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3.1 Introduction 

Dimensionality and the spin magnitude S play important roles in the physical 

properties of interacting systems because quantum fluctuation is affected significantly by 

them. Quantum fluctuation enhanced both by geometric frustration and by spin 

frustration may destroy antiferromagnetic (AFM) order and yield a rich variety of ground 

states, novel excitations, and exotic behaviours that currently attract much attention. As a 

matter of fact, low dimensional quantum magnets have become one of the most 

important topics because of various interesting quantum magnetic phenomena.1-5It has 

motivated us to work on phenomena principally governed by quantum effects in other 

classes of low dimensional systems. The 1D cuprate LiCuVO4 with spin S=1/2 (in x2–y2 

orbital) has only one crystallographically distinct Cu site6 and it crystallizes in an 

orthorhombic distorted inverse spinel structure, in which the non magnetic V5+ (3d0) ions 

occupy the tetrahedral sites, whereas Li+ and Cu2+ are arranged in an ordered way on the 

octahedral sites.7 Both LiO6 and CuO6 octahedra form independent chains along the c 

direction. The chains consist of edge-sharing octahedra with two nearly rectangular Cu-

O-Cu super-exchange bonds between two Cu-ions as schematically shown in Fig. 3.1.8,9 

Moreover, for this system, the exchange interaction between the nearest-neighbor Cu2+  

ions through Cu-O-Cu exchange path is rather weak, as expected for the Cu-O-Cu angle 

close to 900 (~950 ) or even weaker than the next nearest-neighbor interaction10-12 

suggesting the effects of the magnetic frustration are significant in its magnetic 

properties. The magnetic susceptibility of LiCuVO4 exhibits a broad maximum at TM ~28 

K and is described by a Heisenberg antiferromagnetic chain model with spin exchange 

parameter of -45 K.13 It has also been established that LiCuVO4 forms an 

incommensurate magnetic superstructure (0, 0.532, 0) below 2.1K.14 In this 

commensurate approximation, each CuO2 chain in the magnetic superstructure of 

LiCuVO4 contains four Cu2+ ions per magnetic unit cell. The associated spin arrangement 

shows that the antiferromagnetic next nearest neighbour (NNN) spin exchange 

interaction J2 (<0) is much stronger in magnitude than the ferromagnetic nearest 

neighbour (NN) spin exchange interaction J1. This also has recently been verified by 

Kremer,15who fitted the magnetic susceptibility of LiCuVO4 using the high-temperature 

series expansion formula ofBühler et al.16 and they found that the value of J1 variesfrom 

3.0 to 12.7K and that of J2 from -43.2 to – 48.5K.  Moreover, the interchain spin exchange 

of LiCuVO4 is much weaker than the intrachain spin exchange such that the occurrence     
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of the magnetic superstructure in LiCuVO4 must largely be driven by the tendency for 

each CuO2 chain to have its NNN spins order antiferromagnetically. However, Sirker17 

reported a strikingly different set of the spin exchanges (J1≈ 7.8 meV with |J2/J1| ≈ 0.5). 

Subsequently Enderle et al. from their neutron scattering and magnetization data led to 

different sets of spin exchange constants for LiCuVO4.
18 

 

 

(a) 

 

 

(b) 

Figure 3.1Schematic diagram of (a) intrachain interaction path between Cu2+ 
in CuO4 unit and (b) interaction path between Cu2+ in ab plane (solid   
line) and plane shifted by c/2 (dashed line) of LiCuVO4. 

To obtain insights into the nature of the puzzling properties of the S=1/2 spin-chain 

compound LiCuVO4, we have investigated the magnetic properties of the Co-, Zn- and 

Mn-doped compound. We have doped Zn, Co and Mn separately on the Cu site. Also, we 

have attempted to resolve the aforementioned controversy regarding the relative 

magnitudes of J1 and J2 in LiCuVO4. We have also seen the effect of different doping on 

the exchange interactions J1 and J2. The interchain exchange interactions (J4 and J5 in 18) 

have also been considered. It has been observed with doping the interchain exchange 
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ray powder diffraction has been characterized from Rigaku MiniFlex II 

ray Diffractometer with Cu-Kα radiation [Filtered source] and sample 
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(Quantum Design) magnetometer with the bulk samples. Data were collected upon 
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X-ray (1253.6 eV) was used as the excitation source operated at 10 kV and with an 

anode current 17 mA. The residual pressure of the system was ~10-9 mbar. 

3.3 Results & Discussion 

3.3.1 X-Ray Diffraction Study 

Figure 3.2 shows X-ray Diffraction pattern of LiCu0.95M0.05VO4 (M=Zn, Co, Mn) 

samples which clearly indicates the single phase [Consistent with card no 18-0726]. 
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Figure 3.2:X-ray Diffraction patterns of LiCuVO4, LiCu0.95Zn0.05VO4,                                                 
LiCu0.95Co0.05VO4, and LiCu0.95Mn0.05VO4 samples. 

3.3.2 Study of Magnetic Property 

3.3.2.1 Analysis of Magnetization (M) Vs Temperature (T) 

Fig. 3.3 shows the Field cooled (FC) dc-susceptibility (χ=M/H, M is the 

magnetization) as a function of temperature at magnetic fields H= 100 Oe (inset: at 

magnetic field 5000 Oe) for doped and undoped LiCuVO4 samples. 
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Figure 3.3: Magnetic susceptibility vs Temperature curve, χ(T), ofLiCuVO4,                                      
LiCu0.95Zn0.05VO4, LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples 
at 100 Oe (Inset: χ(T) at 5000 Oe). 

For LiCuVO4 as temperature decreases the susceptibility passes through a wide 

peak at Tm~26K and then increases somewhat at 10K. The behavior is consistent with 

those already reported.13, 20, 21 It is observed that with doping of Zn, χ(T) behavior 

remain same except slight increased value of susceptibility and also an appreciable 

enhancement is occurred around 250K. At low temperature the Co-doped sample shows 

a sharp increase without any peak. Co-doping sample also shows a small enhancement 

around 242 K. The χ(T) curve of Mn-doped LiCuVO4 also shows a broad peak around 

21K. As the magnetic field increases the broad peak diminishes but the signature 

remains there even at higher magnetic field (inset in Fig. 3.3).  

3.3.2.2 Modified Curie-Weiss (MCW) Fitting Analysis 

Due to weak magnetic interaction in LiCuVO4, the magnetic susceptibility at high 

temperature is a measurement of the concentration of the magnetic copper ions, and can 

determine the effectiveness of chemical doping. It is observed with doping of different 

ions (magnetic/nonmagnetic) the magnetic moment increases. The effect of doping can 
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also be estimated quantitatively by the calculation of the effective moment. In order to 

study the doping effect we have fitted the magnetic susceptibility data to the the 

theoretical susceptibilities given by   

��� =	����	
�� +	��                                              (1) 

where the spin susceptibility, χspin(T)can be described by Curie-Weiss susceptibility 

χspin =C/(T+θ)                                                         (2) 

where C is the curie constant and θ is the Weiss constant.   

 At high temperatures where the spin susceptibility is small enough, the fitting 

analysis of the observed magnetic susceptibility is significantly influenced by the sign 

of the temperature independent magnetic susceptibility χ0. χ0is given by χ0 = χdia+ χVV; 

where χdia is the diamagnetic contribution from the closed electron shell ions and  χVV is 

the temperature-independent Van Vleck contribution.  In order to extract the values 

ofχ0 and θ for all the samples the high temperature range of DC susceptibility were 

fitted [Fig. 3.4] to the modified Curie-Weiss law, Eq (1). The obtained values of χ0 and 

θ are shown in Table3.1. 

Table 3.1 

J1 and J2 values obtained from HTSE fitting of magnetic susceptibility 
dataofLiCuVO4, LiCu0.95Zn0.05VO4, LiCu0.95Co0.05VO4 and 
LiCu0.95Mn0.05VO4samples in temperature range 50–300 K. χ0 and θ values 
obtained by fitting with modified Curie–Weiss law in the temperature region 150–
300 K. 

 
       Sample/Parameter   LiCuVO4         LiCu0.95Zn0.05VO4       LiCu0.95Co0.05VO4          LiCu0.95Mn0.05VO4 

 
       J1/kB (K)                  13.23            4.9                              11.84                          16.15 
       α = J2/J1                          -5.37              -13.19                         -6.53             -0.4          
      χ0 (HTSE fit)        -4.87E-5          4.69E-05                   6.90E-04                      2.12E-04 
      θ (K) (HTSE fit)    -28.91            -29.87                         -32.74                          4.85    
      χ0 (CW fit)            -4.48E-5        -29.78E-5                   -12.767E-5                   12.16E-5 
      θ (K) (CW fit)        -25.2             -29.8                           -39.24                            4.5 

 

The effective magnetic moment µeff can be obtained by evaluating the relation: 

                                                                C=Nµeff
2/3kB 

Where N is the number density of magnetic ions per unit gram, kB is the Boltzmann’s 

constant. Since the Zn, Co and Mn are doped in the Cu2+ site the theoretical expected 

magnetic moment of Zn-doped and Mn-doped LiCuVO4 can be calculated from the 

equation: µeff=g[Savg(Savg+1)]1/2 where g factor is 2.26.4The effective moments from the 

Curie constant are calculated to be 2.01µB, 2.26µB, 2.42µB and 2.06µB respectively, for 
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undoped, Zn-doped, Co-doped and Mn-doped samples. The theoretical values of 

effective moments for LiCuVO4, LiCu0.95Zn0.05VO4, LiCu0.95Co0.05VO4 and 

LiCu0.95Mn0.05VO4 respectively, are 1.957µB, 1.89µB, 2.09µB and 2.21µB which are in 

good agreement with the experimentally observed values. But for Zn-doped sample the 

values differ much. In actual case Zn is nonmagnetic and therefore with doping of Zn the 

magnetic moment should decrease as has been observed for the hole-doped LiCuVO4.
12 
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 Figure 3.4: Modified Curie-Weiss Law fitting of the χ(T) data of LiCuVO4,                                     
LiCu0.95Zn0.05VO4, LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples 
in the temperature range 100K-200K. 

But in the present investigation it has been observed that with 5% Zn doping at low 

temperature the magnetization value increases slightly.Moreover, with Zn doping the 

AFM correlation length of magnetic Cu2+ increases leading to the increase of θ value. 

The increase in the µeffmight be due the change of the canting angle of the Cu spins. Co 

ion also increases the AFM correlation length as with Co doping θ value increases. 

Moreover, the spin quantum number of Co2+ is larger (3/2) than that of Cu2+ and as a 

matter of fact the magnetization value increases with doping of Co. It is observed from 

the Curie-Weiss fitting for the Mn-doped sample that θ value becomes positive which 

is the indication of the induced of ferromagnetism. 
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3.3.2.3 High-Temperature Series expansion (HTSE) Analysis of the 
Magnetic Susceptibility 

 
But in the present investigation it has been observed that with 5% Zn doping at 

low temperature the magnetization value increases slightly. Moreover, Zn doping 

increases the AFM correlation length of magnetic Cu2+ leading to the increase of θ value. 

The increase in the µeff might be due to the change of the canting angle of the Cu spins. 

Co ion also increases the AFM correlation length as with Co doping θ valueincreases. 

Moreover, the spin quantum number of Co+2 is larger (3/2) than that of Cu+2 and as a 

matter of fact the magnetization value increases with doping of Co. It is observed from 

the Curie–Weiss fitting for the Mn-doped sample that θ value becomespositive which is 

the indication of the induced ferromagnetism. Moreover, χspin can also be described by a 

high-temperature series expansion (HTSE) of the magnetic susceptibility for a frustrated 

S=1/2 Heisenberg chain defined by J1 and J2. For sucha chain, the HTSE of the magnetic 

susceptibility is expressed as15 

����	 =	�1 �� �∑ �	,� ��

−��

���
� �	                                   (3) 

where the expansion coefficients cn,k were calculated by Bühler et al. [16] up to the 

10th order in   n and k. At high temperatures the spin susceptibility is small enough, 

therefore the sign of the temperature independent magnetic susceptibility χ0 plays the 

significant role. The fitting analysis based on the HTSE is expected to be valid in the 

high-temperature region where the Curie-Weiss law works as well as in the lower 

temperature region where short-range AFM correlations occur. Thus, we carried out 

the HTSE fitting of the susceptibilities using equation (1) taking the susceptibility 

data set for the HTSE fits covering 50-300 K. Least-squares fits to the selected data 

set using α, χ0, and J1 as free parameters have been performed. The fitting analysis 

indicates that χ0 is more likely to be negative than positive (except the Mn-doped 

sample). Figure 3.5 displays the results of the HTSE fits of the experimental 

susceptibility data of doped and undoped LiCuVO4 and Table 3.1 summarizes the 

results of the HTSE fitting analyses. The HTSE describes the high-temperature 

susceptibilities well and is also able to capture the essence of the short-range magnetic 

ordering at lower temperatures. It is observed, the Curie-Weiss temperature θ ≈ 

(J1+J2)/2kB
15 is negative for undoped, Zn and Co doped samples. For Mn doped sample it 

becomes positive.We have also fitted the susceptibility data taking into consideration the 

interchain exchange interactions (J4 and J5)
18 into the HTSE model. The fitted parameters 
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are shown in Table 3.2. It is also observed that the sign of θ ≈ (J1+J2+J4+2J5)/2kB value is 

consistent with that observed in Table 3.1. 
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  Figure 3.5:HTSE fitting of the 1/χ(T) data of LiCuVO4, LiCu0.95Zn0.05VO4,                                     

LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples in the 
temperature                                      range 50K-300K considering J1, 
J2, J4 and J5 interactions (Inset: HTSEfitting of samples in the 
temperature range 50K-300K considering J1 andJ2 interactions). 
 

For undoped sample the θ value is ~-29K (Table 3.1) which is larger than that 

reported earlier.15,22But when interchain exchange interactions taken into account the 

observed θ value becomes consistent with those reported. The θ values thus obtained 

are also consistent with those obtained from Curie-Weiss fitting [Eqn.2]. From both the 

HTSE fitting it is observed that when Mn is doped the J1 (nearest neighbor interaction) 

dominates over J2 (next nearest neighbor interaction). On the other hand for both Zn 

and Co doped samples J2 increases and J1 decreases than those of the undoped sample. 

From Table 2 (when J4 and J5 are introduced) it is observed that for undoped sample the 

values of interchain exchange interactions are very small but when Zn, Co and Mn are 

doped the values become significant. In Zn and Co doped samples both the J4 and J5 are 

positive whereas for Mn doped sample J4 is positive but J5 is negative.  
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Table 3.2 
  HTSE fitting of magnetic susceptibility data of LiCuVO4, LiCu0.95Zn0.05VO4,                                

LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples in temperature range 50–300  
K considering J1, J2, J4 and J5 interactions. 

 
              Sample/Parameter   LiCuVO4      LiCu0.95Zn0.05VO4         LiCu0.95Co0.05VO4          LiCu0.95Mn0.05VO4 

 
              J1/kB (K)                  10.14           9.8                             12.1                              12.25 
              J2/kB (K)                  -50.2           -70.5                           -90.3                             -6.06 
              J4/kB (K)                  -0.36            4.20                            9.32                             5.20 
              J5/kB (K)                  -2.15            2.42                            4.01                            -4.21 
              χ0                            -3.14E-5     -2.08E-6                      44E-5                          27.2E-5 
             θ (K)                        -21.29         -27.04                          -32.44                         3.59 

 

          Moreover, in actual case Zn is nonmagnetic and therefore with doping of Zn the 

magnetic moment should decrease as has been observed for the hole-doped LiCuVO4.
12 

But in the present investigation it has been observed that with 5% Zn doping at low 

temperature the magnetization value increases slightly.The increase in the 

magnetizationmight be due to the change of the canting angle of the Cu spins. 

Moreover, the spin quantum number of Co2+ is larger (3/2) than that of Cu2+ and as a 

matter of fact the magnetization value increases with doping of Co. Furthermore, for 

Co ion with S=3/2, single–ion anisotropy might also be involved for reliable 

quantitative analysis. But in the present investigation that can be ignored because of the 

very low concentration of Co. It is observed for the Mn-doped sample that θ value 

becomes positive (mentioned above) which is the indication of the induced 

ferromagnetism.  

 

3.3.2.4 Analysis of Magnetization (M) as function of Magnetic field 

(H) andχ(T)*T Product as Function of Temperature 

Fig. 3.6 displays the M-H hysteresis loop of all the samples at 5K. No hysteresis 

is observed for undoped sample. For Zn and Co doped samples small non-linearity is 

observed. But for Mn doped sample the value of the coercivity is significant (shown in 

the inset of Fig. 3.6). The changeover in response of the magnetic Cu ion with doping of 

Zn, Co and Mn is further illustrated in Fig. 3.7 in which the χ(T)*T product is shown as a 

function of temperature. For temperature independent spins, and temperatures far above 

the effective interaction temperature, it is found that this product is temperature 

independent. The χ(T)*T value changes with doping of different transition metal ions 

indicating essentially change of  interactions among the magnetic Cu ions. At low 
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temperatures χ(T)T of LiCuVO4 is below the other curves. This supports that the 

effective antiferromagnetic interaction among the magnetic Cu ions decreases slightly 

when Zn/Co is doped and when Mn is doped it decreases appreciably. The Mn-doped 

sample also shows clearly the deviation from antiferromagnetic ordering and signature 

of ferromagnetism.  
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  Figure 3.6:Variation of magnetization with magnetic field (-5T to +5T) of                             

LiCuVO4,LiCu0.95Zn0.05VO4, LiCu0.95Co0.05VO4 and 
LiCu0.95Mn0.05VO4samples.(Inset: Extended view of 
LiCu0.95Mn0.05VO4 around the hysteresis loop).  
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Figure 3.7:χ(T)*T as a function of temperature of LiCuVO4, LiCu0.95Zn0.05VO4,    
                                 LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples at 5000 Oe. 
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Furthermore, the d(χT)/dT is known as the ‘Fisher specific heat’ and is 

commonly used to determine the Curie temperature, Tc.
23-25But the d(χT)/dT vs. T plot 

lack a peak, only hump is observed for the un-doped and Zn and Co-doped samples. 

Same hump like behaviour is also observed in χ(T) plot.  

This is usual for low-dimensional system and is associated with the appearance of the 

magnetic correlation within the copper chains. But for Mn-doped sample only a kink is 

observed. Moreover, if in both χ(T) and χT(T) plots peak is observed then it indicates 

the magnetic ordering. For the un-doped, Zn and Co-doped samples neither in χ(T) plot 

nor in χT(T) plot any peak is observed within the measured temperature range. But in 

Mn-doped sample in both the curves peak is observed. All these indicate that there 

might be a FM ordering in this Mn-doped sample.  

3.3.3 Neutron Diffraction Study 

 Neutron diffraction (ND) is a powerful tool to study the structural and magnetic 

properties of material due to the different doping and pristine sample. Mn-doped 

LiVCuO4 induces ferromagnetism as above discussed. The origin of ferromagnetic 

ordering and what type of ordering e.g. long or short range that can be confirmed by 

Neutron diffraction pattern analysis.  So, Neutron diffraction (ND) was performed on all 

the samples (shown in Fig. 3.8 (a) and 3.8 (b)) to obtain the insight feature of the 

magnetic and structural properties. The cell dimensions were refined using the program 

FULLPROF.26A full refinement was performed in the space group Imma by varying the 

positional parameters of the V and O atoms, the isotropic temperature factors of the V, 

Cu, and O atoms, the scale factors and the extinction parameter. The structure refinement 

was performed with least squares method. It is worthwhile to mention that we have taken 

both XRD and Neutron diffraction data for refinement, since Neutron diffraction does not 

provide any information regarding V ions. The results of these refinements are listed in 

Table 3.3.It is observed that for all the samples the lattice parameters decrease as the 

temperature decreases. There is no indication of a structural phase transition down to 5K. 

Thus the temperature does not cause any significant change in the crystal structure. 

Moreover, no superlattice peak is observed at the low temperature neutron diffraction 

data and hence there is no indication of the magnetic transition. Therefore, the FM 

ordering observed in the magnetization data for the Mn-doped sample is the short-range 

ordering only. It is also observed with doping the lattice parameters increase. The 
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parameters ‘a’ and ‘b’ increase from LiCuVO4 to Zn-doped sample through Co and 

Mn-doped. On the other hand c parameter is maximum for Mn-doped sample. 
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 Figure 3.8:Neutron diffraction pattern of LiCuVO4, LiCu0.95Zn0.05VO4,  
LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples at (a) 5 K and 

(b) 300 K. 
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 Table 3.3:Structural parameters (lattice parameters, bond lengths) of LiCuVO4, 
LiCu0.95Zn0.05VO4, LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4 samples 
obtained from Reitveld refinement. The structural data have been 
refined with space group Imma, Li (4d) (1/4 1/4 3/4); Cu (4a) (0 0 
0); V (4e) (0 1/4 z); O1(8h)(0 y z); O2(8i)(x 1/4 z). 

 
Sample/           LiCuVO4            LiCu0.95Mn0.05VO4                LiCu0.95Co0.05VO4                         LiCu0.95Zn0.05VO4                                        

Parameter 300K        5K        300K               5K             300K         5K                      300K             5K

 
a (Å)      5.6517(5)   5.6522(6)   5.6582(6)    5.6582(4)         5.6595(4)    5.6561(4)             5.6594(5)    5.6544(4) 

b (Å)      5.8001(5)    5.7938(6)   5.8070(6)    5.8025(4)        5.8098(4)    5.7997(4)             5.8109(5)   5.7995(4) 

 c (Å)     8.7453(7)   8.6958(8)      8.7484(8)    8.6991(6)      8.7153(7)     8.6682(6)            8.7289(7)    8.6769(6) 

Volume  286.676      284.767       287.446         285.605        286.562       284.348                287.061      284.537                    

               (0.043)      (0.048)           (0.050)        (0.037)          (0.038)       (0.037)                  (0.040)        (0.035) 

V (4 e) z    0.6121(4)    0.6121(4) 0.6133(3)     0.6133(3)         0.6129(4)      0.6129(4)     0.6133(3)   0.6133(3) 

O (8 h) y    0.5151(9)   0.5153(9) 0.5157(10)   0.5163(7)         0.5164(7)     0.5152(7)     0.5157(8)   0.5166(6) 

             z     0.2744(3)   0.2732(4) 0.2744(4)     0.2731(3)         0.2733(3)     0.2724(3)    0.2735(3)   0.2729(3) 

O (8 i)  x    0.2356(5)   0.2348(5) 0.2347(5)    0.2344(4)          0.2364(4)     0.2364(4)     0.2362(4)   0.2358(4) 

             z    -0.0005(13)  0.0003(13)   0.0009(13)   0.0039(7)   - 0.0010(10)   -0.0043(9)     -0.0004(11)  0.0002(9) 

Distances 

Cu–O1 (Å)  2.401(3)     2.377(4) 2.402( 4)     2.378(3)            2.384(3)          2.363( 3)     2.389(3)      2.370(3) 

Cu–O2 (Å)  1.969(2)     1.965( 2) 1.968(2)      1.966(2)            1.975(2)          1.973(2)      1.974(2)      1.970(2) 

V–O1 (Å)    1.686(5)     1.686(5) 1.678(5)       1.678(4)           1.681(4)          1.686(4)      1.682(4)     1.676(3) 

V–O2 (Å)    1.785(7)     1.790(7)   1.803(7)       1.816(4)            1.782(5)          1.763(5)      1.789(6)    1.789(5) 

 

Atom         Coord        D_aver         Distort ( x10–4)     Valence       BVSum 

Li                  6.0             2.1301(30)      4.129                         1.000             1.003(7) 

Cu                 6.0             2.1129( 9)       93.192                        2.000             2.112(5) 

V                   4.0             1.7357(80)      5.203                          5.000             4.825(105) 

O1                 4.0             2.0741(43)     146.015                      -2.000             1.838(59) 

O2                 4.0            1.9760(49)     55.556                        -2.000               2.133(46)

 

 Moreover, it is found that the V-O(1) and V-O(2) distances are changed slightly 

or remain constant with doping of Zn and Co. Nonetheless when Mn is doped the 

change in the average V-O distances is more. The possible reason for the observed 

ferromagnetism can be explained as The antiferromagnetic interaction between the two 

spin sites of a spin dimer can be written as JAF=-(∆e)2/Ueff, where ∆e is the spin-orbital 

interaction energy between the two magnetic orbitals representing two spin sites and 

Ueff is the effective onsite repulsion.9Ueff is nearly constant for closely related magnetic 

systems. Therefore, JAF is well approximated by the corresponding -(∆e)2. The ∆e is the 

energy difference between the bonding level and the anti-bonding level of the spin 

dimer. 
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 Along the a-direction, the empty d orbital of the V atom forming the O-V-O bridge 

with the oxygen atoms of the Cu-O…O-Cu path interacts in-phase with both O2p orbital 

tails of the antibonding level, thereby lowering the antibonding level.9 Consequently 

the ∆e is reduced in the LiCuVO4. As a matter of fact the exchange interaction along a-

direction is negligible compared to nearest neighbor and next nearest neighbor 

interactions. But with Mn doping somehow the exchange interactions are modified 

which in effect might be inducing the short range ferromagnetic ordering in Mn-doped 

sample. 

3.3.4 XPS (X-Ray Photoemission Spectra) Study 

 To get the effect of doping on oxidation state of Cu cations in LiCu1-xMxVO4 

(where M= Zn, Co, Mn and x= 0.00 and 0.05), we have also investigated the X-ray 

photoemission spectroscopy on these systems (Fig. 3.9). The XPS data of Cu2p region 

of all the samples have been shown in Fig. 3.10. Cu2p region of undoped LiCuVO4 

sample shows main peaks around 933.5 eV and 953.4 eV which corresponds to Cu2p3/2 

and Cu2p1/2 respectively. Peaks around 943.9 eV and 960.9 eV correspond to satellite 

peaks of Cu2p3/2 and Cu2p1/2, respectively.  
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 Figure 3.9:X-ray Photoemission spectroscopy survey scan of LiCuVO4,                                      

LiCu0.95Zn0.05VO4 and LiCu0.95Co0.05VO4 and LiCu0.95Mn0.05VO4. 

   Binding energy values match well with the Cu(II)O, which indicates the +2 

oxidation state of Cu in our system. Due to doping of Zn and Co there is no significant 
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change observed in the binding energy of Cu cations. This means that due the doping of 

Zn and Co, not any appreciable change observed in the oxidation state of Cu cation. 

But there is small peak around 935.7 eV in Cu2p region of Mn doped LiCuVO4 system. 

This peak clearly indicates the presence of some (very few) Cu3+ cations in this system. 

But the percentage of Cu3+ cations are quite low as compared to Cu2+ (which is due to 

very low doping of Mn cations) due to which no significant shift has been observed in 

the binding energy of Cu region. Mn2p region shows the presence of mixed Mn 

valences (Mn2+ and Mn3+ cations) in the Mn doped LiCuVO4. This could be the case 

that the mixed valences of Mn cations produce the Cu3+ cations in this system. The 

Cu3+ is non-magnetic which in effect might decrease the next nearest neighbor anti-

ferromagnetic interaction. But in the present case the Cu3+ cations are very less. 

Therefore, it deserves further study to throw light towards the actual origin of the 

observed ferromagnetism. 
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 Figure 3.10:X-ray Photoemission spectroscopic study of Cu2p of (a) LiCuVO4, (b) 
LiCu0.95Zn0.05VO4, (c) LiCu0.95Co0.05VO4 and (d) LiCu0.95Mn0.05VO4. 
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3.4 Conclusion 

       Neutron diffraction, Magnetic properties and XPS of Zn, Co and Mn-doped 

LiCuVO4 were investigated. When Zn and Co are doped the antiferromagnetic 

interaction increases. On the other hand Mn-doping induces the short range 

ferromagnetic ordering. It is also observed from the fitting with the HTSE model that 

interchain exchange interactions play significant role in doped samples. Neutron 

diffraction study does not show any indication of long range magnetic ordering. 

Neutron diffraction study also indicates that with Mn doping the V-O lengths are 

changed. The exchange interactions are somehow modified with Mn doping which in 

effect induces short range ferromagnetism. Moreover, doping of Mn on the Cu site of 

LiCuVO4 converts very few Cu2+ ions into Cu3+ ions. Further study is required to 

explain the actual origin of ferromagnetism in LiCuVO4 with Mn doping. 
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