List of Symbols

a_0	Lattice constant
a_{ZnO}	Lattice constant of ZnO
a_{Si}	Lattice constant of Si
c_0	Height of unit cell
c	Velocity of light
C	Small – signal capacitance
°C	Degree centigrade
V	Frequency of light Hole
h^+	noie
e^{-}	Electron
n	n-type semiconductor
p	p-type semiconductor
u	The length of the bond parallel to the c axis, in unit of c
β	Full width at half maximum (FWHM)
λ	Wavelength
γ	smallest integer (dimensionless) greater than η
δ	Thickness of the interfacial layer
θ	Angle of diffraction
d	Spacing between consecutive parallel planes
n	Glancing angle Permittivity of vacuum
$\boldsymbol{\varepsilon}_0$	
$\boldsymbol{\mathcal{E}}_{s}$	Dielectric constant of semiconductor
${\cal E}_i$	Permittivity of interfacial layer
σ_0	Zero bias standard deviation
σ	Standard deviation
$\sigma(V)$	Bias-dependent standard deviation
$\eta \over \eta(T)$	Ideality factor Apparent ideality factor
$\eta(V)$	Voltage dependent ideality factor
η_{QE}	Quantum efficiency
W_d	Depletion width
D	Average grain size
D_{opt}	Voltage dependent detectivity
N_D	Effective donor density
N_V	Effective acceptor density
q	Elementary charge

Accumulated space charge in the depletion region Q_{sc} Work function of metal ϕ_m Work function of semiconductor ϕ_{s} Schottky barrier height ϕ_{R} Effective Schottky Barrier height $\phi_{B.eff}$ Mean value of barrier height $\phi_{B0.m}$ $\phi_{B,eff}(T)$ Apparent effective barrier height Voltage dependent barrier height $P(\phi_{B,eff})$ Normalized Gaussian distribution function for the spatial barrier height distribution across the junction Ι Total current I_F Current at forward bias voltage Current at reverse bias voltage I_R Reverse saturation current I_0 I_{min} Minimum current corresponding to voltage V_0 $I(\phi_{Reff}, V)$ Current at bias V for the Schottky barrier height $\phi_{R,eff}$ based on thermionic emission model VApplied voltage Built in potential V_{hi} On voltage of device V_{on} Diffusion voltage V_{d0} h Planck's constant Total current density J_n Saturation current density J_{S} TAbsolute temperature k Boltzmann's constant ٥K Unit of temperature in Kelvin ETotal energy Voltage at minimum point of applied voltage V_0 Conduction band offset ΔE_C Valance band offset ΔE_{ν} Valance band edge E_V Conduction band edge E_{C} Position of Fermi level in a semiconductor E_{F} Near band edge exciton energy E_{NBE} Energy of interface states $E_{\rm ss}$ Effective area of the diode ARichardson constant A^* Rest mass of electron m_0

Effective mass of electron

m

F(V) Norde's function

 $F(V_0)$ is the minimum point of F(V)

F Farad (unit of capacitance)

N(E) Density of states H(I) Cheung's function

 E_g Bandgap

 χ_M Electron affinity of metal

 χ_s Electron affinity of semiconductor

 ρ_1 ρ_2 Voltage deformation coefficients depend upon

temperature

 V_{Zn} Zinc vacancies

 V_O Oxygen vacancies

 V_{on} Turn on voltage Zn_i Zinc interstitials

 Zn_i^+ Single ionized Zn interstitials

 O_i Oxygen interstitials

 V_O^+ Single ionized oxygen vacancy

 R_s Series resistance

 R_i Bias dependent resistance of the diode

R Responsivity

 R_0A Zero bias resistance-area product

RA Resistance-area product P_{opt} Incident optical power

 I_{ph} Photocurrent

 N_{ss} Effective density of interface states

List of Abbreviations

0DZero Dimensional One Dimensional 1**D 2D** Two Dimensional 3D Three Dimensional Hexagonal Close Packing **HCP** TE Thermal Evaporation **GD** Gaussian Distribution Chemical Vapor Deposition **CVD Atomic Layer Deposition ALD** Vapor Phase Transport **VPT** Molecular beam epitaxy **MBE** PLD Pulse Laser Deposition Radio Frequency RF

AS Admittance Spectroscopy
PL Photoluminescence
CL Cathodoluminescence

FESEM Field Emission Scanning Electron Microscopy

SEM Scanning Electron Microscopy

EDS Energy Dispersive X-ray Spectroscopy

AFM Atomic Force Microscopy

XRD X-ray Diffraction
TFT Thin Film Transistor
LED Light Emitting Diodes
SBH Schottky Barrier Height
TFE Thermionic Field Emission

UV Ultraviolet

MSM Metal-Semiconductor-Metal
MIS Metal- Insulator- Semiconductor

MISIM Metal-Insulator-Semiconductor-Insulator-Metal

AZO Al doped ZnO

BHI Barrier Height Inhomogeneity

ITO Indium Tin Oxide BM Burstein-Moss

HT Hydrothermal Method
CSP Chemical Spray Pyrolysis
ECD Electro Chemical Deposition

MOCVD Molecular Organic Chemical Vapour Deposition

SG Sol-Gel

HJ Heterojunction

CMOS Complementary Metal—Oxide—Semiconductor

M-S Metal –Semiconductor
C-V Capacitance-Voltage
I-V Current-Voltage
VS Vapour–Solid

VLS Vapour-Liquid-Solid

RHEED Reflection High-Energy Electron Diffraction

FWHM Full-Width at Half-Maximum

LAMBD Laser Assisted Molecular Beam Deposition