

In this thesis the magnetic and structural properties of Zn, Co and Mn doped LiCuVO₄ and Y, Ni and Ce doped TbMnO₃ have been investigated.

When Zn and Co are doped in quasi-one dimensional spinel compound LiCuVO4 the antiferromagnetic interaction increases. On the other hand Mn-doping induces the short range ferromagnetic ordering. It is also observed in Mn-doped sample from the fitting with the HTSE (High Temperature Series Expansion) model that nearest neighbor (NN) (J₁~Ferromagnetic) interchain exchange interactions play a dominating role over next nearest neighbor NNN (J2~Antiferromagnetic) and in other doped sample J2 is dominating over J₁. Neutron diffraction study does not show any indication of long range magnetic ordering. Neutron diffraction study also indicates that with Mn doping the V-O lengths are changed. The exchange interactions are somehow modified with Mn doping which in effect induces short range ferromagnetism. Moreover, after XPS analysis doping of Mn on the Cu site of LiCuVO₄ converts very few Cu²⁺ ions into Cu³⁺ ions due to which few Mn⁺² are converted into Mn⁺³. Exchange interaction between Mn⁺²/Mn⁺³ (double exchange) might be the origin of induced ferromagnetism. Further study is required to explain the actual origin of ferromagnetism in LiCuVO4 with Mn doping. This short range ferromagnetic ordering is not stable as inclusion of further Mndoping decreases the coercivity of the system. It is due to release of strain developed upon Mn (x=0.05) doping that is confirmed by XRD and Raman analysis of undoped and Mn-doped samples. Relaxation of strain play a role in canting of spin. This canted spin reduces the short range of ferromagnetic ordering. Swift heavy ion beam irradiation also reduces this short range ferromagnetic ordering. It is due to the defects created during irradiation. The lattice expansion in the irradiated samples can be explained on the basis of energy deposition mechanism in the irradiation process which demonstrates that the high electronic excitations have induced the structural modifications.

Moreover, Y doping in TbMnO₃ decreases unit cell volume whereas Ni-doping in Mn-site of TbMnO₃ first decrease but further increment of Ni content is constant. In room temperature Raman spectra of Y doped and undoped TbMnO₃, eight feature are observed, on the other hand Ni doped TbMnO₃ modes due to MnO₆ bending and in-plane O₂ stretching broaden and few modes disappear. This might be due to the lattice disorder which is induced by Ni doping. Both Y and Ni doping decrease the Neel temperature, T_N. Y doping reduces effectively both the $J_{\text{Tb-Tb}}$ and $J_{\text{Mn-Mn}}$ exchange interactions, whereas Ni doping on the Mn site decreases only the $J_{\text{Mn-Mn}}$ exchange interaction. The reduction in T_{N} in the Nidoped sample cannot be explained with simple exchange integral where Mn³⁺ ions are assumed to form a perfectly hexagonal network. Ni²⁺ doping might change the polarization flop in TbMnO₃ which in effect may change the exchange interaction. Both Exchange bias and Griffith phase have been observed in TbMnO₃. The Griffith phase has been attributed to the Oxygen vacancy which converts some Mn³⁺ states to Mn²⁺ states. The exchange interaction between Mn³⁺/Mn²⁺ induces ferromagnetism. Furthermore, Ce doping also converts some Mn³⁺ states to Mn²⁺ states. As a consequence, Ce doped TbMnO₃ also show Griffith phase. Moreover, The Oxygen vacancy/Mn³⁺-Mn²⁺ may change the Mn-O-Mn angle which in effect induces the canted AFM ordering. The canted AFM might be the origin of exchange bias.