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Chapter 3:    A Novel Method for Automatic 

Detection and Intensity Estimation of Spontaneous 

Pain 

 
 

3.1 Introduction 

It is likely that research has only begun to scratch the surface of what might be 

learned from expressions' intensities. The occurrence and intensity of facial pain 

expression are both significant to what the face reveals. Although much progress 

has been made in respect to automatic detection of pain expression occurrence, 

controversy exists about the better estimation of pain expression intensity. We 

have compared two different methods for binary pain detection and pain intensity 

estimation using two large databases of spontaneous pain expressions i.e., 

McMaster-UNBC Pain Archive database and the self- prepared database.  Scale 

invariant feature transforms (SIFT) and Speeded up robust feature (SURF) are 

used for feature extraction; Principal Component Analysis) PCA were used for 

dimensionality reduction; and Support vector machine (SVM) are used for 

prediction. The result suggests that SURF outperformed SIFT on binary pain 

detection. This suggests that training on intensity ground truth is worthwhile even 

for binary pain detection. The experimental results indicate that using SURF along 

with SVM as classifier can certainly improve the performance of automatic 

classification of pain recognition system which will aid physicians in predicting 

the correct level of pain intensity and thus benefit in the correct diagnosis and 

treatment of pain patients.      

Faces in human species have evolved to express rich information for social 

interaction, including expressions of pain and emotions. The study of pain 
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expression on a scientific basis was the first major attempt proposed by Darwin 

[Darwin, C. 1872]. His views on emotions, in general, were steady with the 

approach to pain. He emphasized on expressive behaviors in order to understand 

the functions and origin of affective states and motivation. Nonverbal 

communication behaviors were acknowledged through the explicit role of 

functional adaptations. These expressions reflect behavioral sources of evidence 

about pain. There are numerous psychological studies of emotion focusing on 

facial expressions [Ekman, P. 1980], pain [Prkachin, K.M. et al., 2008], and 

human-computer interaction [Cowie, R. 2001]. Pain is an unpleasant yet 

necessary signal that notifies us of actual or impending bodily damage and allows 

an individual to take action [Huguet, A. et al., 2010]. In clinical settings, this 

action could translate to patient diagnosis, medications or even a surgical 

procedure. Thus, measurement of pain is imperative for effective treatment. 

Several studies have shown that facial behavior can be used as a modality for 

prediction of internal states such as mood and confusion [Bartlett, M.S. 2005]. 

Estimates of pain intensity are commonly obtained in clinical settings via self-

report and behavioral measures [Tomlinson, D. 2010]. The self-report measure 

allows an individual to verbally communicate the amount of experienced pain and 

suffers from several drawbacks such as subjective bias and patient idiosyncrasies. 

Moreover, it cannot be employed by verbally impaired patients. On the other 

hand, observational measures are based on inspecting non-verbal clues viz. body, 

face or voice of an individual in pain for reporting pain intensity. Such measures 

are disrupted by the presence of observer's bias, considerable demands on 

clinician's time, and the influence of factors such as likeability of patient [Stinson 

J.N., et al., 2006], underestimation of pain [Prkachin, K.M., et al., 1994]. To 

overcome this issue, some computational approaches needed to be implemented. 
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There are two major reasons that make the task challenging for automatic 

measurement of pain from the face. First, is the lack of training and testing data of 

un-posed, unscripted and spontaneous pain expressions and the other is the trouble 

of face and facial features analysis in genuine settings viz. medicinal clinics. 

Facial expressions, being complex in nature, are difficult to describe and quantify, 

as they evolve over time. Usually, they leave no record. These obstacles present a 

barrier to scientific analysis. Recent development in video technology which is 

affordable and accessible overcame this problem and stimulated the growth of the 

field. However, technology does not, resolve the problem of quantification.  

A major advance was the development of clearly described observational systems 

that addressed this problem, minimizing inference and maximizing „objectivity‟. 

(Some element of judgment was involved in the prevalent facial coding systems 

applied by humans, with the inherent subjectivity that entails due to which the 

word „objectivity‟ is in quotation marks) Ekman and Friesen‟s Facial Action 

Coding System (FACS) has been the most significant. It provides facial 

expressions comprising of 44 „action units‟, representing distinctive changes 

produced by the muscle combinations or by individual facial muscles. Using 

FACS and obtaining autonomous datasets the system‟s performance is tested for 

ground truth. Through repeated review of video recordings, observers worked 

from strict coding criteria to „dissect‟ facial movements. 

Motivation 

The emerging interest in pain expression can be identified by four sources. 

1. In the 1970s, psychologists working on the operant model came up with the 

concept of pain behavior. Based on these concepts it was proposed that almost all 

inferences about pain arise from behavioral observations [Fordyce, 1966] and 
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focused attention on those behaviors.  

2. Better methods for measuring pain were sought by researchers. Human studies 

have relied heavily on verbal reports, despite the concerns about their objectivity, 

susceptibility to bias and validity. As an observable behavior related to pain 

experience, it was considered that facial expression offered a means of evaluating 

pain that have avoided the issues of self-report and yielded a more „objective‟ 

measure. Once the evidence of pain can be perceived by individuals in others then 

can render them assistance, or to take preventive measures to protect themselves 

against the threat shared with the person in pain. Thus, sensitivity to evidence of 

pain in others should be a universal human capacity. Early research showed that 

indexes of facial expression could be sensitive both to variables thought to 

influence pain and variations in pain [Prkachin K.M. & Craig, K.D. 1985].  

3. Research on emotions by [Ekman, P., et al., 1969] and [Izard, C.E.1971] 

supported the notion of a discrete set of universal, basic emotions which are 

identifiable in facial expressions.  

4. The last and probably the, most important influence on the field were related to 

the advances in methodology. 

 

Keeping in view the above points, we have tried to classify the faces in pain. Two 

approaches used to classify facial pain expression are judgment-based approaches 

and sign based approaches. Judgment-based approaches usually are centered on 

the messages conveyed by facial pain expressions during facial pain expression 

analysis. However, during classification of facial pain expressions into a 

predefined number of pain states, an agreement of a group of coders is taken as 

ground truth. This often takes the form of classifying expressions into one of 

categories such as no pain, mild, moderate or severe pain. However, this involves 
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a great deal of understanding and fails to account for the fact that facial 

expressions serve a communicative means [Fridlund, A.J. 1992]. Using sign-

based approaches, on the other side, facial motion and deformation are coded into 

visual classes. The facial actions are abstracted uniquely and brief by their 

intensity and location. Sign-based approaches achieve more objectivity in 

comparison to judgment-based approaches. FACS is used in sign based approach 

that uses 44 action units (AUs) for the description of facial actions in accordance 

to their intensities and location. Pain expressions may be modeled by single action 

units or combinations of action unit. Much of the effort and energy have been 

made to study human behavior studies to identify valid pain indicators [Lucy, P. 

et al., 2011]. The studies shows the pain expression is widely characterized by the 

activation of a few set of facial muscles and coded by a set of action units (AUs): 

brow lowering (AU 4), eye closure (AU 43), levatorlabii raise (AU 9 and AU 10) 

and orbital tightening (AU 6 and AU 7) (see Figure 3 (a)). AU 43 being binary is 

taken as an exception, each of these actions are measured on a six-point ordinal 

scale (0 = absent, 5 = maximum) using FACS. In a study done recently Prkachin 

and Solomon proved and confirmed that information of pain if effectively 

contained in these AUs and thus defined pain intensity as the sum of their 

intensities. The Prkachin and Solomon pain intensity (PSPI) scale is defined as: 

 

               Pain = AU4 + (AU6║AU7) + (AU9║AU10) + AU43                 (3.1) 

 

In this part of the thesis, we have used SIFT and SURF local face descriptors to 

predict pain intensity using facial expressions along with testing the hypothesis 

that binary expression detection and expression intensity estimation require 

different solutions. This is explored by comparing different techniques using the 

same data and performance evaluation methods. We have improved upon the 
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previous work by using sign-based approach, two large datasets of spontaneous 

pain expressions, and expert-coded, frame level ground truth. The techniques used 

for feature extraction, dimension reduction, and classification are varied 

systematically, enabling us to interpret which methods proved to be better. We 

tested binary-trained models with intensity-trained models to detect pain 

expression occurrence. 

 

3.2  METHOD 

Two separate datasets are considered: UNBC-McMaster Shoulder Pain expression 

archive database and the other self-prepared database. Both datasets were 

recorded and FACS coded for every participant facial expression in a clinical 

setting. The differences persisted in the nature and location of pain, demographic 

profile and the constraints placed upon data collection (e.g., illumination and head 

motion). Because of how its segments were selected, the self-prepared database 

also had more frequent and intense pain expressions. Preprocessing, feature 

extraction, and classification are the following stages involved in the general 

experimental procedures used in the experiments (Figure 3.1).  

In the preprocessing stage, the original images were cropped considering the face 

only leaving the background, rotated, and scaled. Eyes were aligned roughly along 

the same axis. The original facial images, size 3008 x 2000 pixels, were also 

reduced to 100 x 120 pixels. 
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Figure 3.1: Flowchart of Automatic Pain Expression Annotation Methods 

During the feature extraction stage, facial features were centered within an ellipse 

and color information was discarded. A feature vector of dimension 8383 was 

obtained by concatenating the rows within the ellipse with entries ranging in value 

between 0 and 255. PCA was then used to reduce the dimensions of pain images. 

For the best classification scores, the first 80 principle components are considered. 

At last, in the classification stage, the feature vectors were used as inputs to the 

classifiers.   

3.2.1 Database  

UNBC-McMaster Shoulder Pain Expression Archive Database 

Researchers at McMaster University and University of Northern British Columbia 

captured video of participant‟s faces (who were suffering from shoulder pain) 

while they were performing a series of active and passive range-of-motion tests to 

their affected and unaffected limbs on two separate occasions. Using certified 

FACS coders each frame of this data was AU coded, and self-report and observer 

measures at the sequence level were taken as well. They called the database as 

UNBC-McMaster Shoulder Pain Expression Archive Database [Lucy, P. et al., 

2011]. So as to promote and facilitate research into pain and augment current 

datasets, the publicly available portion of this database includes: 1) 200 video 
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sequences containing spontaneous facial expressions, 2) 48,398 FACS coded 

frames, 3) associated pain frame-by-frame scores and sequence-level self-report 

and observer measures, and 4) 66-point AAM landmarks. These images had 

variations (in background, hair style, hair color and as shoulder movement was 

used some images had shoulders too along with face).  

Self-prepared database 

A total of 100 participants (59 male, 41 female) who were self-identified as 

having a problem with back, neck and knee pain were video recorded in the pain 

department of IMS (BHU), Varanasi, India. Facial expressions were recorded 

with a standard webcam (Logitech) at 30 frames per second located in front of the 

subject and connected to a laptop when their affected area was pressed by the 

practitioner.  

Video recordings were converted into frames. Not all the frames were included in 

the study, except for those that showed major changes in the facial expressions 

during the various pain conditions. In this only 16 frames of each participant were 

taken from the video representing minor to major changes in facial expressions. 

Each frame of this data was AU coded by certified FACS coders. Preprocessing of 

images was done so as to maintain uniformity in the databases. Only the face was 

taken and the frame dimensions were fixed at 92x112.  These faces were used as 

an input. Features of each image were extracted by using SIFT [Lowe, D.G. 2004] 

and SURF [Herbert, B. 2008].  

 

3.2.2 Manual Expression Annotation 

AU Occurrence 

The UNBC-McMaster Shoulder Pain Expression database includes participant 

facial behaviors that are FACS coded from video by certified coders. To be 
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precise the event onset and offset were coded for 07 commonly occurring AU 

(Figure 3.2(a)) contributing to pain. Inter-observer reliability for AU4, AU6, 

AU7, AU9, AU10, AU25 and AU43 occurrence was F1 = 0.93. For the self- 

prepared database, participant facial behaviors were manually FACS coded from 

video by certified coders followed by event onset, offset, and apex being coded 

for 07 commonly occurring AU. Inter-observer reliability for AU4, AU6, AU7, 

AU9, AU10, AU25 and AU43 occurrence was F1= 0.84. 

 

(a) 

                 

   No pain   Mild Pain 

 

                  

                      Moderate Pain                      Severe Pain 

(b) 

Figure 3.2: (a) Shows a face in severe pain from the self-prepared database with 

the corresponding AUs and their intensity levels.  

(b) Pain intensity levels defined by the FACS manual (i.e., AU4, AU6, AU7, 

AU9, AU10, AU25 and AU43). For both the datasets, onsets and offsets are 

converted to frame-level codes with 0 and 1 representing the absence and 

presence of the given AUs, respectively. 
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AU Intensity 

The manual FACS coding procedures described in subsection 2.2.1were used to 

identify the onsets and offsets of AU4, AU6, AU7, AU9, AU10, AU25 events. 

The video clips were converted into frames and coded for intensity levels. This 

coding involved assigning each video frame an integer value between 0 and 3, 

with 0 representing the absence of the given above AUs and 1 through 3 

representing trace through maximum intensity (Figure 3.2(b)). To establish 

reliability, five percent of the clips were independently coded by a second 

certified FACS coder, which was ICC=0.95. 

3.2.3 Automatic Pain Expression Annotation 

Tracking 

Facial landmark points indicate the location of important facial components (e.g., 

eye corners, nose tip and lip corners). UNBC-McMaster Shoulder Pain Expression 

database consists of sixty-six facial landmarks with each video frame being FACS 

coded by certified FACS coder. Due to occlusion or extreme out-of-plane rotation 

approximately, 4% of video frames were untraceable. A global normalizing (i.e., 

similarity) transformation is applied to the data for each video frame to remove 

the variation due to the rigid head motion. Finally, each image was cropped to the 

area surrounding the detected face and scaled to 128x128 pixels. For the self-

prepared database, sixty-six facial landmarks were tracked using active 

appearance models (AAM) [Cootes, T.F. 2001]. Active Appearance Model 

(AAM) is a computer vision system which can automatically detect pain based on 

facial expressions coded using FACS. The shoulder pain archive contains images 

of patients with rotator-cuff injuries, with spontaneous facial expressions 

associated with pain which are not posed or feigned. These facial actions vary in 
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duration and intensity and often coincide with abrupt changes in head position. 

The AAM approach specifies that both shape (i.e. contour) and appearance (i.e. 

texture) are both vital for gaining accurate detection performance [Ashraf et al., 

2009]. The normalization procedures were used on the AAM landmarks. AAM 

includes landmark points along the curve of the jaw whereas the other non-facial 

information was removed. 

3.2.4 Extraction 

Scale Invariant feature transform:  

SIFT [David, G.L. 2004] algorithm uses local features to describe the image. We 

basically are extracting interesting points in the image and then computing the 

description of these points such that these computed key-points and descriptors 

are not affected by noise, illumination, and scale. The procedures followed were: 

To detect key points with the different scale, we require a scalable window. That 

is why scale-space filtering [Witkin, A.P. 1984] is used. The scale space is 

defined by the function (equation 3.1 & 3.2): 

                          𝐿  𝑥, 𝑦, 𝜎 = 𝐺  𝑥, 𝑦, 𝜎 ∗ 𝐼 (𝑥, 𝑦)                               (3.1) 

 

                          𝐺  𝑥, 𝑦, 𝜎 =  
1

2𝜋𝜎𝑟2 𝑒
− 𝑥2+𝑦2  /2𝜎2

                               (3.2) 

Where 𝐺  𝑥, 𝑦, 𝜎  is a variable-scale Gaussian, * is the convolution operator and  

𝐼 (𝑥, 𝑦) is the image. In scale-space filtering, we use σ which is basically a scaling 

parameter. So we find maxima across the scale and space which give us a list of 

 𝑥, 𝑦, 𝜎  which means that there is a potential key point at (𝑥, 𝑦) at σ scale. Here 

we use Difference of Gaussians which is obtained by blurring the image with two 

different σ and pσ and is given by (Koenderink, J.J. 1984) and (Lindeberg, T. 

1994). 
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𝐷  𝑥, 𝑦, 𝜎 =  𝐺  𝑥, 𝑦, 𝑝𝜎 −  𝐺  𝑥, 𝑦, 𝜎  ∗ 𝐼(𝑥, 𝑦) 

 

                                          𝐿 𝑥, 𝑦, 𝑝𝜎 −  𝐿  𝑥, 𝑦, 𝜎                                    (3.3) 

 

After this computation, local extrema were searched in the image for a potentially 

key point. Once these potential key points were found, they are refined to get a 

more accurate result. We then use Taylor series expansion of scale space and get 

more accurate location of extrema, and if the intensity at this extrema is less than 

a threshold value, it was rejected. After this, orientation was assigned to each key 

point so that we achieve invariance to image rotation. 

 

𝑚  𝑥, 𝑦 = 22 ))1,()1,(()),1(),1((  yxLyxLyxLyxL            (3.4) 

 

))),1(),1(/())1,()1,(((tan),( 1 yxLyxLyxLyxLyx               (3.5) 

 

We then took a neighborhood around the key point location and the gradient 

magnitude and direction were calculated for that position (equations 3.3 & 3.4). A 

histogram with 36 bins dealing with 360 degrees was then created weighted by a 

gradient magnitude and a Gaussian-weighted circular window with ϭ equal to 1.5 

times the scale of the key point. The highest peak in the histogram was then taken 

and any peak above 80% of it is also used to calculate the orientation. Now to 

create key point descriptor, we used a 16x16 grid around the key point which was 

divided into 16 sub-blocks of 4x4 sizes. Then 8 bin orientation histograms were 

created for each sub-block so that total of 128 bin values was created. Then we 

represent them in a vector to form key point descriptor. 
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SURF 

SURF [Herbert, B. et al., 2008] is basically a local feature detector and is inspired 

by SIFT. It is quite robust and fast also. The steps involved were:  

Square-shaped filters were used on the integral image. Integral image was 

obtained by: 

                      𝑆  𝑥, 𝑦 =   𝐼(𝑝, 𝑞)
𝑦
𝑞=0

𝑥
𝑝=0                                            (3.6) 

 

SURF uses a hessian matrix [Christopher, M. 1992] based blob detector. Blobs 

were mainly detected in the place where determinant of Hessian is maximal. 

                H p, σ =  
Lxx p, σ Lxy p, σ 

Lxy p, σ Lyy p, σ 
                                       (3.7) 

Images were then repeatedly smoothed with a Gaussian filter [Deng, G. & Cahill, 

L.W. 1994]. They are then subsampled to obtain the next higher level of the 

pyramid. Therefore, several floors or stairs “det H" with various measures of the 

masks are calculated: 

σapprox = Currentfiltersize ∗    
Base  Filterscale

BaseFilterSize
                             (3.8) 

Descriptors were then computed for every point of interest. The dimension then 

determines its computational complexity and accuracy. 

For achieving invariance against rotation, the point of interest orientation 

is obtained. The Haar wavelet responses in abscissa within a circular proximity of 

radius around the computed point of interest were calculated. The responses thus 

obtained was then assigned weights by using a Gaussian function which is 

centered at the point of interest, then plotted as points in a two-dimensional space. 

The dominant orientation is then calculated by obtaining the sum of all responses 

within a sliding orientation window of size π/3. 
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For descriptor extraction, we started by constructing a square region centered 

around the interest point and oriented along the orientation calculated above.  

The result of dx, dy and their absolute are then summed as a vector given by:  

                   𝑉 =     𝑑𝑥,  𝑑𝑦,  │𝑑𝑥│,  │𝑑𝑦│                                (3.9) 

 

These features were then stored in a cache to decrease the running time of the 

program. These features were then classified using SVM classifier. An SVM is a 

supervised learning model [Cristianini, N. & Shawe-Taylor, J. 2000] which  

marks an object into one category or another using the pattern learned from object 

supplied in training stage and this marking of the new object is called testing 

stage. Therefore, it is a non-probabilistic binary linear classifier.  An SVM model 

is, therefore, a representation of the objects as points in space, mapped such that 

objects of the separate categories are divided by a widest possible gap. New 

objects are then mapped into that same space and are then classified by predicting 

which side of the gap they fall on. 

3.2.5 Reduction 

The features exhibited high dimensionality in both the cases. For reducing the 

dimensions, we used two which were compared on their ability to yield 

distinguishable features for classification. Principal components Analysis (PCA) 

[Wold, S. et al., 1987] was used to project a feature vector into a low dimensional 

space from a high dimensional space.  

 

                        𝑌𝑖 = 𝑊 𝑥𝑖𝑃𝐶𝐴
𝑇    (𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, …𝑁)                            (3.10) 

Where  𝑊𝑃𝐶𝐴  is the linear transformations matrix and the columns of the  𝑊𝑃𝐶𝐴are 

the 𝑝 Eigen vectors corresponds to the 𝑝 largest Eigen values of the covariance 

matrix, which is defined as: 
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                 𝐶𝑜𝑣 =  
1

𝑁−1
   𝑥𝑖 − µ (𝑥𝑖 − µ)𝑇𝑁

𝑖=1                          ..… (3.11) 

where, µ is the mean of all samples. These techniques reduced the SIFT features 

from 7046 dimensions per video frame to 290, and SURF features from 7452 

dimensions per video frame to 302. 

Cross-validation 

Here we have used stratified k-fold cross-validation to prevent model over-fitting. 

The original sample is randomly partitioned into k equal sized subsamples. Of 

the k subsamples, a single subsample is retained as the validation data for testing 

the model, and the remaining k – 1 subsamples were used as training data. The 

cross-validation process was then repeated k times (the folds), with each of 

the k subsamples used exactly once as the validation data. The k results from the 

folds are then averaged (or otherwise combined) to produce a single estimation. 

Stratified cross-validation procedures ensure that the resultant partitions have 

roughly equal distribution of the target class (in this case AU4, AU6, AU7, AU9, 

AU10, AU25, and AU43. In this study, each video segment was assigned to one 

of the four partitions (called “folds”). For each iteration of the cross-validation 

procedure, three folds were used for training, one for testing and one for 

validation. The advantage of this method over repeated random sub-sampling is 

that all observations were used for both training and validation, and each 

observation was used for validation exactly once. 10-fold cross-validation was 

commonly used. 

3.2.6 Prediction 

In the current work, we have done pain classification by automatically detecting 

four levels of pain intensity like zero, mild, moderate and severe pain using multi- 

class support vector machines (SVM).  They were used for binary classification. It 
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uses the kernel trick, which uses dot product, to keep computational loads 

reasonable. The kernel function enables the SVM to fit a hyper-plane of 

maximum margin into the high dimensional feature space.  

 

SVMs were trained using four classes corresponding to the FACS occurrence 

codes (0 and 1). Training sets were created by randomly sampling 11,000 frames 

with approximately equal representation for each class. The values above zero 

represent various pain intensity levels whereas negative scores reflect the absence 

of pain. The scores obtained were used for estimating pain intensity level by 

assigning threshold values. The visual classifier was trained for four different 

image classes (no pain, mild, moderate and severe pain).  The performance of the 

classifier was assessed by computing a precision-recall curve for SIFT and SURF 

separately.  

SVM models output values which were the fractions corresponding to the distance 

of each frame's high dimensional feature point from the class separating hyper-

plane. These values were used for pain intensity estimation using the standard 

SVM threshold of zero to provide predictions for binary pain detection (i.e., 

negative values were labeled absence of AU4, AU6, AU7, AU9, AU10, AU25, 

AU43 and positive values were labeled as presence). Multiclass SVMs were 

trained using four classes corresponding to the FACS intensity codes. The output 

values of the multiclass classifiers were integers (scores) corresponding to each 

frame's estimated pain intensity level. These values were used for pain intensity 

estimation and also discretized to provide predictions for binary pain detection. 

The performance of the classifier was assessed by computing a precision-recall 

curve for SIFT and SURF separately (Figure 3.7 and 3.8). Figure 3.5 and 3.6 

provide scores for different images. The values above 0 represent various pain 
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intensity levels whereas negative scores represent the absence of pain (Figure 3.3 

and 3.4). 

 

 

              Figure 3.3: Plot of scores (y-axis) vs. image (x-axis) by using SIFT. 

 

 

 

 

       Figure 3.4: Plot of scores (y-axis) vs. image (x-axis) by using SURF. 
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Figure 3.5: Table of patients with their scores obtained on McMaster Shoulder 

pain achieve 

                         

Figure 3.6: Table of patients with their scores obtained on self prepared database 

 

score: 2.17 score: 2.16 score: 2.13 score: 2.11 score: 2.10 score: 2.09

score: 2.08 score: 2.05 score: 1.99 score: 1.98 score: 1.96 score: 1.96

score: 1.93 score: 1.91 score: 1.91 score: 1.91 score: 1.91 score: 1.90

score: 1.90 score: 1.90 score: 1.89 score: 1.89 score: 1.89 score: 1.89

score: 1.88 score: 1.88 score: 1.88 score: 1.87 score: 1.87 score: 1.86

score: 1.86 score: 1.86 score: 1.86 score: 1.85 score: 1.85 score: 1.84
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           Figure 3.7: Precision recall curve using SIFT 

                     

  Figure 3.8: Precision- recall curve using SURF 

3.3 Results and Discussion 

Our findings demonstrate the feasibility of providing an automated pain detection 

and classification system for patients suffering from chronic pain. The images 

were classified into four categories viz. no pain, mild, moderate and severe pain. 

The accuracy of 75.79% is obtained with SIFT and 72.63% with SURF. In the 

past various researches have been made for the task of pain detection [Caroline, S. 
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et al., 2010]  i.e., to check whether a person is suffering from  pain or not but none 

were accurate in predicting how much a person is suffering and neither these 

studies have been used for  classifying genuine and fake pain. In our approach we 

have shown that not only we can detect pain but can also classify it as well. The 

method proposed in this chapter is promising and we believe to further continue 

the research. 

Although there was a large variation in the dataset we used for our system as an 

input, for example, our dataset had the shoulder of the person along with face, the 

different hair color and style and different background, so we initially did some 

preprocessing and extracted out facial expressions leaving other details as the 

background. This enhanced the robustness of our system. In spite of these 

variations, our results demonstrated that we were able to classify the images 

present in the dataset into four different classes namely zero, low, high and 

extreme pain with a greater accuracy.  

Our system can use both directory of the image as well as names of images and 

basically improves efficiency and provides a quick response by storing features in 

cache making it fast and flexible as well. The result generated by the system 

provides hope that by further research and testing our system may produce better 

accuracy than traditional manual approach in which a person having a specialty of 

deducing pain is employed. Thus, our system being automatic can be used to 

monitor a person 24X7 by using video frames as an input. The present findings 

supports the idea of using SIFT and SURF for feature extraction. A better result 

was produced using SURF. The scores generated by using support vector machine 

basically tell the intensity based on facial expression of the person and using these 

scores we classified the images.  
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This approach had some limitations that should be kept in mind while interpreting 

the results and designing future studies. In some exceptional cases, where the 

person gives abnormal or some contradicting expression to pain the system fails 

as the SVM fails to classify them correctly in various pain classes. Also, if the 

patient is mentally or physically challenged and is unable to express 

himself/herself to the degree of pain then again our system fails for the same 

reason.  

3.4 Conclusion 

This suggests that training on intensity ground truth is worthwhile even for binary 

pain detection. The experimental results indicate that using SURF along with 

multiclass SVM as classifier can certainly improve the performance of automatic 

classification of pain recognition system in comparison to SIFT. Both the pain 

detection and its intensity estimation can be predicted using the same classifiers. 

This method is fast enough in comparison to the previously used techniques for 

classifying pain and thus will aid physicians to better diagnose the patients and 

provide drug accordingly. 

 

 

 

 

 

 

 

 


