and a set � where � ⊆ �, the Steiner Tree Problem (STP) is to determine a sub graph of � without 
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cycles that spans S with lowest total cost of its edges (Kou, Markowsky, & 

Berman, 1981). Therefore, for a given set of objects, determining the shortest 

interconnect is a combinatorial optimization problem STP named after Jakob 

Steiner. The STP is a NP-Hard problem with two versions, one is the 

optimization problem where a minimum weight Steiner tree is to be found and 

the other is the decision problem where the task is to determine whether a 

Steiner tree of total weight at most K exists or not. This problem has several 

practical applications like in network designing or designing the circuit layout, 

in facility location problem, in the fields of wireless communication, 

computational biology etc. 

 Shortest Path Problem is one of the fundamental optimization problems 

in the field of Computer Science, Telecommunications and Operations Research 

that is polynomial time solvable. An extension of SPP is Constrained Shortest 

Path Problem (CSPP) where the shortest path computed is required to fulfill a 

set of constraints which leads to removal of those links from the graph that 

violates the constraints and then the Shortest Path algorithm is applied (Chen, 

Song, & Sahni, 2008; Xiao, Thulasiraman, Xue, & Juttner). Adding one or more 

constraints to the SPP makes it intractable and CSPP is a well-known NP-

Complete Problem (Chen, Song, & Sahni, 2008). Applications of CSPP include 

computer networks, cable television networks, communication networks, 

transportation networks and multimedia applications like web broadcasting, 

video teleconferencing, remote diagnosis etc. (Dou, Zhu, & Wang, 2012; Xiao, 

Thulasiraman, Xue, & Juttner). 

 The orienteering problem (OP) is an NP-Hard problem, derived from the 

game of orienteering where the player is required to start from the initial control 

point and arrive at the final control point within the specified time limit, at the 

same time collect the rewards (score) assigned to each of the checkpoints that 

link the initial control point to the final control point. All those players who 

arrive at the final control point after the time expires are disqualified and the 

player reaching the final control point within the allotted time and with the 

maximum collected score is declared as the winner of the game. This game 

reflects many real life situations related to the field of logistics, tourism, 

building telecommunication networks, home delivery systems etc., which can 

be modelled as OP (Vansteenwegen, Souffriau, & Oudheusden, 2011). There 
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are four types of OP which include the simple orienteering problem, team 

orienteering problem, orienteering problem with time window and team 

orienteering problem with time window. The OP can be observed as a 

combination of two well-known problems, namely the Travelling Salesman 

Problem (TSP) and the Knapsack Problem (KP) where the objective of 

maximizing the score is derived from KP and the objective of minimizing the 

time taken to travel from the initial control point and final control point is 

similar to the objective of TSP with the difference that in TSP all the vertices 

connecting the source to the target should be visited once but in OP it is not 

necessary to visit all the intermediate checkpoints (Vansteenwegen, Souffriau, 

& Oudheusden,  2011). One real life application of OP is in the tourism industry 

where tourists come to visit the cities which are rich in culture and traditions 

and have some historical significance. The aim is to visit as many locations 

(including palaces, museums, monuments, restaurants etc.) as possible within 

their duration of stay. Due to the restriction of time it is not possible to visit all 

the places. Therefore, depending upon the choice and taste of the tourist, the 

guide can assign priorities to the various locations to be visited and then explore 

as many of them as possible within the time frame available in order to make 

their trip as economical and as beneficial as possible (Schilde, Doerner, Hartl, & 

Kiechle, 2009). 

 In the real world the weights assigned to the edges, in each of the above 

stated problems correspond to parameters like cost, time, capacities, demand, 

distance, energy etc. which are represented as real numbers. However these 

parameters are not naturally precise and the uncertainty involved cannot be 

modelled using real numbers. Such a situation can be tackled by introducing the 

use of fuzzy numbers as they can model the uncertainty in a much better way 

and help in computing a more practical solution to the problems and provide a 

quality of service (QoS) assurance in problems like CSPP. In a graph, various 

types of fuzziness are possible which are given by Blue et al (2002) as: 

• Type I: Fuzzy set of crisp graphs. 

• Type II: Crisp vertex set and fuzzy edge set. 

• Type III: Crisp vertices and edges with fuzzy connectivity. 

• Type IV: Fuzzy vertex set and crisp edge set. 
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• Type V: Crisp graph with fuzzy weights. 

 

Here, Type V graphs are considered where the weights assigned to the edges are 

represented as fuzzy numbers instead of crisp numbers. There are several types 

of fuzzy numbers viz. triangular, trapezoidal, exponential, quadratic, Gaussian, 

Quasi-Gaussian etc. In each of the above stated problems, it is important to rank 

the fuzzy numbers to determine their ordering as the requirement is to find the 

shortest interconnect in most of the cases taking into consideration certain 

constraints. In case of real numbers, there exists a natural ordering which is 

absent for fuzzy numbers. Therefore, many ranking methods convert the fuzzy 

numbers to real numbers and then analyze them but in this procedure much of 

the information is lost. Attempts have been made to determine techniques that 

can rank the fuzzy numbers with the minimum loss of information. The concept 

of ranking fuzzy numbers was first suggested by Jain (1976). Since then a lot of 

methods have been suggested by different researchers. Wang and Kerre (2001a; 

2001b) categorized all the methods suggested for ranking the fuzzy numbers 

into three classes based on fuzzy mean and spread, fuzzy scoring and preference 

relation. 

  

2.2 Fuzzy Numbers 

Unlike Boolean logic where two extreme values i.e., true (0) and false (1) is 

considered, fuzzy logic is a matter of degree and considers the set of values 

lying within the interval [0, 1]. If � is the universal set, then a set � denoted as � = 28�, ����9: � ∈ �3 is called a fuzzy set where � signifies the 

membership function. This membership function assigns a weight to every 

element � which is called the grade of membership and lies between 0	��
	1. A 

fuzzy set � satisfying the following properties is called a fuzzy number (Bansal, 

2011): 

(a) � is piecewise continuous. 

(b) � is convex.         (��:�� + �1 − :���� ≥ ���8�����,�����9		 
                                    ∀	��, �� ∈ ℝ, ∀	: ∈ (0,1)) 
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(c) � is normal.         ������ = 1	, �� ∈ ℝ� 
where,  ℝ is the universal set of real numbers. 

 A fuzzy number is an extension of the crisp or real number which refers 

to a set of possible values represented by a membership function, each of which 

is assigned a weight called its grade of membership between 0 and 1 whereas 

the crisp number is associated with a single value.  

 It is used to represent those parameters which are imprecise and for 

which it is not possible to specify exact values. In these situations, it is 

appropriate to use a fuzzy number instead of a crisp number as they provide a 

more practical presentation of the real world. There are several types of fuzzy 

numbers, each of which can be defined by a membership function. 

 

2.2.1 Quasi-Gaussian Fuzzy Number (QGFN) 

All of the reported research work is based on piece-wise linear membership 

functions like Trapezoidal or Triangular (Elizabeth, & Sujatha, 2011). Although 

these membership functions are easy to analyze, they are unsuitable for applying 

gradient based parameter optimization methods (Dongrui, 2012). Gaussian 

membership function is simpler to represent since it requires fewer parameters. 

It is continuous and differentiable enabling efficient gradient based optimization 

in cases where actual measurement data is used to identify the parameters of 

membership functions while using parameter estimation and system 

identification techniques, continuity and differentiability and fewer parameters 

are highly desirable (Grauel, & Ludwig, 1999). Kashtiban et al. (2008) have 

used a recursive extended Kalman filter to obtain very good estimates of 

membership function from observed data. Their method also requires the 

membership function to be continuous and differentiable leading to a choice of 

Gaussian functions. 

 Quasi-Gaussian Fuzzy Number is a variation of Gaussian Fuzzy number. 

It is highly desirable to have a SPP, MST, STP etc. algorithms that model the 

uncertainty in link weights with Gaussian function expressed as  
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                                 ��; 	�,; 	<,�� = 	�� =− �
� >���̅� >�?  

where, �̅ is the centre, < is the width and � is the fuzzification factor. Various 

shapes come into existence by varying the values of these parameters showing 

different degrees of fuzziness which are presented in Fig. 2.1. To model the 

uncertainty in some graph problems, here we use a variation of Gaussian 

membership function called Quasi-Gaussian membership function.  

 

 

(a):     �	; = 5,< = 2,� = 2 

 

(b): �	; = 5,< = 0.5,� = 2 

 

(c): �	; = 5,< = 5,� = 5 

Fig. 2.1: Different shapes obtained by varying the value of fuzzification 

factor m 
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(I) Membership Function of QGFN 

Fuzzy Numbers find a lot of practical applications and Gaussian fuzzy numbers 

can be applied in various fields. Hence, it is beneficial to limit the Gaussian 

fuzzy numbers and derive a new category called “Quasi-Gaussian Fuzzy 

Number” (QGFN). QGFN is a Gaussian fuzzy number with finite support i.e., 

the value of x beyond �̅ - 3<� and �̅ + 3<� is zero where  �̅ is the modal value, <� 
and <� denote the left and right spreads respectively corresponding to the 

Gaussian Distribution’s standard deviation. We use Hanss (2005) notation as 

follows: 

                                    p = !��∗ ��̅,<�,<��																																																			        (2.1) 

 Here p is a QGFN and the membership function ���� is defined as:                     ���� =

ABB
C
BBD

		0																								���	�	 ≤ 	 �̅ − 3<�	
exp =− ����̅	��	

���� ? 												���	�̅ − 	3<� 	< �	 < 	 �̅																																																																																																		∀	�	 ∈ �																				
exp =− ����̅	��	

���� ? 											���	 �̅ 	≤ �	 < 	 �̅ + 3<�
0																					���	�	 > 	 �̅ + 3<�

 (2.2) 

 

(II) Fuzzy Arithmetic using QGFN 

Definition 1:  Decomposed Fuzzy Numbers (DFN) 

Fuzzy arithmetical operations like addition, subtraction etc. can be performed in 

several ways using Zadeh’s extension principle, LR fuzzy numbers (Dubois, & 

Prade,1978; Dubois, & Prade 1979), discretized fuzzy numbers (Hanss,1999; 

Hanss, & Willner, 2000) and decomposed fuzzy numbers (Moore, 1966). Here 

we use decomposed fuzzy numbers which implements interval arithmetic. 

 A fuzzy set A can be represented as sequence of :-cuts. An :-cut �#�� 
of A is defined as (Hanss, 2005): 

                         #� =   :-cut (A) = ��|�	��� ≥ 	:�                      where : ∈ (0,1) 
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To reduce the infinite number of :-cuts and make the decomposed fuzzy 

numbers usable for practical applications, the infinite set is reduced to a finite 

one by selecting some discrete values :� = � for : (Hanss, 2005). 

 The finite set is created by dividing the interval [0,1] into 0 sub-intervals 

by applying the following formula (Hanss, 2005):- 

                                  ∆ =
�
�  

Now the discrete values are 

                               			� = 	 ��	 , E = 0,1, … … … … . 0. 

with the properties 

                                � = 0, � = 1, 

                             			��� = 	 � + 	∆,						E = 0,1, … … … … . 0 − 1. 

The parameter 0 which controls the degree of refinement is called the 

decomposition number. The decomposed form of the fuzzy number �	 that 

corresponds to the finite number of :-cuts is represented by the set 

                           

.	 = 	 F�	���,�	���, … … … … . . ,�	���G of �0 + 1�intervals                                 (2.3) 

Where �	��� = 	 =�	���, �	���	? = 1������	�	,	 
                            �	��� ≤ 	 �	���,										E = 1,2, … … … … … … . 0.	 
These �0 + 1� intervals are called intervals of confidence. 

 

Definition 2:  Addition operation using DFN 

If two decomposed fuzzy numbers ����� and ����� represented by the interval 

=�����, �����? and =�����, �����? respectively, are to be added to form the result H��� 
shown by the interval I����, ����	J then  
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=�����, �����? + 	 =�����, �����? = K����� + �����		LMMNMMO	
����

, ����� + �����LMMNMMO
 ���

P																																					(2.4) 

The concept of interval arithmetic induced by the decomposed fuzzy numbers is 

preferred over other methods of performing fuzzy arithmetic operations due to 

its less complex implementation (Hanss, 2005). 

 

Definition 3:  Minimum operation using DFN 

The technique used for determining the minimum of two decomposed fuzzy 

numbers using the concept of lattice of fuzzy numbers and :-cuts is preferred 

over other ranking methods like those discussed in the paper by Ramli and 

Mohamad (2009) using the Centroid Index that falls under the category of fuzzy 

scoring techniques. These Centroid Indexes can be used for ranking of 

triangular and trapezoidal fuzzy numbers as most of it involves calculating the 

area under the curve which requires less number of calculations in case of 

triangular and trapezoidal fuzzy numbers and more calculations when Gaussian 

fuzzy numbers are involved, thereby increasing the complexity of the 

operations. Another reason for using this method of determining the minimum 

of two decomposed fuzzy numbers is that the Centroid methods fail to rank 

fuzzy numbers with the same centre values ��̅� but different spread or width 

values �<� but in our case this situation can be easily handled and the minimum 

of two fuzzy numbers can be generated as the concept of :-cuts is used here. 

 As stated by Klir and Yuan (1997), the set of real numbers R is linearly 

ordered and a pair of value � and Q can be stated as either � ≤ Q or Q ≤ �. Here, 

the lattice ��, ≤� can be presented by an operation 

 

                               �����, Q� = R�						��	� ≤ QQ						��	Q ≤ �                       For every �, Q ∈ � 

However, this kind of linear ordering cannot be applied on fuzzy numbers and 

the minimum operation on two fuzzy numbers #,+ is expressed as �#,+� . 
 Let S denote the set of all fuzzy numbers then the triple 〈�,ST",S#�〉 
is a distributive lattice in which ST" corresponds to meet and S#� corresponds 
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to join operation (Klir, & Yuan, 1997). It is possible to define partial ordering 

on the lattice 〈�,ST",S#�〉. The decomposed fuzzy numbers are represented 

in terms of :-cuts and these :-cuts can also be utilized in finding the partial 

ordering of the fuzzy numbers. 

 For any #,+ ∈ � and : ∈ (0,1) if the :-cut of # is expressed as #� and 

that of + as +� where #� = (��, ��) and	+� = (��, ��). Then  

                           ST"�#�,+�� = (������,���,������, ���) 
Similarly, in case of decomposed fuzzy numbers �����	��
	����� represented by 

the interval =�����, �����? and =�����, �����? respectively, the minimum of the two 

fuzzy numbers can be represented as H�	!
���

 stated as interval I����, ����J then 

        H�	!
���

= I����, ����J = =��� U�����, �����V ,��� U�����, �����V?																								(2.5) 

Definition 4:  Link Preference Index (LPI) 

The Link Preference Index defines the ranking order where each path length �H"� is compared with the fuzzy shortest path length �H�	!� which is shown in 

Fig. 2.2. The path �H"� with the highest LPI is preferred to all other paths and is 

the fuzzy shortest path i.e., 

H� < H�			���				5.T�H�	! < H�� > 5.T�H�	! < H�� 
 

 

Fig. 2.2: Link Preference Index diagram 
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The formula for (LPI) using QGFN is derived as follows:- 

H�	! = !��∗��,; 	<�	,<��            H" = 	 !��∗8�"; , <"� , <"�9 
Let � be the membership function. 

If �	; 	≤ � < �̅ + 3<�  

� = 	��(−�� − �̅��/2<��)  
=> log

1� =
�� − �̅��

2<�� 	 
=> 	2<�� Wlog

1�X = �� − �̅�� 

=> 	 <�Y2 Wlog
1�X = � − �̅ 

	=> � = Z<�[2 Ulog
�
��V + 	 �̅\									                                                                (2.6)                

If �̅ − 	3<"� < � < �";  

 � = 	��I−�� − �";��/2<"��J 
                                                      

	=> 	� = Z<"�[2 Ulog
�
��V + 	�"; \																																			                                      (2.7) 

Equating (2.6) and (2.7) 

	=> <�Y2 Wlog
1�X + 	 �̅ = 	 <"�Y2 Wlog

1�X + 	�";  

 => 	 �̅ − 	�"; = 	 <"�[2 Ulog
�
��V − 	<�[2 Ulog

�
��V 

 => 	 �̅ − 	�"; = 	[2 log
�
�� 		8<"� − 	<�9 
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 => 		[2 Ulog
�
��V = 	 ��̅�	�	###�

$�	��	��%
 

Squaring on both sides, 

=> 2 Wlog
1�X = 	 I��̅ − �";� 8<"� − <�9⁄ J� 

 => 		 log
�
�� = 	 �� I��̅ − �";� 8<"� − <�9⁄ J� 

 � = 	�� =− ��̅ − 	�";�� 28<"� − <�9�] ? ,					�ℎ	�						<"� ≠ <�			                    (2.8) 

We take: 

  5.T = 	�� =− ��̅ − 	�";�� 28<"� − <�9�] ? 																										��	<"� ≠ <�					         (2.9) 

 

The above stated formula can accurately rank the Quasi-Gaussian fuzzy 

numbers but cannot tackle situations where the left spread	8<"�9 of H"  becomes 

equal to the right spread �<�� of	H�	!. To deal with such a situation, we 

consider the following three cases: 

 ^�/		T:				��			�"; − 3<"� < 	 �̅ + 3<�   

                => 		 �"; − �̅ < 38<"� + <�9 
               	=> 	 �"; − �̅ = 348<"� + <�9																																													�ℎ	�		0 < 4 < 1 

             			=> 	 <"� + <� = 		 (�"; − �̅ 34⁄ )		 
 5	�	��"; − �̅� 	= 	∆�̅ 

               	=> 	 <"� + <� = 		 (∆�̅ 34⁄ )																							                                         (2.10) 

Squaring on both sides, 

                => 	 <"�� + <�� + 2<"�<� = 	 (�∆�̅�� 94�⁄ ) 
               	=> 	 <"�� + <�� = (�∆�̅�� 94�⁄ ) 	− 2<"�<�		                                   (2.11) 
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Substituting (2.11) in (2.9), we get,       

            

5.T = 	�� =−�−∆�̅�� 28<"� − <�9�] ?																																																																				 
=> 5.T = 	��I−�∆�̅�� 28<"�� + <�� − 2<"�<�9] J  
=> 5.T = 	�� K ��∆�̅��

�&�∆
���
��

���	������	���'
P  

	=> 5.T = 	�� K ��∆�̅��
�&�∆
���

��
���	���'

P	                                                                   (2.12) 

                                        

Similarly we get the following equations for ^�/		TT  and	^�/		TTT : 
^�/		TT:	��		�"; − 3<"� = 	 �̅ + 3<�		  
5.T = 	�� K ��∆�̅��

�&�∆
���
��

���	���'
P 																					�ℎ	�		4 = 1																																				    (2.13) 

 

^�/		TTT:	��		�"; − 3<"� > 	 �̅ + 3	 
	5.T = 	�� K ��∆�̅��

�&�∆
���
�	�

���	���'
P 																							�ℎ	�			4 > 1																					             (2.14) 

 

5.T =

ABC
BD 																																										��			�"; − 3<"� < 	 �̅ + 3<�		�ℎ	�	1ℎ��/			0 < 4 < 1				
		�� K ��∆�̅��

�&�∆
���
��

���	���'
P 		��		�"; − 3<"� = 	 �̅ + 3<�			�ℎ	�	1ℎ��/			4 = 1								(2.15)	

																													��		�"; − 3<"� > 	 �̅ + 3<�		�ℎ	�	1ℎ��/			4 > 1
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(III) Applications of QGFN 

 

(a) Fuzzy Shortest Path Problem (FSPP) 

The fuzzy shortest path is computed using link preference index (LPI). 

                   

 

Fig. 2.3: Network for FSPP 

 

The following steps are applied on the network shown in Fig. 2.3. 

Step 1: Construct a Network	� = ��,��. 
The above figure shows a network �	with |�| = 6	��
	|�| = 8 where �	��
	� 

are the set of vertices and set of edges respectively. The edge weights in the 

form of QGFN are as follows: 

 � = !��∗(9,3,2)																																																_ = !��∗(20,6,4) 
 � = !��∗(10,2,2)																																														� = !��∗(15,5,5) 
 � = !��∗(14,4,5)																																													` = !��∗(8,1,2) 
 	a = !��∗(16,3,4)																																														� = !��∗(20,6,4) 
 

 

1 
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Step 2: Find all possible paths �."�, from source vertex to the destination vertex. 

In the considered network � four paths are possible from the source vertex 1 to 

the destination vertex 6 which are as follows: 

            .� = � + � + ` + �																																																							.� = � + � + a 

           	.� = � + � + � + �																																																									.� = _ + � + � 

             

Step 3: Convert the weights (QGFN) of the edges present in the path �."� to 

DFN, using Definition 1 of section 2.2.1 (II) 

The above stated edge weights are now converted into decomposed fuzzy 

numbers which are shown below: 

Let the value of	, = 2, and then the following intervals are generated: 

         	� = �(0,15)�, (5.5,11.5)�., (9,9)��	 
 _ = �(2,32)�, (13,25)�., (20,20)�� 
 	� = �(4,16)�, (7.5,12.5)�., (10,10)��	 
 � = �(0,30)�, (9,21)�., (15,15)�� 
 	� = �(2,29)�, (9,20.5)�., (14,14)�� 
 ` = �(4,14)�, (6.5,10.5)�., (8,8)�� 
 a = �(7,28)�, (12.5,21)�., (16,16)��	 
 � = �(1,22)�, (4.5,13)�., (7,7)�� 
 



38 

 

Step 4: Compute the path length �H"� for each of the paths �."� found using 

Definition 2 of section 2.2.1 (II) �T = 1,2 … … … … . , ��. 
Let the path lengths be denoted by H�,H�,H�,H� of paths .�,.�,.�,.� 

respectively. As per the Definition 2 of section 2.2.1 (II), the following path 

lengths are generated: 

 H� = �(5,81)�, (25.5,56)�., (39,39)�� 
                          H� = �(7,73)�, (27,53.5)�., (40,40)�� 
 H� = �(7,82)�, (26.5,57.5)�., (40,40)�� 
 H� = �(5,83)�, (26.5,58.5)�., (41,41)��	 
 

Step 5: Compute the fuzzy shortest path length �H�	!� using Definition 3 of 

section 2.2.1 (II). 

Using Definition 3 of section 2.2.1 (II), the FSPL �H�	!� is calculated 

considering	H�,H�, H�	��
	H�. 

H�	! = �(5,73)�, (25.5,53.5)�., (39,39)��	 
 

Step 6: Convert H" 			���	T = 1,2, … … … … . , �  and H�	! to QGFN.  

Now the path lengths H�,H�, H�,H�	��
	H�	! are converted back from 

decomposed fuzzy numbers to QGFN. 

            H� = !��∗(39,11,15) 
            H� = !��∗(40,11,11) 
           	H� = !��∗(40,10,14)         
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	H� = !��∗(41,13,15) 
            H�	! = !��∗(39,11,12) 
 

Step 7: Calculate the LPI between H�	! and H"					���		T = 1,2, … … … . . , � using 

Definition 4 of section 2.2.1 (II). Assign ranks to each of the paths �."�. 
Using Eq. 2.15, we get the following LPI and ranks: 

 

Table 2.1: LPI value and Ranks of different paths 

 

Path Equation LPI Value Rank .�: 1 − 2 − 4 − 5 − 6 5.T�H�	! < H�� 1 1 .�: 1 − 2 − 4 − 6 5.T�H�	! < H�� 0.98 2 .�: 1 − 2 − 3 − 5 − 6 5.T�H�	! < H�� 0.97 3 .�: 1 − 3 − 5 − 6 5.T�H�	! < H�� 0.136 4 

 

 

Step 8: Identify the fuzzy shortest path as the one with the highest LPI. 

The different paths along with their ranks are shown in Fig. 2.4. 
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Fig. 2.4: Ranking of paths in the network 

 

The fuzzy shortest path in the network considered is .� which has the highest 

LPI value and hence the greatest rank 1. If all the weight spreads are set to zero, 

the QGFN is reduced to its crisp value and then it can be easily determined that 

the shortest path is .� which is the same as generated using LPI. The two path 

lengths H� and H� have the same modal values 40. Hence, using the centroid 

method, we cannot rank the two path lengths but LPI has the advantage of 

ranking these two path lengths. 

 

Extended Dijkstra’s Algorithm using Fibonacci heap and Quasi-Gaussian 

Membership Functions 

 

Fuzzy_Dijkstra �b, c, d� 
 

1    efg each vertex � in	�: 
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2            5.T(�) 	← 	−∞	;                   
// Initialization of the array storing the Link Preference Index (LPI). 

3     hij	efg 
4     5.T(/) 	← 0	;                           // s is the source vertex. 
5     INSERT  �_, �, 5.T(�)� ;     
 // Initialize the Priority Queue Q and function INSERT ( ) is used to update the queue. 

6     �(	 	← 	∅ ;                                            

// �� is an array storing the sequence of nodes in the shortest path. 

7     klmnh	� ≠ �:                             // t is the destination vertex. 
8             �	 ←	 vertex in _ with greatest	5.T(	)	; 
9                     me	5.T(�) = −∞ 

10                       oghpq	; 
11                  hij	me 
12           �∗ 	←	DELETE_MAX�_�;    
// DELETE_MAX ( ) is used to remove the vertex with the greatest LPI value from the priority 

queue Q. 

13           �( 	← 	 �( 	∪ 	 ��∗� ; 
14                    efg each neighbour � of	�: 

15                            ���	 ← rst_ohdkhhi��( ,�� ;  
// LPI_between ( ) is a function that determines Link Preference Index (LPI) using Eq.  (2.15) . 

16                                   me	��� > 5.T(�) 
17                                         5.T(�) 	← ��� ; 
18                                         INCREASE�_, �, 5.T(�)� ;  
// INCREASE ( ) function updates the value of LPI for vertex v in the priority queue Q. 

19                                    hij	me  
20                        hij	efg 
21      hij	klmnh 
22      ghdugi	�(                          // the sequence of nodes in the shortest path is returned. 

23  hij Fuzzy_Dijkstra 

 

Discussion 

The above stated algorithm is an extended version of the Dijkstra’s algorithm 

that generates the shortest path for a source-destination pair. If one requires all 

the shortest paths emanating from the source, the above algorithm can be rerun 
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using different targets or destination nodes. In steps 1-3, the array maintaining 

the value of LPI for each vertex is initialized with	−∞. In the next step, for the 

vertex chosen as source the value of LPI is replaced with a zero. In step 5, the 

INSERT () function is used to initialize the priority queue Q with the LPI value 

of each vertex. In step 6, an array	�( , used to store the sequence of nodes in the 

shortest path is initialized. From step 7-21, a while loop runs inside which � is a 

variable that holds the vertex with the maximum value of LPI in Q and 

DELETE_MAX () is a function used to delete that vertex from Q and store it in 

variable �∗ which is then placed in the array	�(. Then in step 14-15, for each 

neighbour � of vertex	�, the new LPI value is calculated using the function rst_ohdkhhi	��( ,�� that uses Eq. 2.15. For the sequence of nodes in 	�(, first 

the weights of the edges connecting them is added then that value is compared 

with the weights of the edges connecting the neighbouring vertices � of  �. This 

new LPI value of vertex � is saved in the variable	���. In steps 16-17, we 

compare to see if the new LPI value of  � is greater than the previous one stored 

in the array LPI, if yes the value LPI [�] is updated and the INCREASE () 

function is used to update the LPI value of vertex � in Q. In step 21 the while 

loop is ended when � = �  where � is the specified destination vertex. Finally, in 

step 22 the array 	�( is returned which stores the shortest path. 

When the priority queue Q is implemented as an ordinary array or a 

linked list, the running time of the algorithm is	6�|�|��. When an adjacency list 

is used for storing a graph and a Fibonacci heap is used for implementing the 

priority queue Q, the running time of the algorithm is 6�|�| + |�| log|�|� 
(Cormen, Leiserson, Rivest, & Stein, 1990). Also, since exponent is a 

monotonic function of its argument, the algorithm can still work if in step 15 of 

the above algorithm, exponentiation is avoided and only the argument values 

are used. 

 

(b) Fuzzy Minimum Spanning Tree Problem (FMST) 

The most commonly used algorithms to solve the MST problem are two greedy 

algorithms that run in polynomial time called Prim’s (1957) and Kruskal (1956) 

algorithm. Here, the extended Prim’s algorithm using QGFN and LPI is 
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introduced and an illustrative example is presented to show the application of 

the algorithm. 

vuwwx_yz{_s|ty(b,k, g) 

 

1  efg each  �	 ∈ �(�) 
2          jf	,	 (�) ← 	−∞      

// Initialization of the array that stores the LPI value for each node. 

3                *(�) ← "T5          

// Initialization of the array that stores the parent of each node. 

4  hij	efg 

5  ,	 (�) 	← 0                      // the value for root is initialized. 

6  _	 ← 	�(�)	                       // Priority queue is initialized 
7  klmnh	_ ≠ 	∅ 

8              jf	�	 ← }~{|��{_y�~�_�    
// Function to extract the node with maximum LPI value from Q. 

9                    efg		�1ℎ	�	 ∈ #
E(�) 
10                          jf	me	� ∈ _	��
	rst��, �� > ,	 (�) 
11                                      dlhi	*(�) 	← � 

12                                        ,	 (�) 	← rst��, ��    
// The new LPI value of the selected nodes are calculated using Eq. (2.15).  

13                            hij	me 

14                    hij	efg 

15  hij	klmnh 

 

The above stated algorithm can be implemented using adjacency matrix 

in	6�|�|�� time, using binary heap and adjacency list in 6�|�| log|�|�time and 

using Fibonacci heap and adjacency list in	6�|�| + |�| log|�|� time. 
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Fig. 2.5: Network for FMST 

 

Step 1: Construct a Network � = ��,��. 
Fig. 2.5 shows a network � with |�| = 6	��
	|�| = 10 where �	��
	� are the 

set of vertices and set of edges respectively. The edge weights in the form of 

QGFN are as follows: 

 # = !��∗(6,2,1)                    		� = !��∗(20,5,5) 
 + = !��∗(10,3,2)									           � = !��∗(8,2,5) 
 ^ = !��∗(15,4,5)                   � = !��∗(12,4,4) 
 � = !��∗(18,1,1)                 		T = !��∗(11,3,6) 
 � = !��∗(5,1,2)                     � = !��∗(22,3,5) 
 

Step 2: Find the minimum edge weight �H�	!� to which all other edge weights 

will be compared and a LPI value will be calculated by converting the weights 

(QGFN) to DFN using Definition 1 of section 2.2.1 (II). Let	, = 2. 

 # = �(0,9)�, (3.65,7.18)�., (6,6)�� 
 + = �(1,16)�, (6.47,12.35)�., (10,10)�� 
 ^ = �(3,30)�, (10.29, 20.89)�., (15,15)�� 
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� = �(15,21)�, (16.82,19.18)�., (18,18)�� 
 � = �(2,11)�, (3.82,7.35)�., (5,5)�� 
 � = �(5,35)�, (14.11,25.89)�., (20,20)�� 
 � = �(2,23)�, (5.65,13.89)�., (8,8)�� 
 � = �(0,24)�, (7.29,16.71)�., (12,12)�� 
 T = �(2,29)�, (7.47,18.06)�., (11,11)�� 
 � = �(13,37)�, (18.47,27.89)�., (22,22)�� 
 

Step 3: We initialize the two arrays storing the parent of each node and its LPI 

value as per the vuwwx_yz{_s|ty algorithm (as shown in Table 2.2). 

According to Step 5 of the algorithm let the root be Node 1. Thus, ,	 (1) ← 0 

after which the two arrays store the values as shown in Table 2.3. Let _ =�1,2,3,4,5,6� 
As per the vuwwx_yz{_s|ty algorithm the node in Q with the highest Key 

value is extracted and assigned to �. So, now,	� = 1.  

Next the neighbours of � present in Q are considered and the LPI value between 

them is calculated using Eq. (2.15). 

After considering the neighbours of Node 1, Table 2.4 presents the values stored 

in the array. 

 

Step 4: Next the node with the greatest key value is selected among the existing 

nodes in Q and the node extracted is, � = 3 and the status of the two arrays after 

calculation is shown in Table 2.5. 
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The loop continues till the priority queue Q becomes	}ys{�. Finally the array 

denoted by * returns the connections of the FMST as depicted in Table 2.6 and 

the final Fuzzy Minimum Spanning Tree is shown in Fig. 2.6. 

 

Table 2.2: Initial values of the two arrays 

 

Node 1 2 3 4 5 6 *(�) "T5 "T5 "T5 "T5 "T5 "T5 ,	 (�) −∞ −∞ −∞ −∞ −∞ −∞ 

 

Table 2.3: Initializing the LPI value of root node 

 

Node 1 2 3 4 5 6 *(�) "T5 "T5 "T5 "T5 "T5 "T5 ,	 (�) 0 −∞ −∞ −∞ −∞ −∞ 

 

Table 2.4: Status of the two arrays after the neighbours of root are 

explored 

 

Node 1 2 3 4 5 6 *(�) "T5 1 1 1 "T5 "T5 ,	 (�) 0 0.3800 0.9685 3.3358	
− 86 

−∞ −∞ 

 

Table 2.5: Status of the two arrays after exploring the next node in the 

priority queue Q 

 

Node 1 2 3 4 5 6 *(�) "T5 3 1 3 3 3 ,	 (�) 0 1 0.9685 0.154 0.018 0.106 
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Table 2.6: Final values returning the connections in MST 

 

Node 1 2 3 4 5 6 *(�) "T5 3 1 2 3 3 ,	 (�) 0 1 0.9685 0.688 0.018 0.106 

 

 

 

 

Fig. 2.6: Fuzzy Minimum Spanning Tree for the given network 

 

(c) Fuzzy Steiner Tree Problem (FSTP) 

The algorithm for FSTP considers a connected undirected distance graph � = ��,�, 
� and a set � where � ⊆ �. Here �	is the set of vertices, � is the set 

of edges and 
 is the distance function which is represented as a QGFN and 

denotes the distance between a pair of vertices8�	, ��9 ∈ �. To determine the 

final Steiner tree, a complete undirected distance sub graph �� = ���,��,
�� is 

constructed from the given two inputs �	��
	� such that now �� = � and 
�8�	 , ��9 of the edge 8�	, ��9  ∈ 	 �� is equal to the fuzzy shortest path from �	 	��	�� in �. 

Input: An undirected distance graph � = ��,�,
� and a set of Steiner 

points	� ⊆ �. 

Output: A Fuzzy Steiner Tree �-)*� for �	��
	�. 

 

Step 1: Construct the fuzzy complete undirected distance graph �� =���,��,
�� from �	��
	�. 
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Step 2: To construct �� consider each vertex �	 ∈ � and find out the fuzzy 

shortest path to all other vertices �� ∈ � among all possible paths from �	 to �� ∈ � using Definition 2, 3 of section 2.2.1 (II) and Eq. (2.15). 

Step 3: Find the fuzzy minimal spanning tree -�	��	�� using the following 

extended Prim’s algorithm for Fuzzy MST (if there are several fuzzy minimum 

spanning trees, choose any arbitrary one). 

Step 4: Construct the sub graph ��	��	� by replacing each edge in -� by its 

corresponding fuzzy shortest path in � (if there are more than one fuzzy shortest 

paths then choose any arbitrary one). 

Step 5: Find the Fuzzy MST �-�	��	��� using the vuwwx_yz{_s|ty 

algorithm (if there are several Fuzzy MST then choose any arbitrary one).   

Step 6: Construct the Fuzzy Steiner Tree �-)*� from -�  by deleting the edges in -�, if necessary so that all the leaves in  -)* are  steiner points and not the 

terminal nodes. 

The above stated heuristic algorithm for the FSTP runs in 6�|�||�|�� time. 

 

 An Illustrative Example 

 

 

 

Fig. 2.7: Network for FSTP with Steiner points shown as double circles 
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Step1: For the given graph � with	|�| = 6	��
	|�| = 8 and	� = �1,2,3,6�. The 

value of  
 for each edge i.e., fuzzy edge weights are as follows: 

	- = !��∗(9,3,2)																																														_ = !��∗(20,6,4)  
	� = !��∗(10,2,2)																																											� = !��∗(15,5,5)  
� = !��∗(14,4,5)																																												` = !��∗(8,1,2) 
a = !��∗(16,3,4)																																												� = !��∗(7,2,5) 
 

From the given graph, the fuzzy complete undirected distance graph �� =���,��,
�� is constructed following the below stated procedure: 

Vertex set �� = � = �1,2,3,6� and using these vertices, the fuzzy complete 

graph �� is created. 

The Edge weights are converted from QGFN to DFN using Definition 1 of 

section 2.2.1 (II). Let	, = 2     

        

 - = �(0,15)�, (5.5,11.5)�., (9,9)�� 
 _ = �(2,32)�, (13,25)�., (20,20)�� 
 � = �(4,16)�, (7.5,12.5)�., (10,10)�� 
 � = �(0,30)�, (9,21)�., (15,15)�� 
 � = �(2,29)�, (9,20.5)�., (14,14)�� 
 ` = �(4,14)�, (6.5,10.5)�., (8,8)��  
 a = �(7,28)�, (12.5,21)�., (16,16)��  
 � = �(1,22)�, (4.5,13)�., (7,7)�� 
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Step 2: All possible paths between pair of nodes in �� are explored and the 

fuzzy shortest path between them is determined using the given graph	�, 

Definition 2, 3 of section 2.2.1 (II) and Eq. (2.15). 

Between Node 1-2 possible paths are: 

���	- = �(0,15)�, (5.5,11.5)�., (9,9)�� 	= !��∗(9,3,2)  
���	_ + � = �(6,48)�, (20.5,37.5)�., (30,30)�� = !��∗(30,8,6)  
�1�	_ + � + ` + � = �(8,105)�, (37.5,77)�., (57,57)�� = !��∗(57,16,16) 
�
�	_ + � + � + a + � = �(12,141)�, (48,100.5)�., (72,72)�� 												

= !��∗(72,20,23)	 
Now, H�	! = �(0,15)�, (5.5, 11.5)�., (9,9)�� = !��∗(9,3,2) 
Hence, the fuzzy shortest path from Node1-2 is	-. 

 

 

 

Fig. 2.8: Fuzzy complete undirected distance graph	b+ 
 

Similarly, the fuzzy shortest path between all pair of nodes in the vertex set �� is 

determined and the fuzzy complete undirected distance graph �� shown in Fig. 

2.8 is generated. 
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Step 3: The minimal spanning tree -�	��	�� is constructed using extended 

Prim’s algorithm for Fuzzy MST. 

- = �(0,15)�, (5.5,11.5)�., (9,9)�� 	= !��∗(9,3,2)  
- − � = �(4,31)�, (13,24)�., (19,19)�� 	= !��∗(19,5,4)  
- − � − ` − � = �(5,81)�, (25.5,56)�., (39,39)�� = !��∗(39,11,15) 
� = �(4,16)�, (7.5,12.5)�., (10,10)�� 	= !��∗(10,2,2)       
� − ` − � = �(5,66)�, (20,44.5)�., (30,30)�� = !��∗(30,8,12)  
� − � = �(3,51)�, (13.5,33.5)�., (21,21)�� 	= !��∗(21,6,10)              
Now, H�	! = �(0,15)�, (5.5, 11.5)�., (9,9)�� = !��∗(9,3,2) 
 

Following are the status of the two arrays used in the extended Prim’s 

algorithm, after each run of the loop till the priority queue Q becomes EMPTY. 

Table 2.7 shows the initial status of the two arrays, Table 2.8 shows the status 

after the root is initialized, Table 2.9 shows the status of the two arrays after the 

neighbours of the root are explored and Table 2.10 shows the final connections 

in the fuzzy minimal spanning tree -�	��	�� and Fig. 2.9 shows the final 

connections in the Fuzzy Minimal Spanning Tree. 

 

Table 2.7: Initial status of the two arrays 

 

Node 1 2 3 6 *(�) "T5 "T5 "T5 "T5 ,	 (�) −∞ −∞ −∞ −∞ 
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Table 2.8:  LPI value for the root is initialized 

 

Node 1 2 3 6 *(�) "T5 "T5 "T5 "T5 ,	 (�) 0 −∞ −∞ −∞ 

 

 

Table 2.9: Showing the status of the two arrays after the neighbours of the 

root are explored 

 

Node 1 2 3 6 *(�) "T5 1 1 1 ,	 (�) 0 1 0.111 0.0014 

 

 

Table 2.10: Showing the final connections in the fuzzy minimal spanning 

tree {+fe	b+ 
 

Node 1 2 3 6 *(�) "T5 1 2 3 ,	 (�) 0 1 0.9695 0.044 
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Fig. 2.9: Fuzzy Minimal Spanning Tree {+fe	b+ 

 

 

 

 

Fig. 2.10: Final Fuzzy Steiner Tree�{,-� 
 

Step 4: Now the connections in -� are replaced by their corresponding shortest 

paths in � and we get the �� and because there are no cycles and no terminal 

node becomes a leaf node, the fuzzy minimum spanning tree -� becomes the 

final fuzzy Steiner tree �-)*� as shown in the Fig. 2.10. 

 

2.2.2 Trapezoidal Fuzzy Number (TFN) 

Out of the several types of fuzzy numbers that exist, most of the times 

trapezoidal fuzzy numbers are used for tackling the imprecise nature of the 

parameters associated with the real life applications for two important reasons. 
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Firstly, it is the most generic class of fuzzy numbers and has a linear 

membership function. Therefore, it is widely used in modelling the uncertainty 

of the scientific and applied engineering problems. Secondly, its simplicity both 

in terms of concept and computation increases its use while dealing with 

problems like CSPP (Bansal, 2011). 

 

(I) Membership Function of TFN 

A Trapezoidal Fuzzy Number # = ���, ��, ��, ��� can be represented by the 

following membership function where	�� ≤ �� ≤ �� 	≤ �� (Bansal, 2011).  

���� = 	
AB
C
BD 0,																		� < ������

����� ,							 		�� 	< �	 ≤ ��
1, 														�� < 	�	 < ������
����� , 							�� 	≤ 	�	 < ��

0,																		� > ��
																																			                            (2.16)          

 

(II) Fuzzy Arithmetic using TFN 

 

Definition 1:   Addition of TFN 

In problems where the goal is to determine the shortest interconnect, we need to 

find out the sum of the weights assigned to the edges and when the weights are 

fuzzy numbers; the procedure is not the same as that for real numbers. As stated 

in section 2.2.2 (I), each TFN is represented by a set of four values and if we 

have two such TFN represented as = ���,��, ��, ���		��
		+ = ���,��, ��, ��� , 
then the formula for their addition is as follows (Bansal, 2011): 

#	 + + = 	 ���,��, ��, ��� 	+ 	 ���,��, ��, ���	 
													= 	 ��� + ��	, �� + ��	, 	�� + ��	, �� + ���	                                        (2.17) 
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Definition 2: Ranking of TFN 

As discussed earlier, one important property that exists in case of real numbers 

is that of natural ordering which is lacking in case of fuzzy numbers. Several 

methods have been suggested for ranking TFN. In the literature, these methods 

are usually compared against each other using small handpicked examples. 

Three recently introduced techniques of ranking TFN are discussed below and 

their behaviour is compared on a non-trivial constrained fuzzy shortest path 

problem in subsequent sections.     

      

(a) Circumcenter of Centroids (COC) 

Many of the methods proposed use the centroid of the trapezoid for ranking of 

TFN as it can be considered the balancing point but the technique suggested by 

Rao and Shanker (2011) considers the COC to be a better reference point as it is 

determined by joining the centroids of the three sub parts of the trapezoid i.e., 

two triangle and one rectangle. We get another triangle on joining the three 

centroids and the circumcenter of this resultant triangle when used as a 

reference point for ranking of TFN, gives a more accurate result. For details see 

Fig. 2.12.  

 According to Rao and Shanker (2011), the following formula can be 

used to determine the COC of any given TFN. If		# = ���,��, ��, ���, then 

 

^6^�#� = ��,  � = U�������������. ,
�������������������������

�� V              (2.18) 

This value of ^6^�#�	is then used to determine the rank of fuzzy number # 

using the following formula: 

��#� = ��� +  �	                                                                                        (2.19) 

For two given fuzzy numbers	#	��
	+, ��#� > ��+�	implies # > + and ��#� < ��+�	implies # < +. In the third case, when	��#� = ��+�, we need 

some additional information to determine the rank of  #	��
	+ and for that we 

use the following procedure: 
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Index of Optimism: An index was defined by Rao and Shanker (2011) that 

relates to the decision maker’s view point by considering his degree of 

optimism. If we have a fuzzy number # = ���, ��, ��, ��� and ^6^�#� then the 

index of optimism can be stated as: 

T/�#� = � + �1 − ��� where		��(0, 1)                                               (2.20) 

If the value of � is large, it shows that the decision maker is more optimistic and 

vice versa. 

Index of Modality: Another index called index of modality was proposed by Rao 

and Shanker (2011) for ranking of fuzzy numbers	#	��
	+ which considers the 

importance of both the central value as well as the extreme values. The index of 

optimism alone was not sufficient enough for ranking as it considered only the 

extreme values of ^6^. The index of modality can be represented as: 

T/,0�#� = ���� +  � 2⁄ � + �1 − ��T/�#� where		� ∈ (0, 1)                    (2.21)   

Following the index stated above we can tackle the situation where ��#� =��+� by calculating T/,0�#�	and	T/,0�+�. If T/,0�#� > T/,0�+� it implies	# > + 

and vice versa. 

 

(b) Maximizing Set (MAS) and Minimizing Set (MIS) 

A concept of total utility (combination of left and right utility values) using 

MAS and MIS was proposed by Chen (1985) for ranking fuzzy numbers but 

some shortcomings were discovered in this method like the incapability of 

ranking those fuzzy numbers which had the same left, right or total utility 

values. To overcome these limitations, Chou et al. (2011) suggested a revised 

ranking approach in which two left and right utilities were considered instead of 

just single left and right utility value while calculating the total utility. In 

addition, the revised approach also considers the degree of optimism of the 

decision maker and has the capability of differentiating between various types 

of fuzzy numbers. 
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 In (Chou, Dat, & Yu, 2011), for a TFN # = ���, ��, ��, ���, ��1 and ��
 

are used to represent the left and right membership functions, which according 

to Eq. 2.16 are as follows: 

 ��1��� =
����
�����       and        ��
��� =

����
�����                                                   (2.22) 

If n trapezoidal fuzzy numbers are considered i.e., #	, � = 1,2, … … � with 

membership function �� then the S#��S�	��
	ST���� with membership 

functions �2 	��
	�3  respectively are represented as follows: 

�2��� = R(�� − ��	!� ����� − ��	!�⁄ )�	, ��	! ≤ � ≤ ����
0																																												,			��ℎ	���/	                       (2.23) 

�3��� = R(����� − �� ����� − ��	!�⁄ )�	, ��	! ≤ � ≤ ����	
0																																												,			��ℎ	���/	                      (2.24) 

Where		��	! = inf � , ���� = sup � , � =∪	4�! �		, �	 =2� ����� ≻ 0⁄ 3	��
	0 = 1  

As stated earlier, in this revised approach suggested by Chou et al. (2011), pair 

wise computation is performed and for each #	, two left utilities and two right 

utilities are calculated. The formulas for utilities are stated below: 

Right Utilities.  

�2�� = sup� U�2��� ∧ ���
���V , � = 1,2.                                                       (2.25) 

�3�� = sup� U�3��� ∧ ���
���V , � = 1,2.                                                        (2.26) 

Left Utilities.  

�3�� = sup� U�3��� ∧ ���1���V , � = 1,2.                                                        (2.27) 

�2�� = sup� U�2��� ∧ ���1���V , � = 1,2.                                                       (2.28)              

The formula for total utility which also considers the decision maker’s degree of 

optimism by using the parameter : is as follows: 
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�(���� = � :I�2����� + 1 − �3�����J +�1 − :�I�2����� + 1 − �3�����J� 2]               � = 1,2.					             (2.29) 

The functions �2	��
	�3  of 	S#��S�	��
	ST���� respectively intersects the 

left membership function ��1 and the right membership function ��
 of the fuzzy 

number	#. The points of intersection for a TFN #	 =	(�	� ,�	� , �	� , �	�) can be 

denoted as S	�,S	�	��
	�	�,�	� and the following equations can be used to 

determine their values: 

�2�� =
������
��������

5�������6�����
������
                                                                         (2.30)    

�2�� =
�������
5�������6

=
��������

5�������6�����
������
                                                      (2.31)                                                                       

�3�� =
������
��������

5�������6�����
������
                                                                      (2.32) 

�3�� =
�������
5�������6

=
���
����

5�������6�����
������
                                    (2.33) 

Thus, for each fuzzy number #	, the total utility value is given by: 

�(���� =
�
� W: Z ��������

5�������6�����
������
+

��������
5�������6�����
������

\ + �1 −

:� Z ��������
5�������6�����
������

+
��������

5�������6�����
������
\X,	� = 1, 2.                      (2.34) 

For two given fuzzy numbers #�	and	#�, if �(��#�� > �(��#�� then #� > #� 

and vice versa. 

 

(c) Weighting Function (WF) 

Another method of ranking fuzzy numbers was proposed by Saeidifar (2011). 

The interesting fact about this ranking technique is that it uses two things i.e., 

fuzzy numbers are defuzzified and a weighting function is applied. In this 

approach a weighted distance measure is defined on fuzzy numbers and then 

this distance is minimized to obtain the point approximations and the weighted 

interval of fuzzy numbers. 
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 According to Saeidifar (2011), a few definitions for a fuzzy number #  

with (#)7 = I����,����J and a weighting function ���� = W����,����X are as 

follows: 

 

(i) Nearest e = Ue, eV − weighted interval approximation (NWIA): 

"`T#8�#� = =� ��������	
�, � ���������
�

�
� 	
�?                                     (2.35) 

                                                   

(ii)e − weighted mean: 

58�#� =
9 8�7���7��8�7���7��

�

� 
�                                                                    (2.36)                             

Therefore, for the fuzzy number, the weighting mean 58�#� is denoted as: 

58�#� =
�
�� ��������	
� + ���������

� 	
�  

          =
9 8�7���7�	�7�9 8�7���7��

�

�

�
	�7

9 8�7���7��9 8�7���7��

�

�

�

                                                              (2.37) 

If we have two fuzzy numbers #	��
	+ and a WF ��� then the ranking can be 

determined in the following way: 

# ≺ +	��	��
	��� 	��	58�#� < 58�+�	, 
# ∼ +	��	��
	��� 	��	58�#� = 58�+�	,	 
# ≻ +	��	��
	��� 	��	58�#� > 58�+�                         
 

(III) Application of TFN 

 

(a) Constrained Fuzzy Shortest Path Problem (CFSPP) 

As stated earlier CSPP is an NP-Complete problem. Techniques suggested to 

solve this problem reduce the number of different values (cost or delay) by 

using the process of discretization so that the problem can be reduced to a 
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polynomial time solvable problem (Chen, Song, & Sahni, 2008). The amount of 

error introduced during the process of discretization determines the 

effectiveness of these techniques. Taking into consideration two factors, (1) the 

utilization of limited resources and (2) improving the efficiency of network 

functions, Chen et al. (2008) suggested two methods of discretization, namely 

randomized discretization and path-delay discretization. 

 

(i) Path Delay Discretization 

Here we use the path-delay discretization technique to solve CFSPP. Instead of 

working with individual link delays as in case of randomized discretization 

which leads to the problem of error accumulation. Path-delay discretization 

deals with path delays and discretization is performed using interval partitioning 

method so the problem of error accumulation is eliminated (Chen, Song, & 

Sahni, 2008). For a given path	., 


:�.� = ���;�� ��                                                                                            (2.38) 

Where ��� = �������� is the largest integer not greater than �. 
�.� denotes 

the delay of the path	., � is the given delay requirement and the delay 

requirement is bounded by an integer	�. 

 

(ii) Problem Formulation 

Given network is denoted as ���,�� where � is a set of �  nodes and  � is a set 

of � links. Each edge ��, �� ∈ �	has a delay and a cost value associated with it 

denoted as 
��, �� and 1��, �� respectively. For a path	., the delay and cost of 

the path are denoted as 
�.� and 1�.� respectively where 


�.� = 	 ∑ 	
��, ���<,=�	∈	;                                                                              (2.39) 

1�.� = 	 ∑ 	1��, ���<,=�∈;                                                                                (2.40) 

The length of the longest path in the network is denoted by	5. A path 	. is called 

a feasible path if 
�.� ≤ � where � is the given delay requirement and the 
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cheapest feasible path is one that not only satisfies the delay requirement but for 

which the cost 18.�,�9 is the minimum among all possible paths connecting the 

source node / and the destination node � (Chen, Song, & Sahni, 2008). 

 In case of CFSPP, the cost values 1��, �� are trapezoidal fuzzy numbers. 

Therefore, the cost of the path 1�.� can be determined using Eq. 2.17 and the 

cheapest possible path can be determined using the ranking methods discussed 

in Definition 2 of section 2.2.2 (II). 

 

(iii) CFSPP Problem 

Given a graph b��,}� with a fuzzy cost and a crisp delay associated with each 

edge, find the cheapest path that satisfies the given delay constraint. 

 

(iv) Proposed Algorithm for CFSPP       

  bhd_po�j(	pn�lp, cdghd�l, �fcd) 

1. �� = 1�/� − /��	�1ℎ 

2. �� = �� + ���ℎ� 

3. �� = 1�/� + /��	�1ℎ 

4. �� = �� − ���ℎ� 

 timdmpnmwh	��, c, �� 
 

1.efg		�1ℎ	�	��	�	�	�	�, 	�1ℎ	m	�	(�, … … , �) 
2.  bhd_po�j(	pn�lp, cdghd�l, �fcd) 

3.  �(�, �) ≔ 	∞, *(�, �) ≔ "T5, �(�, �) ≔ 	∞ 

4.  �(/, 0) ≔ 0, �(/, �) ≔ 0 

5. hij	efg 
 |hnp�_vs���u,�, m, �� 
 

1. �: ≔ 	����� U>?<,	@�	��<,=�� �V 
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2. bhd_po�j(	pn�lp, cdghd�l, �fcd) 

3. me	�: ≤ 	�	��
	�(�, �:) > �(�, �) + 1��, �� 
 

// Compare 1 using Definition 2(a) of Section 2.2.2 (II) and Eq. 2.18, 2.19, 2.20 and 2.21. 

// Compare 2 using Definition 2(b) of Section 2.2.2 (II) and Eq. 2.34. 

// Compare 3 using Definition 2(c) of Section 2.2.2 (II) and Eq. 2.37.  

 

4.    �(�, �:) ≔ �(�, �) + 1��, �� 
5.    *(�, �:) ≔ � 

6.    �(�, �:) ≔ �����(�, �:), �(�, �) + 
��, ��� 
7. hij	me 
 vs��_�m�qcdgp�b, c, �� 
 

1.timdmpnmwh	��, c, �� 
2. efg	i = 0 to � 

3.     _ ≔ � 

4.     klmnh	_ ≠ � 

5.         � ≔ �����1�_S���_� 
6.         me	�(�, �) = ∞ 

7.          oghpq	���	��	�ℎ		klmnh	���� 

8.         hij	me 

9.    _ ≔ _ − �	�	� 
10.  efg		�	� 	�
E�1	��	��
		�	��	u 

11.    |hnp�_vs���u,�, m, �� 
12.  hij	efg 

13.      hij	klmnh 

14. hij	efg 
 vs���b, c� 
 

1.� ≔ �� 

2. jf 

3. � ≔ 2� 
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4.      vs��_�m�qcdgp�b, c, �� 
5. klmnh	∃�	�	�, 
�.=� > �1 + ���        

// where �� is the path with ������	, �
|	�		�0… . . �
� 

 

The above stated algorithm is an extension of the Path Delay Discretization 

Algorithm (PDA), presented by Chen et al. (2008). The algorithm is capable of 

handling the fuzzy environment. Here we are dealing with two constraints, 

namely cost and delay. Each edge of the graph has two values associated with it 

(cost and delay) and in the fuzzy version of the algorithm we consider one of the 

parameters i.e., cost as a fuzzy number and the other parameter which is delay is 

represented as a real number. Both the values are initially generated randomly 

using gpij(). From these crisp values, the trapezoidal fuzzy number for each 

cost value is generated using bhd_po�j(). pn�lp	and cdghd�l are the two 

constant values supplied by the user for the formulation of TFN. �(�, �),*(�, �)	��
	�(�, �)  are the three two dimensional arrays used which are 

all initialized by the function timdmpnmwh	��, c, ��. The cost of the cheapest path . connecting /	��
	� with 
�.=� = � is stored in the array �(�, �), 
, ∀	�	�	�	��
	�	�	(0, … … , �). �(�, �) is an array that keeps a track of the 

minimum delay of paths connecting /	��
	� for which discretized delays are �. *(�, �) is another array storing the last link of the path. vs��_�m�qcdgp�b, c, �� evaluates �(�, �) and *(�, �) for any target � and any 

given �. This function determines the cheapest path among different delay 

paths, 
�.=��	(0, … … , �). Let the cheapest path be denoted as	.=. The function vs���b, c� calls vs��_�m�qcdgp�b, c, �� iteratively with increasing value of � (as can be observed in the lines 1-4 of the function  vs���b, c� of CFSPP algorithm) till 
�.=� is less than �1 + ��� for all �	�	�. 

 We use three different methods for ranking of fuzzy numbers with the 

aim to compare their performances. The experimental analysis along with the 

result is presented in the next section. The time complexity of the algorithm 

remains the same as specified in (Chen, Song, & Sahni, 2008), i.e., 6��� + � log��5 4⁄ � since the number of arithmetic operations in the fuzzy 

version increases only by a constant factor. 
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(v) Experimental Analysis 

We implemented CFSPP algorithm in C language and compiled using 

CodeBlocks for running on an i5 based system running at 3.20 GHz with 3GB 

RAM. Three versions of the program were written with the three different 

ranking methods as per Eqs. 2.18, 2.19, 2.20, 2.21, 2.34 and 2.37. These 

programs were verified by comparison with hand calculations on small graphs. 

Also, it was verified that for large graphs when the width of fuzzy numbers is 

set to zero the path obtained agrees with algorithm for the crisp case as given in 

(Chen, Song, & Sahni, 2008). 

     Many real networks like the World Wide Web links, biological networks, 

and social networks are known to be scale-free, i.e., the fraction of nodes in the 

network having a given degree follows a power law. Therefore, we created test 

cases using power law random graph model. The test graphs were generated 

using gengraph-win. The parameters used for the random graph generation were 

(n, alpha, min, max, z), where n is an integer denoting the count of degree 

number or the number of nodes, min is the minimum degree, max is the 

maximum degree and alpha is the exponent of the power law distribution which 

is a random number between 1-2.5. The command “distrib n alpha min max z” 

was used to generate a sample of n integers in the range specified by min-max 

from a heavy-tailed distribution of exponent alpha and average z. The 

experiments were repeated sufficient number of times with n = 250, alpha = 2.5, 

min = 25, max = 75 and z = 45 and conclusions were drawn based on the 

average behaviour. The graph generator gengraph-win gave un-weighted power 

law graphs with random structure. Random weights were assigned to the edges 

using uniformly distributed random numbers in the range 10 to 100 obtained 

using the C rand() function.  

     The results are shown in the following figures. In Fig. 2.11(a), the 

defuzzified cost of the shortest path found is plotted against the delay 

requirement. It was observed that as we relax the delay requirement, the cost of 

the shortest path found by the algorithm decreases and finally at very large 

values of delay requirement, the delay constraint becomes insignificant and the 

algorithm runs like the classical shortest path algorithm viz. Dijkstra’s algorithm 

giving the same result for both the algorithms. In terms of cost, MAS/MIS and 
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WF methods provide better results than COC. In Fig. 2.11(b), the path 

discretization error that comes into existence due to discretization is shown for 

all the three methods and it was observed that in terms of path discretization 

error, COC shows better performance than the other two methods. This may be 

due to the fact that COC is equidistant from each vertex (i.e., centroids of the 

two triangles and central rectangle) as shown in Fig. 2.12. Fig. 2.11(c) shows 

how the change in delay requirement, affects the CPU execution time of the 

three methods and from the graph it is visible that WF is better than the other 

two techniques in this aspect. We also notice that the CPU execution time 

generally increases when the delay requirement is relaxed (increased). This is 

because with relaxed delay constraint, there is an increase in number of feasible 

paths thereby increasing the size of search space that has to be explored by the 

algorithm. 

As the delay requirement is relaxed, the cost of cheapest path found 

decreases and for very high delay requirement value, the cost of shortest path 

reduces and tends to Dijkstra’s values as shown by the blue part of the plot in 

Fig. 2.13. In the same figure, the green and red regions of the surface 

demonstrate the effect of the proposed algorithm and shows how the cost of 

shortest path found by the algorithm increases with stricter delay constraint. The 

behaviour of the proposed algorithm shows a marked deviation from Dijkstra’s 

algorithm when delay constraint is strict (i.e., small), as is clearly seen in Fig. 

2.13. The cost obtained by all the three methods in the form of trapezoidal fuzzy 

numbers with respect to a constant delay constraint of 30 is shown using a box 

and whisker plot in Fig. 2.14. As visible in Fig. 2.14, the cost obtained by COC 

method of ranking is much higher than the cost obtained by the other two 

methods, namely MAS/MIS and WF. 
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Fig. 2.11(a): Behavior in terms of cost of shortest path shown by different 

ranking methods by varying the delay requirement on a random graph 

with 250 nodes generated by gengraph-win 

 

 

Fig. 2.11(b): Behavior in terms of path discretization error shown by 

different ranking methods by varying the delay requirement on a random 

graph with 250 nodes generated by gengraph-win 
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Fig. 2.11(c): Behavior in terms of CPU Execution time shown by different 

ranking methods by varying the delay requirement on a random graph 

with 250 nodes generated by gengraph-win 

 

 

 

 

Fig. 2.12: The point considered as Circumcenter of Centroid (COC) is 

shown by X 
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Fig. 2.13: A surface plot with the delay requirement, cost and CPU 

execution time of WF 

 

 

 

 

 

Fig. 2.14: Box and Whisker plot showing the fuzzy cost as a TFN with four 

parameters at the delay requirement = 30 units 
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(b) Wireless Sensor Networks 

Recent technological advancement has given rise to the necessity of establishing 

a connection or a relationship between the physical world and the digital world 

and a wireless sensor network (WSN) plays an important role in creating such a 

connection. A WSN is a collection of nodes (called motes) interfaced with an 

array of diverse sensors and possessing the ability to perform limited 

computations. The sensor nodes are connected through wireless links to 

communicate the sensor outputs to a designated destination. These sensor 

networks are capable of fulfilling the demands of the end user by providing 

precise and reliable information in terms of time and space of the 

process/system under consideration obtained through sensor measurements. 

These WSN are ad hoc in nature as they do not have a predefined architecture 

like the one that exists in case of wired networks (Meguerdichian, Koushanfar, 

Qu, & Potkonjak, 2001). 

Each mote in a WSN has (1) a microprocessor and some memory for 

processing of signals and scheduling of tasks, (2) an array of sensors which is 

capable of measuring the changes in the physical environment like the presence 

of toxic gases, seismic activity, temperature, humidity, pressure etc., (3) a 

transceiver for transmitting and receiving data and is responsible for forwarding 

the data to its neighbouring nodes (lying within its radio range). The advantage 

of WSN is that it is decentralized in nature which makes the network scalable 

and more robust but because these networks are battery operated, energy is to be 

conserved to save the motes from dying out. Another limitation of WSN is the 

communication bandwidth which is restricted to its wireless frequency range 

(Zhao, & Guibas, 2004). A simplified view of a mote is shown in Fig. 2.15. 

A WSN can be represented as a graph where motes and wireless links of 

WSN correspond to the nodes and edges of the graph respectively. WSNs can 

be modelled using both a directed as well as an undirected graph. If the radio 

range of all the nodes is same / different then they are modelled using an 

undirected / directed graph. A WSN with motes lying in a plane can be signified 

by a unit disc graph (UDG) in which a circle is used to symbolize a mote (centre 

of the circle) and its radio range (radius of the circle) as shown in Fig. 2.16. All 
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the nodes within a circle are adjacent to the node at the centre (Shukla, & Sah, 

2013). 

WSN has a wide range of applications which includes environmental 

monitoring, battlefield awareness, infrastructure protection, industrial sensing 

and diagnostics, context-aware computing etc. (Capella, Bonastre, Ors, & Peris, 

2013; Lee, & Chung, 2009; Shepherd, Beirne, Lau, Corcoran, & Diamond, 

2007; Zhao, & Guibas, 2004; Zhuiykov, 2012) and as stated earlier, WSNs are 

battery operated, so these networks have a life till the battery can supply power. 

This leads to the need of determining shortest paths (SP) for the routing of data 

such that energy can be utilized optimally and the network lifetime can be 

increased. Another method of preserving the network energy and increasing the 

throughput is to reduce the energy consumption and at the same time maintain 

appropriate end to end delay. This additional constraint of delay along with that 

of energy consumption makes the determination of SP an intractable problem 

which can be stated as the constrained shortest path problem (CSPP) (Chen, 

Song, & Sahni, 2008). Considering the fields where WSN finds its applications, 

we observe that the network parameters involved like energy and delay cannot 

be assessed precisely since the characteristics of radio links depends upon a 

number of conditions including weather conditions like temperature and 

humidity. This gap can be filled by using fuzzy numbers to represent the 

network parameters and tackle the uncertainty involved. 

 We use TFN to represent the parameters energy and delay and determine 

a constrained shortest path in a WSN by using the path delay discretization 

technique suggested by Chen et al. (2008). Though the algorithm presented here 

is most suitable for the network-flow and QoS aware routing protocols of 

WSNs, it can still be adapted for other routing protocols available for WSNs 

like location-based protocols, hierarchical protocols, data-centric protocols etc. 

with small and appropriate modifications (Akkaya, & Younis, 2005; Xiangning, 

& Yulin, 2007). 
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Fig. 2.15:  Block diagram of a typical Wireless Sensor node (mote) 

 

 

 

Fig. 2.16: A Wireless Sensor Network (WSN) represented as a Unit Disc 

Graph (UDG)  

 

 

T/R: Radio Transceiver                       I/O: Input / Output Interface 

��, ��, �� : Sensors                               CPU: Central Processing Unit 
RAM: Random Access Memory         ROM: Read Only Memory  
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(i) Proposed Algorithm 

The CFSPP algorithm stated in section 2.2.2 (III) (a) (iv) can be used in WSNs 

with the difference that the function for creating the TFN accepts “energy” as its 

input value instead of cost i.e., (pn�lp, cdghd�l, hihg x) function is used 

and the structure of TFN is shown in Fig. 2.17. 

 

 

 

Fig. 2.17: Pictorial representation of trapezoidal fuzzy number 

 

(ii) Experimental Analysis   

CFSPP algorithm was implemented in C language and compiled using 

CodeBlocks. All experiments were performed on an Intel® i7 based system 

running at 3.40 GHz with 2GB RAM. The test cases were generated using the 

power law random graph generator gengraph-win (http://www-

rp.lip6.fr/~latapy/FV/generation.html ). This network model is scale free, i.e., 

the fraction of nodes in the network having a given degree follows a power law 

(M. Faloutsos, P. Faloutsos, & C. Faloutsos, 1999). Since radio range of motes 

is small, the probability of nodes with high degree is low. Therefore the power 

law graph is an appropriate model for WSN. We generated our test cases using 

gengraph-win which gave an un-weighted power law graph having a random 

structure and then uniformly distributed random numbers ranging from 10 to 

100 were assigned to the edges of these graphs. The random edge weights were 

generated using the C rand() function. We applied the CFSPP algorithm on 

graphs with 50, 100, 150 and 200 nodes and observed the effect of fuzzifying 
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both the parameters viz. energy and delay. It was seen that when the delay 

constraint value (input) was small, the energy consumption of the path obtained 

was very high. As the value of delay constraint was increased, the energy 

consumption of the path obtained kept on decreasing up to a certain point after 

which the delay constraint was almost insignificant and the energy consumption 

of the path became constant. At this point the behaviour of CFSPP algorithm 

was similar to the classical shortest path Dijkstra’s algorithm. We verified our 

results with the one obtained by applying the Dijkstra’s algorithm on the same 

test cases. Fig. 2.18(a) shows the above stated observation for a graph with � = 200, ���ℎ� = 2.5,��� = 20,��� = 30	��
	� = 23. The comparison for 

all the four networks with number of nodes (n) as 50, 100, 150 and 200 is 

shown in Fig. 2.18(b). The deviation of energy consumption from the optimum 

value (i.e., the one obtained using Dijkstra’s algorithm) is presented in Table 

2.11. As can be observed, for n = 50, no feasible path could be found for strict 

values of delay constraint i.e., between 9 to 30 as denoted by * in Table 2.11. As 

the delay constraint value was relaxed i.e., between 40 to 80, feasible paths 

connecting the source and target were found but with high energy consumption 

values. This energy consumption value decreased with an increase in the delay 

constraint value and for higher values of delay constraint i.e., between 90 to 

500, the energy consumption value for the obtained feasible path was the 

optimum and agreed with the value obtained by applying the Dijkstra’s 

algorithm (as shown by value 0 in Table 2.11). A similar behaviour was seen for 

other network sizes with n = 100, n = 150 and n = 200. Fig. 2.19 shows how the 

energy consumption value increases with each iteration (as a new edge is added 

to the path) for two cases i.e., one satisfying the strict and the other satisfying 

the relaxed delay constraint. In Fig. 2.20, it was observed that as the path is 

formed, with each iteration an edge is added to form the final path so the path 

delay value keeps on increasing with each iteration but the final path satisfies 

the input delay constraint which in our case is taken as 350 and a comparison 

for four different network sizes (n = 50, n = 100, n = 150, n = 200) is presented. 
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(b) 

 

Fig. 2.18: (a) Behaviour of the CFSPP algorithm when applied on a graph 

with 200 nodes generated using gengraph-win with source �¡� = 45 and 
target �¢� = 68, (b) Comparison of the same behaviour for four different 
network sizes with source �¡� = 4 and target �¢� = 45 
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Table 2.11: The energy deviation from unconstrained optimum for 

increasing delay constraint 

 

Delay 

Constraint 

Energy Deviation From Unconstrained 

Optimum 

n = 50 n = 100 n = 150 n = 200 

9 * * * 400 

10 * * * 234 

15 * * * 148 

20 * 48 767 122 

25 * 48 441 122 

30 * 48 283 122 

40 304 48 178 22 

50 251 48 91 22 

60 173 16 51 22 

70 173 16 0 22 

80 173 16 0 22 

90 0 0 0 22 

100 0 0 0 0 

150 0 0 0 0 

200 0 0 0 0 

300 0 0 0 0 

500 0 0 0 0 
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Fig. 2.19: Progress of the CFSPP algorithm in terms of energy consumption 

with a strict and a relaxed delay constraint when applied on a graph with 

200 nodes generated using gengraph-win 

 

 

 

 

 

Fig. 2.20: Progress of the CFSPP algorithm in terms of path delay with 

delay constraint= 350 when applied on a graph with 50, 100, 150, 200 nodes 

generated using gengraph-win                                               
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2.3 Max – Min Formulation for Orienteering Problem 

In engineering design or decision making problems, a large number of feasible 

solutions are available and to choose the solution which is the best one from this 

set, we need to concentrate on the uncertainty associated with the variables that 

lead to the optimal solution. Probabilistic concepts can take care of the 

randomness that arises due to natural fluctuation or natural variations but the 

uncertainty that comes into existence due to qualitative statements, vague 

statements, vague nature of the objective, linguistic statements showing the 

willingness of the decision maker (like the solution is acceptable, low, 

satisfactory etc.) cannot be addressed through probabilistic concepts. 

Consequently, we introduce the concept of fuzzy logic in solving the 

optimization problems. In the crisp definition of optimization problems, we 

have crisp conditions where solutions violating the constraints or not satisfying 

the objective function are completely unacceptable but in fuzzy optimization, 

the concept of degree is introduced. The solution becomes a matter of degree 

i.e., degree of acceptability or degree of satisfaction is associated with the 

constraints and the objective functions, and this way we provide a latitude to the 

acceptability of a solution. This degree of acceptability linked with the objective 

functions and constraints can be reflected through fuzzy membership functions.  

To deal with the situations where several stakeholders vaguely state their 

preferences as constraints or objective functions using linguistic statements, we 

convert these statements into fuzzy sets or fuzzy membership functions and then 

using some technique find out the best “compromise solution”. In fuzzy 

optimization, we do not distinguish between the objective functions and the 

constraints instead refer to them as fuzzy goals, represented in the form of fuzzy 

sets defined by their respective membership functions. Therefore, the latitude or 

uncertainty present in the decision making is tackled through these membership 

functions. In addition to the fuzzy goals, we can also have crisp constraints 

modelling the physical conditions or technological feasibility that have to be 

met in a particular solution. 

The whole idea of fuzzy optimization is to allow for latitude in the 

constraints and flexibility in the objective function. Instead of a 0-1 type 

solution, we allow for some violation of the original constraints to some degree, 
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set certain limit for the objective function and accept solutions on both sides of 

the limit to different degrees. The objective function and the set of constraints 

are converted into fuzzy sets, their associated membership functions are defined 

and then all the membership functions are combined to determine the fuzzy 

decision. Through fuzzy optimization, the preferences of the decision maker are 

quantified and the uncertainty due to vagueness, imprecision etc. which is 

common in decision making problems are tackled using membership functions 

(Kaymak, & Sousa, 2001; Loucks, & Beek, 2005; Ramik, 2001). 

 

2.3.1 Basic Definitions 

 

(a) Expected Value of Trapezoidal Fuzzy Number (EV) 

To determine the grade of membership of a TFN i.e., to find out the degree to 

which the TFN satisfies the specified requirement we need to calculate its 

expected value and then use definition in section 2.2.2 (I). The formula for 

expected value is as follows (Jimenez, Arenas, Bilbao, & Rodriguez, 2007): 

For a given TFN	# = ���,��, ��, ���, 
���#� =

�
� ��� + �� + �� + ���                                                                   (2.41) 

 

(b) Fuzzy Decision Set (£) 

Fuzzy decision set is a set of elements providing a feasible solution to the stated 

problem. The fuzzy linear programming problem can have several goals each 

represented by a membership function and a fuzzy set (��) containing the 

elements along with their grades of membership obtained using the membership 

function (Jimenez, Arenas, Bilbao, & Rodriguez, 2007). 

We define the fuzzy decision as: 

H = �� ∩ �� ∩ … … … ∩ �� 
i.e.,							A��� = )���� ∗ )���� ∗ … … … … . .∗ )����                                (2.42) 
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where 	∗ represents a � − ���� which can be any operation like �������, ��!	����1	���
�1�, 	�1.  In case of OP, ∗ represents ������� 

operation. To obtain the most desirable solution, we determine the element with 

the highest membership degree in the fuzzy decision set H i.e., the value of � 

that maximizes the membership function of fuzzy decision H denoted by �∗ 
using the equation stated below: 

A∗��∗� = ����A����                                                                                (2.43) 

Where H∗ denotes the fuzzy set of the most desirable solution. 

 

2.3.2 Problem Definition 

The orienteering problem can be represented by a completely connected 

undirected graph ���,�� where � = ���, … … , �B� is the set of vertices and E is 

the set of edges. A score �	 is associated with every vertex �		�	� and the time 

taken to traverse each edge 		�	�	� is denoted by �	�. The goal here is to 

determine a path . connecting any subset of � that necessarily includes the start 

vertex ���� and the end vertex ��B�, satisfies the time bound -��� and also 

maximizes the total collected score (Vansteenwegen, Souffriau, & Oudheusden, 

2011). 

In this chapter, we present the fuzzy orienteering problem (FOP) where 

the two quantities involved, namely time and score are considered to be fuzzy 

numbers. The reason to introduce fuzziness into the formulation of OP is that 

the crisp mathematical formulation is very strict in three ways: (1) the objective 

function should be either maximized or minimized; (2) none of the constraints 

should be violated as it leads to an infeasible solution and (3) all constraints are 

given equal importance. However, these three necessary requirements lead to an 

unrealistic representation of the real world. By partly relaxing these using fuzzy 

logic, we can model the physical world in a more realistic manner. Several 

situations might exist in real life applications that can be easily represented in 

the fuzzy environment which may include the following (Zimmermann, 2010): 

The decision maker is not willing to maximize or minimize the objective 

function; instead he wants to reach some aspiration level like ‘improve the 

present fuel consumption situation to some extent’ in transportation problems 
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which cannot even be defined or stated in the crisp case. May be the decision 

maker is willing to accept small violations in the constraints especially when the 

objective function deals with the aspiration levels and the less than or greater 

than relation is not required to be followed in the strict mathematical sense. 

Moreover, the parameters or variables involved may have vagueness which 

cannot be expressed in the crisp formulation. In the crisp representation, all 

constraints are of equal importance but may be for the decision maker, different 

constraints have different importance and small violations of different 

constraints may be acceptable to different degrees. 

In this fuzzy formulation of OP, we have recognized that the parameters 

time and score are fuzzy in nature and in the fuzzy version we provide latitude 

to the desired solution by relaxing the constraints to some extent and stating the 

degree up to which they are feasible. Here we do not distinguish between 

objective function and constraints instead the two necessary conditions of 

maximizing the total collected score and following the time bound are 

represented as two goals which are conflicting as one is to be maximized and 

the other one is to be minimized. These are represented as linear membership 

functions and the rest of the constraints are considered to be crisp. The detailed 

explanation of the fuzzy formulation is presented in the next section. 

 

2.3.3 Fuzzy Formulation of OP 

The fuzzy version can be represented in the following way showing by tilde the 

parameters that have a fuzzy character: 

∑ ∑ �C¤B�4�B��	4� �	� ≿ 	 ��	!																																																																																							  (2.44) 

∑ ���B�4� = 1				,			 ∑ �	BB��	4� = 1																																																																										  (2.45) 

∑ �	�B��	4� ≤ 1						∀	0 = 2, … … . ," − 1																																									                     (2.46) 

∑ ���B�4� ≤ 1						∀	0 = 2, … … . ," − 1																																																															  (2.47) 

∑ ∑ �CD¥�	�	B�4�B��	4� 	≾ 	 -���																																																																																				  (2.48) 

2 ≤ �	 ≤ "					∀	� = 2, … … . ,"																																																																											  (2.49) 
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�	 − �� + 1 ≤ �" − 1�81 − �	�9											∀	�, E = 2, … … … ,"																									  (2.50) 

�	� 	�	�0,1�			∀	�, E = 1, … … ,"                                                                       (2.51) 

As stated above, the constraints represented by Eqs. 2.44 and 2.48 are 

considered to be fuzzy and represent the two conflicting goals of maximizing 

the total collected score and minimizing the time taken to traverse a path 

respectively. The remaining constraints represented by Eqs. 2.45, 2.46, 2.47, 

2.49, 2.50 and 2.51 remain crisp. The variable �	 denotes the position of vertex �	 in the path and if vertex ��  is visited after vertex �	 , then �	� = 1 else �	� = 0. 

The necessary condition that each path starts in �� and ends in �B is ensured by 

Eq. 2.45. The constraint that each path remains connected and no vertex is 

visited more than once in a path is taken care by Eqs. 2.46 - 2.47 and the 

requirement of eliminating sub tours is implemented by Eqs. 2.49 - 2.50 

(Vansteenwegen, Souffriau, & Oudheusden, 2011). The symbols ‘≿’ and ‘≾’ 

are the fuzzy version of ‘≥’ and ‘≤’ representing the ‘fuzzy greater than or 

equal to’ and ‘fuzzy less than or equal to’ respectively. The meaning of these 

symbols is that the constraints can be violated to some extent and depending on 

the importance of the constraint, this violation leads to different degree of 

acceptance (Jarray, 2011). For example, in Eq. 2.44, the symbol ‘≿’ indicates 

that the total collected score of a particular path should be greater than ��	! 

(most desirable case) but those paths which have their total collected score 

slightly less than ��	! i.e., up to ��	! − 	. are also acceptable but to a lesser 

degree. Similarly, in Eq. 2.48, the total time taken to traverse a path should be 

less than -��� (most acceptable case) but paths having their total time greater 

than -��� are also acceptable to different degrees up to the limit of -��� + 	5 as 

signified by the symbol ‘≾’. The two fuzzy goals can be represented by their 

membership functions as shown in Fig. 2.21 and 2.22. The fuzzy decision set H	��
	H∗ is depicted in Fig. 2.23. It denotes the best ‘compromise solution’ 

which is obtained by the following max-min formulation: 

H = �� ∩ ��                                                                                                   (2.52) 

A��� = ����(���, *����                                                                         (2.53) 
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A∗��∗� = ����A���� = ���2����(���,*����3                                 (2.54) 

The intersection of the two fuzzy sets (��	��
	��) is the minimum value of the 

two fuzzy sets for each �, which forms the fuzzy decision set H (as shown by 

dark straight lines) and the maximum value of this decision set Z forms the 

other set H∗ which holds the most desirable solution (as shown by the dashed 

line) of Fig. 2.23. 

 

 

Fig. 2.21: Membership Function for total collected score of a path 

 

 

 

Fig. 2.22: Membership Function for total time taken to traverse a path 
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Fig. 2.23:  Fuzzy decision set £	pij	£∗ 

 

2.3.4 FOP Algorithm 

Following are the steps to determine the path that maximizes the total collected 

score within the specified time limit for a given  ���,�� with  " nodes: 

1) Determine all the possible paths ( �̀) connecting �� and �B (using Eqs. 2.45, 

2.46, 2.47, 2.49, 2.50 and 2.51). 

2) For each possible path: 

(a) Calculate the total time taken to traverse the path and the total collected 

score (using Eq. 2.17). 

(b) Calculate the expected value of the total time taken to traverse the path and 

the total collected score (using Eq. 2.41). 

(c) Calculate its membership degree for the membership function of time (using 

Eq. 2.48 and Fig. 2.22). Let it be denoted as fuzzy set	��. 

(d) Calculate its membership degree for the membership function of score 

(using Eq. 2.44 and Fig. 2.21). Let it be denoted as fuzzy set	��. 
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3) Determine the feasible paths denoted by the fuzzy decision set H obtained 

using definition in section 2.3.1 (b) and Eq. 2.42. 

4) Most desirable path (final solution) is denoted by the fuzzy decision set H∗ 

obtained using definition in section 2.3.1 (b) and Eq. 2.43. 

5) If the fuzzy decision set H∗ contains more than one paths, the total collected 

score (�	) for each of the paths in H∗ can be ranked (using definition 2(a) of 

section 2.2.2 (II) and Eqs. 2.18, 2.19, 2.20 and 2.21) to determine the path that 

maximizes the total collected score. 

 

2.3.5 Illustrative Example 

Consider the following network ���,�� with total number of nodes		" = 5. 

 

 

 

Fig. 2.24: Input Graph b��,}� with source vertex = 1 and destination 
vertex = 5 
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Table 2.12:  The value of edge weights (time taken to travel from one node 

to another) 

 

Edge Label Fuzzy Time  

Values 	�� A �1,4,6,9� 	�� B �6,9,13,16� 	�� D �14,15,21,22� 	� C �4,6,8,10� 	�� E �2,3,3,4� 	�� G �5,8,8,11� 	� H �14,18,22,26� 	�� I �5,8,12,15� 	� J �0,2,10,12� 	� K �1,2,2,3� -��� = 20, 5 = 15 

 

 

Table 2.13:  The value of node weights (score values) 

 

Node Label Fuzzy Score 

Values �� 1 �1,2,8,9� �� 2 �8,9,11,12� �� 3 �3,5,9,11� �� 4 �17,20,24,27� � 5 �1,2,4,5� ��	! = 25,. = 13 
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Step 1: All possible paths connecting �� and � are found that satisfy the Eqs. 

2.45, 2.46, 2.47, 2.49, 2.50 and 2.51 and are as follows: 

 

�̀: 1 − 5  

�̀: 1 − 2 − 5 

�̀: 1 − 3 − 5 

�̀: 1 − 4 − 5 

̀: 1 − 2 − 3 − 5 

.̀: 1 − 3 − 2 − 5 

È: 1 − 2 − 4 − 5 

F̀: 1 − 4 − 2 − 5 

G̀: 1 − 3 − 4 − 5 

�̀�: 1 − 4 − 3 − 5 

�̀�: 1 − 2 − 3 − 4 − 5 

�̀�: 1 − 2 − 4 − 3 − 5 

�̀�: 1 − 3 − 4 − 2 − 5 

�̀�: 1 − 4 − 3 − 2 − 5 

�̀: 1 − 4 − 2 − 3 − 5 

�̀.: 1 − 3 − 2 − 4 − 5 

 

Step 2(a): Table 2.14 shows the total time taken to traverse and total collected 

score for each of the above stated paths which is calculated using Eq. 2.17. 

Step 2(b): Next we calculate the expected value of the total time taken to 

traverse the path and the total collected score (using Eq. 2.41) for each of the 

paths �̀	��	 �̀. as shown in Table 2.15. 

Step 2(c) and 2(d): The grade of membership of each possible path from 

�̀	��	 �̀.	is determined for both the membership functions (time and score) 

using Eqs. 2.44, 2.48 and Fig. 2.21 and 2.22. The values for the same are shown 

in Table 2.16. 
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Hence, the two fuzzy sets ��	��
	�� for the total time taken and total collected 

score respectively, are as follows: 

�� = { �̀ 1⁄ , �̀ 0.67, �̀ 1, �̀ 1⁄⁄⁄ , ̀ 1, .̀ 0.06, È 1, F̀ 0, G̀ 0.8,⁄⁄⁄⁄⁄   

�̀� 0.06, �̀� 1, �̀� 0.4,⁄⁄⁄ �̀� 0,⁄ �̀� 0, �̀ 0,.�. 0.73⁄⁄⁄ } 

�� = { �̀ 0⁄ , �̀ 0.23, �̀ 0, �̀ 1⁄⁄⁄ , ̀ 0.77, .̀ 0.77, È 1, F̀ 1, G̀ 1,⁄⁄⁄⁄⁄ 	 
           �̀� 1, �̀� 1, �̀� 1,⁄⁄⁄ �̀� 1⁄ , �̀� 1, �̀ 1, �̀. 1⁄⁄⁄ } 

 

Step 3: Now the fuzzy decision set H	is obtained using definition in section 

2.3.1 (b) and Eq. 2.42 to determine all the feasible paths along with the 

membership grades stating the degree up to which each of the feasible paths is 

acceptable. 

Here, A��� = ����(���,*����		�ℎ	�		� = �̀	��	 �̀. is used calculate	H .  

H = { �̀ 0⁄ , �̀ 0.23, �̀ 0, �̀ 1⁄⁄⁄ , ̀ 0.77, .̀ 0.06, È 1, F̀ 0, G̀ 0.8,⁄⁄⁄⁄⁄ 	 
										 �̀� 0.06, �̀� 1,⁄⁄ �̀� 0.4, �̀� 0⁄⁄ , �̀� 0, �̀ 0,.�. 0.73⁄⁄⁄ } 

 

Step 4: Finally, the fuzzy decision set H∗ that contains the desirable path is 

obtained using definition in section 2.3.1 (b) and Eq. 2.43.  

H∗ = � �̀ 1⁄ , È 1⁄ , �̀� 1⁄ � 
 

Step 5: As can be observed from Step 4, there are three paths that are desirable 

as they satisfy all the crisp constraints and the two fuzzy goals. To conclude 

with the most desirable path among the three available in H∗, we use the ranking 

method described using definition 2(a) of section 2.2.2 (II) and Eqs. 2.18, 2.19, 

2.20 and 2.21 to rank the score of each path in H∗ and determine the best one. 

The values for which are shown in Table 2.17. 
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Table 2.14: The total time taken and total collected score for each of the 

paths 

 

Path Total Time Taken To 

Traverse 

Total Collected 

Score 

�̀ �4,6,8,10� �1,2,8,9� 
�̀ �15,22,28,35� �9,11,19,21� 
�̀ �6,11,23,28� �4,7,17,20� 
�̀ �15,17,23,25� �18,22,32,36� 
̀ �3,9,19,25� �12,16,28,32� 
.̀ �22,30,38,46� �12,16,28,32� 
È �7,14,16,23� �26,31,43,48� 
F̀ �33,41,51,59� �26,31,43,48� 
G̀ �12,19,27,34� �21,27,41,47� 
�̀� �19,25,43,49� �21,27,41,47� 
�̀� �9,17,23,31� �29,36,52,59� 
�̀� �11,22,36,47� �29,36,52,59� 
�̀� �30,43,55,68� �29,36,52,59� 
�̀� �35,44,58,67� �29,36,52,59� 
�̀ �21,28,42,49� �29,36,52,59� 
�̀. �14,22,26,34� �29,36,52,59� 
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Table 2.15: The expected value of the total time taken to traverse the path 

and the total collected score for each of the paths 

 

Path EV(Total Time Taken) EV(Total Collected 

Score) 

�̀ 7 5 

�̀ 25 15 

�̀ 17 12 

�̀ 20 27 

̀ 14 22 

.̀ 34 22 

È 15 37 

F̀ 46 37 

G̀ 23 34 

�̀� 34 34 

�̀� 20 44 

�̀� 29 44 

�̀� 49 44 

�̀� 51 44 

�̀ 35 44 

�̀. 24 44 

 

 

 

 

 

 

 

 

 

 

 



90 

 

Table 2.16: The grade of membership of each possible path for both the 

membership functions of time and score 

 

Path � �̀� (� �̀� *� �̀� 
�̀ 1 0 

�̀ 0.67 0.23 

�̀ 1 0 

�̀ 1 1 

̀ 1 0.77 

.̀ 0.06 0.77 

È 1 1 

F̀ 0 1 

G̀ 0.8 1 

�̀� 0.06 1 

�̀� 1 1 

�̀� 0.4 1 

�̀� 0 1 

�̀� 0 1 

�̀ 0 1 

�̀. 0.73 1 

 

 

 

Table 2.17: Showing the ranks of the desirable paths 

 

Path Score Rank 

�̀ �18,22,32,36� 3 

È �26,31,43,48� 2 ¦++ �§¨,©ª,«§,«¨� 1 

 

 

Thus, the most desirable path is �̀� as it has the highest rank.  
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2.3.6 Parallel Formulation of FOP 

To solve the FOP more efficiently and to yield a better and improved 

performance when applied on large instances, we present a parallel algorithm 

for FOP that uses the CREW PRAM (Concurrent Read Exclusive Write Parallel 

Random Access Machine) model. In a PRAM model, several processors are 

connected to a common block of shared memory. This shared memory can be 

accessed by all the processors and these processors communicate with each 

other by reading from or by writing to the shared memory. In a PRAM model, 

each processor is like a sequential RAM and can perform the arithmetic 

operations, assignment, comparison, memory access etc. in unit time. In CREW 

PRAM, more than one processor can read concurrently from the same cell of the 

shared memory but cannot write into the same cell concurrently i.e., write 

operation has to be exclusive (Blelloch, 1996; Horowitz, Sahni, & Rajasekaran, 

1999). For each parallel algorithm, the following terms are computed to 

determine whether it is work-optimal or not (Horowitz, Sahni, & Rajasekaran, 

1999): 

���	/�		
	�� =
�<!�	�H	I8	�JH	 H��	�!IK!	�HL<H!�	��	��MI�	�J�

�<!�	�H	I8	�JH	������H�	��MI�	�J�	8I�	�	����INH��I�	��NJ	!H    (2.55) 

���	�����	���0	
��	 = � ∗ ������		��	�ℎ		������	�	��!����ℎ�	���	�	� −���1	//��	��1ℎ��	                                                                                     (2.56) 

�1�		���1�	�1 = 	 �<!�	�H	I8	�JH	 H��	�!IK!	�HL<H!�	��	��MI�	�J�
�I���	KI��	�I!H                    (2.57) 

#� 	������	�	��!����ℎ�	�/	/��
	��	�		���0	�������	��	��	ℎ�/	�	���	��	 
/�		
	��	��
	��		���1�	�1 	��	1.		 
If we have a graph with � nodes, then the maximum number of edges possible 

in the path connecting the source vertex (��) and the destination vertex (�!)  is � − 1. Hence, the total number of possible paths can be calculated using the 

following formula: 

-����	��. ��	���ℎ/	��� = ∑ �!���!
?!��	���@!

!��	4�                                                     (2.58) 
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Fig. 2.25 shows the several steps of the proposed parallel algorithm for FOP: 

 

 

 

Fig. 2.25: Several steps of the parallel formulation of FOP 

 

In the parallel formulation of FOP, the module z}¬ − ®s computes 

the total number of possible paths (�) for a given input graph ��, ��, �!� using 

Eq. 2.58 sequentially. We assume the number of processors is equal to the total 

number of paths (�). This value is utilized by the following parallel modules to 

output the path in � connecting �� and �! that maximizes the total collected 

score and minimizes the total travel time. If the module s�| − y�~ returns 

more than one path with the same maximum membership value (MV) then the 
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module z}¬ − |�s sequentially ranks the total collected score (TS) of the 

paths with the same maximum value of MV using the COC method of ranking 

fuzzy numbers (using definition 2(a) of section 2.2.2 (II) and Eqs. 2.18, 2.19, 

2.20 and 2.21). Finally, the path with the highest rank is returned as the most 

desirable path. 

 The entire operation that is performed in parallel has been divided into 

modules, namely s�| − s�{¯,s�| − {®{,s�| − y}y°,s�| −yt,s�| − y�~. The output of one parallel module forms the input for the 

other parallel module. The module s�| − s�{¯ computes all the valid paths 

in parallel and is stored in an array of arrays �. This array is then used by the s�| − {®{ module to compute the total time taken (TTT) and total collected 

score (TS) of each valid path in � in parallel. The TTT and TS values generated 

for each path in � are then stored in a 2D array #. This array # is then taken as 

input by the next parallel module s�| − y}y°. In s�| − y}y°, the 

membership value of TTT and TS of each path is calculated and stored in 

another 2D array +. The next parallel module s�| − yt considers array + as 

input and for each path the minimum membership value is determined out of the 

two membership values (one for TTT and the other for TS) in parallel. These 

minimum membership values are then stored in an array 5. The last parallel 

module s�| − y�~ generates those paths which have the maximum 

membership values (can be more than one path) using the array 5 as input. The 

pseudo code for each parallel module is presented below. For each parallel 

module, a theoretical analysis has been performed and the speed up and total 

work done has been computed to determine the efficiency and work optimality 

of the parallel module. 

 s�| − s�{¯ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��	jfhc: 

{ 1� ≔ 1�����		�	���Q�		���ℎ	1���	1���!	��	��
	�!	; 
      ���1� == �#5T��	�ℎ	�                 

// A path is valid if it satisfies the constraints stated in the Eqs. 2.45, 2.46, 2.47, 2.49, 2.50 and 

2.51.   

                    �� ≔ 1�; 
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      	�/	 

                �T�^#��	1�; 

} 

 

The � valid paths can be computed in 6�1� time using � CREW PRAM 

processors. 

Therefore,  

/�		
	�� =
6���6�1� = 6��� 

�����	���0	
��	 = 6�1� ∗ � = 6��� 
	���1�	�1 =

6���6��� = 1 

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������. 
 s�| − {®{ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��	jfhc: 

{ 

         ����	E = 0�	
�: 

            {  

               #�� ≔ ^��1����		�ℎ		---	���		�1ℎ	�#5T�	���ℎ	��	��; 

                   // TTT (Total Time Taken) for each VALID path is calculated using Eq. 2.17. 

             } 

 

        ����	E = 1�
�: 

 

           { 

               	#�� ≔ ^��1����		�ℎ		-�	���		�1ℎ	�#5T�	���ℎ	��	��; 

                // TS (Total Collected Score) for each VALID path is calculated using Eq. 2.17. 

           } 

} 

 

The values for TTT and TS for each of the paths in �� can be obtained in 6�1� 
time using � CREW PRAM processors. 
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Therefore,  

/�		
	�� =
6���6�1� = 6��� 

�����	���0	
��	 = 6�1� ∗ � = 6��� 
	���1�	�1 =

6���6��� = 1 

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������. 
 s�| − y}y° .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��jfhc: 

{ 

         ����	E = 0�	
�: 

            {  

         +�� ≔ ^��1����		�ℎ		S�	���	---		in		#�� 	���		�1ℎ	�#5T�	���ℎ	��	��; 

// MV (Membership Value) for TTT (Total Time Taken) is calculated using Eqs. 2.41, 2.48 and 

Fig. 2.22. 

               } 

        ����	E = 1�
�: 

           { 

            +�� ≔ ^��1����		�ℎ		S�	���	-�		in		#�� 	���		�1ℎ	�#5T�	���ℎ	��	��; 

// MV (Membership Value) for TS (Total Collected Score) is calculated using Eqs. 2.41, 2.44 

and Fig. 2.21.         

           } 

} 

 

The membership values for TTT and TS for each of the paths in �� can be 

calculated in 6�1� time using � CREW PRAM processors. 

Therefore,  

/�		
	�� =
6���6�1� = 6��� 

�����	���0	
��	 = 6�1� ∗ � = 6��� 
	���1�	�1 =

6���6��� = 1 

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������. 
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s�| − yt .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��jfhc: 

{ 

         ����	E = 0�	
�: 

            {  

               L(k) ≔ MIN�B(k)(j), B(k)(j + 1)� 
     // Compute the minimum of the two values using definition in section 2.3.1 (b) and Eq. 2.42. 

             } 

} 

 

The minimum of the two membership values for TTT and TS for each of the 

paths in �� can be computed in 6�1� time using � CREW PRAM processors. 

Therefore,  

/�		
	�� =
6���6�1� = 6��� 

�����	���0	
��	 = 6�1� ∗ � = 6��� 
	���1�	�1 =

6���6��� = 1 

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������. 
 

 s�| − y�~ .��1	//��	0	�mi	�pgpnnhn	���	1 ≤ 0 ≤ ��jfhc: 

{ 

      �(0) ≔ ��#��	��	5(0); 
// GRADE of any element L��
 in � is equal to one plus the number of elements in � smaller 

than L��
. 

 

      PRINT the path in D with the greatest ��#�� in �. 

} 

    

The maximum value amongst the values present in the array 5 can be 

determined in 6��� time using � CREW PRAM processors. 

 



97 

 

Therefore,  

/�		
	�� =
6����6��� = 6��� 

�����	���0	
��	 = 6��� ∗ � = 6���� 
	���1�	�1 =

6����6���� = 1 

-ℎ	�	���	, �ℎ�/	������	�	��
��		�/	���0 − �������. 
 

2.4 Conclusion 

In this chapter, we have considered the fuzzy version of a few graph problems 

and presented some solutions to those problems using fuzzy numbers and their 

ranking methods. We have suggested a method of ranking for the Quasi-

Gaussian Fuzzy Numbers called the Link Preference Index. This was applied to 

the problems shortest path, minimum spanning tree and steiner tree and a 

solution for the fuzzy environment was generated. The method chosen for the 

intermediate Fuzzy Arithmetic operations leads to simpler calculations and 

satisfactory results. At the same time, the method can be applied in varied 

situations like when the value for 0 is small, the number of sub intervals are less 

but the evaluation is faster and can be implemented on a slower machine. 

However, for a faster machine by increasing the value of 0 we can get more 

accurate results. Also, an Extended Dijkstra’s algorithm and Extended Fuzzy 

Prim’s algorithm has been proposed. The LPI proposed in this paper is a 

monotonic decreasing function of	∆�̅. It can also take care of non symmetry in 

the membership function. It tends to increase if H�	! is long tailed towards right 

or H	 is long tailed towards left (i.e., the two functions lean towards each other). 

This chapter also deals with the representation of trapezoidal fuzzy 

number and its application to the constrained shortest path problem. We have 

dealt with two aspects viz. uncertainty and multiple constraints in the shortest 

path problem. The original PDA algorithm was suggested by Chen et al. (2008) 

and its fuzzy version for CFSPP is capable of tackling the uncertainty by 

representing the parameter cost as a fuzzy number and the other parameter viz. 

delay, is represented by the crisp value in the same manner as in (Chen, Song, & 

Sahni, 2008). To determine the ranking of the fuzzy numbers we have used 
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three different techniques which include Circumcenter of Centroids, 

Maximizing Set / Minimizing Set and Weighting Function and by comparing 

different output values of cost, path discretization error and CPU execution time 

with respect to varying delay requirement, it has been concluded that the most 

efficient method of them, is the WF technique. Thus, the shortest path between 

a specified source and target, taking into consideration the multiple delay 

constraints and the uncertainty, can be most efficiently and accurately 

determined using WF as it is the best method in terms of execution time and 

cost. However, the method that gives minimum path discretization error is 

Circumcenter of Centroid method. Also, an application in wireless sensor 

networks was presented. As WSN’s are battery operated, we require a path that 

consumes minimum energy and also satisfies an end-to-end delay constraint. As 

discussed in the above section, we can compute one path for every situation 

using CFSPP i.e., if the WSN does not have enough battery power then we 

compromise with the path that consumes more energy but can be obtained with 

lesser delay else the most desirable path that consumes minimum energy can be 

obtained but this increases the delay. The value of the two parameters involved, 

namely delay and energy cannot be predicted precisely. Therefore, here we 

represent them using TFN and use the ^6^ method of ranking for determining 

the cheapest feasible path. Thus we show that the CFSPP algorithm performs 

well in transmitting the sensor outputs like temperature, pressure, gas 

concentration etc. to the designated destination with minimum delay while 

conserving the energy. Although, in this chapter we have used trapezoidal fuzzy 

numbers, our method can be easily extended to any other type of fuzzy numbers 

by choosing an appropriate ranking method. The fuzzy algorithm proposed has 

the same complexity as the crisp version yet the number of arithmetic 

operations increases. This is the price one has to pay for modelling uncertainty. 

Another problem that has been dealt with was the orienteering problem 

and a method was suggested to solve the fuzzy orienteering problem. In the 

literature, the integer program formulation of OP has been stated. For these 

kinds of formulations, the objective function (either maximization or 

minimization) and the constraints are to be followed strictly in mathematical 

sense. However, this may not be the case in real life application where the 

decision maker may be willing to relax the constraints to some extent to 
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generate a solution that can achieve a level of satisfaction which cannot be 

represented by the crisp formulation but the fuzzy version can take care of these 

requirements. In our work, the two necessary conditions of maximizing the total 

collected score and that too within the specified time bound is represented by 

two fuzzy goals and to take care of the other requirements like each vertex is 

visited once, no sub tours are formed etc. are represented in the form of crisp 

constraints. By representing the two necessary conditions in the form of fuzzy 

goals we provide latitude to the desired solution by relaxing the constraints. To 

make the proposed method applicable to large instances, we also present a 

work-optimal parallel formulation of FOP. When provided with several graphs 

as input, further speedup can be expected since the stages will form a 5 stage 

linear pipeline providing a speed up of 5 ideally when all the stages are busy. In 

this way the method suggested above provides a more practical illustration of 

the physical world and generates a solution that is more appropriate and 

realistic. 

 

 

 

 

 

 

 

 

 

 

 

 

 


