CONTENTS

Acknowledgement
List of Figures
List of Tables
Preface

1. Introduction 1
1.1 Graphs 2
1.1.1 Types of Graphs 2
1.1.2 Application of Graphs 3
1.1.3 Graph Problems 4
1.2 Uncertainty in Real Life 7
1.3 Fuzzy Sets 7
1.4 Other Concepts Modelling Uncertainty 10
1.4.1 Rough Sets 10
1.4.2 Intuitionistic Fuzzy Sets or Vague Sets 11
1.4.3 Soft Sets 12
1.5 Related Work 13
1.6 Motivation 19
1.7 Research Contribution 19
1.8 Layout of Thesis 20
2. Fuzzy Numbers - Their Ranking Methods and Applications 22
2.1 Introduction 23
2.2 Fuzzy Numbers 26
2.2.1 Quasi-Gaussian Fuzzy Number (QGFN) 27
2.2.2 Trapezoidal Fuzzy Number (TFN) 53
2.3 Max - Min Formulation for Orienteering Problem 77
2.3.1 Basic Definitions 78
2.3.2 Problem Definition 79
2.3.3 Fuzzy Formulation of OP 80
2.3.4 FOP Algorithm 83
2.3.5 Illustrative Example 84
2.3.6 Parallel Formulation of FOP 91
2.4 Conclusion 97
3. Intuitionistic Fuzzy Numbers and Intuitionistic Fuzzy Point 100
3.1 Introduction 102
3.2 Intuitionistic Fuzzy Numbers (IFN) 103
3.2.1 Trapezoidal Intuitionistic Fuzzy Number (TIFN) 104
3.2.2 Quasi-Gaussian Intuitionistic Fuzzy Number 113 (QGIFN)
3.3 Max - Min Formulation for Intuitionistic Fuzzy 121
Orienteering Problem
3.3.1 IFOP Algorithm 122
3.3.2 Illustrative Example 123
3.3.3 Work-depth Analysis of IFOP 128
3.4 Intuitionistic Fuzzy Metric Space using Intuitionistic 132
Fuzzy Point
3.4.1 Intuitionistic Fuzzy Metric Space 133
3.4.2 Intuitionistic Fuzzy Orienteering 137
Problem using Intuitionistic Fuzzy Points
3.5 Conclusion 143
4. Heuristic Algorithms for Graph Problems 145
4.1 Introduction 147
4.2 Comparison of Selection Methods for Orienteering 148 Problem
4.2.1 Selection Methods 149
4.2.2 Algorithm for Incomplete and Complete Graphs 151
4.2.3 Experimental Analysis 154
4.3 Roulette Wheel Selection based Heuristic Algorithm 161 for the Orienteering Problem
4.3.1 Algorithm RWS_OP 163
4.3.2 Experimental Analysis 169
4.4 Flower Pollination Algorithm for Orienteering Problem 184
4.4.1 Algorithm FPA_OP 186
4.4.2 Experimental Analysis 188
4.5 Bidirectional Shortest Path Algorithm for the Constrained 189
Shortest Path Problem with Good Average-Case Behavior
4.5.1 Algorithm 190
4.5.2 Experimental Analysis 194
4.6 Conclusion 197
5. Conclusion and Future Directions 199
5.1 Concluding Remarks 200
5.2 Future Scope 203

BIBLIOGRAPHY AND REFERENCES

LIST OF PUBLICATIONS

COPIES OF PUBLISHED PAPERS

CURRICULUM VITAE

LIST OF FIGURES

Fig. No.Figure TitlePage
No.
Fig. 1.1 Pictorial Representation of degree of membership 9
Fig. 2.1 Different shapes obtained by varying the value of fuzzification 28 factor m
Fig. 2.2 Link Preference Index diagram 32
Fig. 2.3 Network for FSPP 36
Fig. 2.4 Ranking of paths in the network 40
Fig. 2.5 Network for FMST 44
Fig. 2.6 Fuzzy Minimum Spanning Tree for the given network 47
Fig. 2.7 Network for FSTP with Steiner points shown as double circles 48
Fig. 2.8 Fuzzy complete undirected distance graph G_{1} 50
Fig. 2.9 Fuzzy Minimal Spanning Tree T_{1} of G_{1} 53
Fig. 2.10 Final Fuzzy Steiner Tree $\left(T_{F S}\right)$ 53
Fig. Behavior in terms of cost of shortest path shown by different 66
2.11(a) ranking methods by varying the delay requirement on arandom graph with 250 nodes generated by gengraph-win
Fig. Behavior in terms of path discretization error shown by 66
2.11(b) different ranking methods by varying the delay requirement ona random graph with 250 nodes generated by gengraph-win
Fig. Behavior in terms of CPU Execution time shown by different672.11(c) ranking methods by varying the delay requirement on arandom graph with 250 nodes generated by gengraph-win
Fig. 2.12 The point considered as Circumcenter of Centroid (COC) is67 shown by X
Fig. 2.13 A surface plot with the delay requirement, cost and CPUexecution time of WF

Fig. 2.14 Box and Whisker plot showing the fuzzy cost as a TFN with four parameters at the delay requirement $=30$ units

Fig. 2.15 Block diagram of a typical Wireless Sensor node (mote)

Fig. 2.16 A Wireless Sensor Network (WSN) represented as a Unit Disc Graph (UDG)

Fig. 2.17 Pictorial representation of trapezoidal fuzzy number

Fig. 2.18 (a) Behaviour of the CFSPP algorithm when applied on a graph with 200 nodes generated using gengraph-win with source $(s)=45$ and target $(t)=68$, (b) Comparison of the same behaviour for four different network sizes with source $(\mathrm{s})=4$ and $\operatorname{target}(\mathrm{t})=45$

Fig. 2.19 Progress of the CFSPP algorithm in terms of energy consumption with a strict and a relaxed delay constraint when applied on a graph with 200 nodes generated using gengraphwin

Fig. 2.20 Progress of the CFSPP algorithm in terms of path delay with delay constraint $=350$ when applied on a graph with 50,100 , 150,200 nodes generated using gengraph-win

Fig. 2.21 Membership Function for total collected score of a path

Fig. 2.22 Membership Function for total time taken to traverse a path

Fig. 2.23 Fuzzy decision set Z and Z^{*}

Fig. 2.24 Input Graph $G(V, E)$ with source vertex $=1$ and destination vertex $=5$

Fig. 2.25 Several steps of the parallel formulation of FOP
Fig. 3.1 Trapezoidal intuitionistic fuzzy number (TIFN)
Fig. 3.2 The point of reference used for ranking a TIFN
$\begin{array}{lll}\text { Fig. 3.3 } & \begin{array}{l}\text { Behaviour shown by the cost of the shortest path on varying } \\ \text { the input delay constraint for a graph with } 200 \text { nodes generated } \\ \text { using gengraph-win }\end{array} & 113\end{array}$

Fig. 3.4 Quasi-Gaussian Intuitionistic Fuzzy Number

Fig. 3.5 Centroid method of ranking for QGIFN

Fig. 3.6 Trend observed in the cost of the shortest path on varying the input delay constraint for a graph with 100 nodes generated using gengraph-win

Fig. 3.7 The input graph with $N=5, v_{1}=1, v_{N}=5$ and the time and score values associated with each edge and vertex respectively

Fig. 3.8 The sequential module executing step 1 of IFOP that computes all the distinct paths in the given graph G

Fig. 3.9 The parallel version of IFOP along with its work-depth analysis stating the work and depth value of each step

Fig. 3.10 Input graph G with number of nodes $(N)=5$, source $\left(v_{1}\right)$ $=1$, target $\left(v_{N}\right)=5$ and the co-ordinate values (intuitionistic fuzzy points) and the score values (trapezoidal intuitionistic fuzzy numbers) of each node

Fig. 4.1 Comparison of the maximum value of the total collected score obtained by four different selection methods for different $T_{\max }$ values (160 cities)

Fig. 4.2 Comparison of the maximum value of the total collected score obtained by four different selection methods for different $T_{\max }$ values (306 cities)

Fig. 4.3 Graph for (a) 160 cities and (b) 306 cities instance

Fig. 4.4 The process of selecting a path using roulette wheel selection function where the number in () denotes the probability of node selection

Fig. 4.5 Progression of RWS_OP algorithm for a graph with 25 nodes with source $\left(V_{1}\right)=1$, destination $\left(V_{N}\right)=25$ and $T_{\max }=70$

Fig. 4.6 Comparison of (a) maximum score and (b) mean score of each method with respect to time budget $\left(T_{\max }\right)$

Fig. 4.7 Comparison of execution time of each method with respect to time budget ($T_{\max }$) based on 30 runs at $\alpha=0.6$ for Real Road Network database with 306 cities of Poland

Fig. 4.8 Comparison of score with respect to α for (a) $T_{\max }=$ 1500 and (b) $T_{\max }=2500$ for a Real Road Network database with 306 cities of Poland

Fig. 4.9 Plots showing (a) utilization of the time budget and (b) increase in the total collected score at $\alpha=0.6$ and $T_{\max }=$ 1500 for a Real Road Network database with 160 cities of Poland (c) Progression of RWS_OP algorithm

Fig. 4.10 Plots showing the observation of three different runs of RWS_OP with $\alpha=0.2$ and $T_{\max }=1500$ for a Real Road Network database with 160 cities of Poland. As the algorithm progresses, it results in (a) decrease in the time budget and (b) increase in the total collected score as shown above

Fig. 4.11 Plots showing (a) utilization of the time budget and (b) increase in the total collected score for three different α values at $T_{\max }=1500$ for a Real Road Network database with 160 cities of Poland

Fig. 4.12 Plots showing (a) the percentage of nodes explored with the increase in $T_{\max }$ values at $\alpha=0.6$ and (b) percentage of nodes explored and unexplored for different values of α at $T_{\max }=$ 7000 for a Real Road Network database with 160 cities of Poland for 30 runs

Fig. 4.13 Plot showing that RWS_OP can achieve higher total collected score for larger $T_{\max }$ values as compared to Ostrowski_CG and Ostrowski_IG methods when implemented on a Real Road Network database with 306 cities of Poland at $\alpha=0.6$

Fig. 4.14 Comparison of the total collected score value achieved by GRASP and FPA algorithms for different $T_{\max }$ values when applied on a graph with 102 nodes, source $=1$, destination=102

Fig. 4.15 Comparison of the average execution time (s) of the CSPP algorithm suggested by Chen et al. (2008) with the bidirectional search algorithm for different network sizes

LIST OF TABLES

Table No. Table Title Page
No.
Table 2.1 LPI value and Ranks of different paths 39
Table 2.2 Initial values of the two arrays 46
Table 2.3 Initializing the LPI value of root node 46
Table 2.4 Status of the two arrays after the neighbours of root are 46 explored
Table 2.5 Status of the two arrays after exploring the next node in the 46 priority queue Q
Table 2.6 Final values returning the connections in MST 47
Table 2.7 Initial status of the two arrays 51
Table 2.8 LPI value for the root is initialized 52
Table 2.9 Showing the status of the two arrays after the neighbours of 52 the root are explored
Table 2.10 Showing the final connections in the fuzzy minimal spanning 52 tree T_{1} of G_{1}
Table 2.11 The energy deviation from unconstrained optimum for 75 increasing delay constraint
Table 2.12 The value of edge weights (time taken to travel from one 85 node to another)
Table 2.13 The value of node weights (score values) 85
Table 2.14 The total time taken and total collected score for each of the 88 paths
Table 2.15 The expected value of the total time taken to traverse the path 89 and the total collected score for each of the paths

$$
\begin{array}{ll}
\text { Table } 2.16 & \begin{array}{l}
\text { The grade of membership of each possible path for both the } \\
\text { membership functions of time and score }
\end{array}
\end{array}
$$

Table 2.17 Showing the ranks of the desirable paths 90
Table The values of total time taken and total collected score 125
3.1(a) obtained for each possible path
Table The expected value for the total time taken and the total 126 3.1(b) collected score of each possible path
Table The membership value for the total time taken and the total127
3.1(c) collected score for each possible pathTable 3.2 Ranks of the desirable paths128
Table 3.3 The $d_{i j}$ value of each edge 140
Table 3.4 The value of total distance covered and total score collected 141 on traversing each path
Table 3.5 The solution set after discarding those paths that do not 142 satisfy the distance bound $\left(D_{\max }\right)$
Table 3.6 Ranks assigned to the paths to determine the most desirable 142 path
Table 4.1 Comparison of the mean and maximum value of the total collected score obtained by $S E L_{-} O P$ when executed with four different selection procedures for 160 cities
Table 4.2 Comparison of the mean and maximum value of the total collected score obtained by $S E L _O P$ when executed with four different selection procedures for 306 cities
Table 4.3 Comparison of maximum, mean and confidence Interval (CI) for mean of scores obtained by RWS_OP (keeping $v_{1}=v_{N}$ i.e., $v_{1}=v_{N}=1$) with those obtained by executing the Ostrowski's algorithm (Please refer (Ostrowski \& Koszelew, 2011), their Table 5 for Ostrowski_CG and Table 7 for Ostrowski_IG) on Real Road Network database with 306 cities of Poland
Table 4.4 The Highest Score Collected, Mean of Score Collected, Mean Time to Traverse the Path and \% of Time Budget Utilized values obtained by RWS_OP at $\alpha=0.6$ (keeping $v_{1} \neq v_{N}$ i.e., $v_{1}=1$ and $v_{N}=306$) when implemented on a Real Road Network database with 306 cities of Poland

Table 4.5 The Highest Score Collected, Mean of Score Collected, Mean
Time to Traverse the Path and \% of Time Budget Utilized values obtained by RWS_OP at $\alpha=0.6$ (keeping $v_{1} \neq v_{N}$ i.e., $v_{1}=1$ and $v_{N}=160$) when implemented on a Real Road Network database with 160 cities of Poland

Table 4.6 The Highest Score Collected, Mean of Score Collected and confidence interval (CI) for Mean of Score Collected obtained by RWS_OP when implemented on a Real Road Network database with 306 cities of Poland for different $T_{\max }$ values at $\alpha=0.6$ (keeping $v_{1}=v_{N}$ i.e., $v_{1}=v_{N}=1$)

