CONTENTS

Chapter 1: Introduction and Literature Review

1.1 Introduction	1
1.2 Perovskites Structure	5
1.3 Ferroelectrics	6
1.4 Anti-Ferroelectrics	9
1.5 Relaxor-Ferroelectrics	9
1.6 Piezoelectricity	13
1.7 Soft Mode and Phase Transition in Perovskites	14
1.8 Morphotropic phase Boundary Region	15
1.9 Recent Developments in MPB Based Solid Solution	16
1.10 Structure and Properties of Lead Titanate System	18
1.11 The BMT-PT Solid Solution System	19
1.11.1 Preparation of BMT-PT Solid Solution	19
1.11.2 Phase Diagram of BMT-PT Solid Solution	21
1.11.3 Structure and Phase Coexistence in BMT-PT System	22
1.11.4 Temperature Dependent Dielectric Studies on BMT-PT	23
1.12 The BMZ-PT Solid Solution System	25
1.12.1 Preparation of BMZ-PT Solid Solution	25
1.12.2 Structure, Phase Coexistence and Phase Diagram	
of BMZ-PT System	26
1.12.3 Temperature Dependent Dielectric Studies on BMZ-PT	29
1.14 Objective of the Present Thesis Work	32
Chapter 2: Synthesis of Phase Pure BMT-PT and BMZ-PT	
2.1 Introduction	33
2.2 Characterization Tools	34

2.2.1 X-Ray Diffraction	34
2.2.2 Scanning Electron Microscope (SEM) and Energy	
Dispersive X-Ray Analysis (EDS)	36
2.3 Experimental Details	37
2.3.1 Weighing and Mixing	38
2.3.2 Calcination	40
2.3.3 Preparation of Green Pellets	43
2.3.4 Sintering	43
2.3.5 Microstructure and Compositional Studies	46
2.4 Conclusion	49
Chapter 3: Location of MPB and Room Temperature Crystal Structure of BMT-PT and BMZ-PT	
3.1 Introduction	50
3.2 Experimental Details	51
3.3 Details of Rietveld Refinement Method	52
3.4 Details of the Rietveld Refinement of BMT-PT and BMZ-PT	56
3.5 Results and Discussion	58
3.5.1 Crystal Structure and Location of MPB in BMT-PT at	
Room Temperature	58
3.5.2 Monoclinic Structure with Space Group Pm (x=0.32)	60
3.5.3 Phase Coexistence with Space Group Pm+P4mm (x=0.35)	65
3.5.4 Tetragonal Structure with Space Group P4mm (x=0.45)	69
3.5.5 Variation of Lattice Parameters and Phase Fractions	
with Composition	71
3.6 Grain Size Dependent Phase Stabilities in BMT-PT	73

3.6.1 Crystal Structure with Varying Heat Treatment in	
0.65BMT-0.35PT	73
3.6.2 Rietveld Analysis of XRD Data with Heat treatment	76
3.6.3 Variation of Lattice Parameters and Monoclinic Phase	
Fraction with Composition	78
3.6.4 Microstructure Studies	81
3.7 Crystal Structure and Location of MPB in BMZ-PT at	
Room Temperature	84
3.7.1 Rietveld Analysis of X-Ray Powder Diffraction Data	88
3.7.1.1 Cubic Structure with Space Group Pm3m (x<0.57)	88
3.7.1.2 Phase Coexistence with Space Group	
Pm3m+P4mm (0.57≤x≤0.59)	90
3.7.1.3 Tetragonal Structure with Space group P4mm	93
3.7.2 Variation of Lattice Parameters and Tetragonal Phase	
Fraction with Composition	95
3.8 Discussions	95
3.9 Conclusions	99
Chapter 4: Electric Field Induced Structural Phase	
Transformation in BMT-PT and BMZ-PT	101
4.1 Introduction	101
4.2 Experimental Details	102
4.3 Electric field induced structural change in BMT-PT	103
4.3.1 Pseudocubic to monoclinic Phase Transition after Poling	
in 0.68BMT-0.32PT	103
4.3.2 Structural Changes in Tetragonal Composition after Poling	104
in 0.62BMT-0.38PT	104

4.3.3 Structural Changes in MPB Composition after Poling	
in 0.65BMT-0.35PT	110
4.3.4 P-E Hysteresis Loop Studies For BMT-PT	113
4.4 Electric field induced structural change in BMZ-PT	116
4.4.1 Cubic to Tetragonal Phase Transition after Poling in	
0.45BMZ-0.55PT	118
4.4.2 Structural Changes in Tetragonal Composition after Poling	121
4.4.3 Structural phase changes in MPB Composition after Poling	123
4.4.4 Modification in the Lattice Parameters after Poling	125
4.4.5 P-E Hysteresis Loop Studies For BMZ-PT	127
4.5. Discussions	132
4.6 Conclusions	135
Chapter 5: Low Temperature XRD and Dielectric Studies	
5.1 Introduction	138
5.2 Experimental Details	140
5.3 Results and Discussion	141
5.3.1 Low temperature XRD Studies for 0.68BMT-0.32PT	141
5.3.2 Low temperature XRD Studies for 0.65BMT-0.35PT	144
5.3.3 Low temperature Dielectric Studies in BMT-PT	147
5.3.4 Low temperature Dielectric Studies in BMZ-PT	151
5.4. Discussions	154
5.5 Conclusions	155
Chapter 6: Summary of thesis and Suggestions for Future Work	
6.1 Summary of the Present work	156
6.2 Suggestions for Future Work	160

References

List of publications

Participated in Schools/ Workshops/ Symposiums/ Conferences