	Page No.
Acknowledgements	i-ii
Abbreviations	iii-iv
List of Figures	xi-xiv
List of Tables	XV
Preface	xvi-xviii
Chapter 1: Introduction	(1-15)
1.1 Introduction	1
1.2 Biodiesel as a renewable and alternative energy source	3
1.3 Process for biodiesel production	6
1.4 Catalysts for biodiesel synthesis	7
1.5 Comparison between standard diesel and biodiesel	9
1.6 Advantages of biodiesel	11
1.6.1 Energy independence	11
1.6.2 Global warming and the greenhouse gas	12
1.6.3 Sulfur and atmospheric contamination	13
1.6.4 Carbon neutrality	13
1.7 Objectives of the present work	14
1.8 Scope for future work	15
Chapter: 2 Literature review	(16-26)
2.1 Introduction	16
2.1.1 First generation biofuels	16
2.1.2 Second generation biofuels	17

2.1.3 Third generation biofuels	17
2.1.4 Fourth generation biofuels	17
2.2 Production of biodiesel from different feedstocks	18
2.3 Pongamia pinnata oil	19
2.4 Waste fish oil	21
2.5 Homogenous and heterogeneous catalyst	22
Chapter: 3 Materials and Methods	(27-33)
3.1 Materials	27
3.2 Reagents	27
3.3 Instruments	27
3.4 Preparation of catalysts	28
3.4.1 Calcium oxide preparation	28
3.4.2 β - tricalcium phosphate preparation	29
3.5 Esterification	29
3.6 Transesterification	30
3.7 Characterization of biodiesel	31
3.7.1 Proton NMR analysis of biodiesel	31
3.7.2 Characterization of biodiesel by FT-IR	32
3.9.3 Fatty acid composition of feedstocks through Gas Chromatograph Mass Spectrometry (GC-MS) analysis	32
3.8 Characterization of catalysts	32
3.8.1 XRD analysis	32
3.8.2 Characterization of catalysts by DTA/TGA	33
3.8.3 Characterization of catalysts by SEM	33

Chapter: 4 Preparation and characterization of catalysts. Extraction of feestocks and characterization of fatty acids present in the feedstocks.	(34-73)
4.1 Synthesis of catalysts	34
4.1.1 Preparation of calcium oxide (CaO) catalyst	34
4.1.2 Characterization of synthesized calcium oxide	35
4.1.2.1 X-Ray diffraction patterns	35
4.1.2.2 TG/DTA/DTG analysis	37
4.1.2.3 SEM/EDS analysis	39
4.1.2.4 FT-IR analysis 4.1.3 Preparation of β -tri-calcium phosphate (Ca ₃ (PO ₄) ₂) catalyst	40 41
4.1.3.1 XRD Patterns of β -tri-calcium phosphate	42
4.1.3.2 TG/DTA/DTG analysis of solid matter	43
4.1.3.3 FT-IR analysis	45
4.1.3.4 SEM/EDX analysis	46
4.2 Pongamia pinnata oil extraction	48
4.2.1 Characterization of <i>Pongamia pinnata</i> oil	50
4.2.1.1 GC-MS analysis of <i>Pongamia pinnata</i> oil	50
4.3 Fish oil extraction	60
 4.3.1 Characterization of fish oil extraction 4.3.1.1 GC-MS analysis of waste fish oil Chapter: 5 Synthesis of biodiesel using crude <i>Pongamia pinnata</i> oil and calcium oxide 	61 61 (74-94)
5.1 Introduction	88
5.2 Results and discussions	75
5.2.1 Effect of co-solvent on biodiesel synthesis	75
5.2.2 FT-IR analysis of biodiesel	77

5.2.3 Effect of reaction parameters on biodiesel yield	
5.2.3.1 Effect of catalyst concentration and methanol to oil molar ratio on biodiesel yield	78
5.2.3.2 Effect of reaction time on biodiesel yield	81
5.2.3.3 Effect of reaction temperature on biodiesel yield	82
5.2.3.4 Effect of stirrer speed on biodiesel yield	84
5.2.4 Characterization of biodiesel by proton NMR analysis	85
5.2.5 Separation and purification of biodiesel	86
5.2.6 Catalyst reusability	87
5.3 Conclusions	89
Chapter: 6 Synthesis of biodiesel from <i>Pongamia pinnata</i> oil using β- Tricalcium phosphate as catalyst	(91-104)
6.1 Introduction	91
6.2 Results and discussions	93
6.2.1 FT-IR analysis of biodiesel	93
6.2.2 Effect of reaction parameters on biodiesel yield	94
6.2.2.1 Effect of molar ratio and catalyst concentration on the biodiesel yield	94
6.2.2.2 Effect of reaction temperature on biodiesel yield	95
6.2.2.3 Effect of mixing rate on biodiesel yield	97
6.2.2.4 Effect of reaction time on biodiesel yield	98
6.2.3 NMR analysis of synthesized biodiesel	99
6.2.4 Separation and purification of biodiesel	101
6.2.5 Reusability of catalyst	102
6.3 Conclusions	103

Chapter: 7 Synthesis and optimization of biodiesel from waste fish oil using calcium oxide as catalyst	(105-119)
7.1 Introduction	105
7.2 Results and discussions	106
7.2.1 FT-IR analysis of biodiesel	106
7.2.2 Effect of reaction variables on biodiesel production	107
7.2.2.1 Combined effect of catalyst concentration and methanol to oil molar ratio on biodiesel production	108
7.2.2.2 Impact of reaction time on biodiesel production	110
7.2.2.3 Impact of reaction temperature on biodiesel production	111
7.2.2.4 Impact of agitation on biodiesel production	112
7.2.3 NMR of biodiesel	113
7.2.4 Separation and purification of biodiesel	115
7.2.5 Reusability of catalyst	117
7.3 Conclusions	118
Chapter: 8 Synthesis of biodiesel from waste fish oil using β- Tricalcium phosphate as catalyst.	(120-133)
8.1 Introduction	120
8.2 Results and discussions	122
8.2.1 FT-IR analysis of biodiesel	122
8.2.2 Effect of reaction variables on biodiesel production	123
8.2.2.1 Effect of catalyst concentration and methanol to oil molar ratio on biodiesel yield	123
8.2.2.2 Effect of reaction temperature on biodiesel yield	124
8.2.2.3 Effect of reaction time on biodiesel yield	125
8.2.2.4 Effect of stirrer speed on biodiesel yield	126

References	141-162
Summary	134-140
8.3 Conclusions	132
8.2.5 Reusability of catalyst	131
8.2.4 Separation and purification of biodiesel	129
8.2.3 NMR analysis of biodiesel	128

List of Research Publications

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Mechanism of acid catalyzed transesterification	7
Figure 1.2	Mechanism of the base catalyzed transesterification	8
Figure 1.3	Carbon neutrality phenomenon	14
Figure 4.1	Waste crab shells	35
Figure 4.2	X-ray diffraction pattern (XRD) of calcined crab shell catalyst	37
Figure 4.3	TG/DTA/DTG of uncalcined crab shells	38
Figure 4.4	Scanning electron micrograph (SEM) of calcium oxide derived from waste crab shells	39
Figure 4.5	Energy dispersive x-ray (EDX) pattern of calcium oxide derived from waste crab shells	40
Figure 4.6	Fourier transform infra-red (FTIR) spectrum of calcium oxide derived from waste crab shells	41
Figure 4.7	X-ray diffraction pattern (XRD) of (a) β -Tri-calcium Phosphate (b) Hydroxyapatite	43
Figure 4.8	TG/DTA/DTG analysis of solid matter	45
Figure 4.9	FT-IR spectra of β -tricalcium phosphate	46
Figure 4.10	Scanning electron micrograph (SEM) SEM of β -tricalcium phosphate	47
Figure 4.11	Energy dispersive x-ray (EDX) pattern of β -tricalcium phosphate	48
Figure 4.12	Pongamia pinnata seeds	49
Figure 4.13	GC-MS chromatogram of Pongamia pinnata oil.	53

Department of Chemistry, IIT(BHU) Varanasi

Figure 4.14	GC-MS spectrum of palmitic acid methyl ester	54
Figure 4.15	GC-MS spectrum of oleic acid methyl ester	55
Figure 4.16	GC-MS spectrum of stearic acid, methyl ester	56
Figure 4.17	GC-MS spectrum of cis - 11- eicosenoic acid methyl ester	57
Figure 4.18	GC-MS spectrum of arachidic acid methyl ester	58
Figure 4.19	GC-MS spectrum of behenic acid, methyl ester	59
Figure 4.20	Discarded parts of fish	60
Figure 4.21	GC-MS chromatogram of waste fish oil	63
Figure 4.22	GC-MS spectrum of myristic acid methyl ester	64
Figure 4.23	GC-MS spectra of palmitoleic acid methyl ester	65
Figure 4.24	GC-MS spectrum of palmitic acid methyl ester	66
Figure 4.25	GC-MS spectrum of arachidonic acid methyl ester.	67
Figure 4.26	GC-MS spectrum of oleic acid methyl ester	68
Figure 4.27	GC-MS spectrum of linoleic acid methyl ester	69
Figure 4.28	GC-MS spectrum of stearic acid methyl ester	70
Figure 4.29	GC-MS spectrum of eicosapentaenoic acid methyl ester (EPA)	71
Figure 4.30	GC-MS spectrum of docosahexaenoic acid methyl ester (DHA)	72
Figure 4.31	GC-MS spectrum of erucic acid methyl ester	73
Figure 5.1	Effect of co-solvent on biodiesel yield using different co- solvents	76
Figure 5.2	Effect of tetrahydrofuran to methanol molar ratio on biodiesel	77
Figure 5.3	Fourier transform infra-red (FTIR) spectrum of synthesized biodiesel	78

Figure 5.4	Effect of catalyst concentration and methanol to oil molar ratio on biodiesel yield	81
Figure 5.5	Effect of reaction time on biodiesel yield	82
Figure 5.6	Effect of reaction temperature on biodiesel yield	83
Figure 5.7	Effect of stirrer speed on biodiesel yield	84
Figure 5.8	Proton NMR spectra of synthesized biodiesel	86
Figure 5.9	Reusability of calcium oxide catalyst in transesterification	89
Figure 6.1	Fourier transform infra-red (FTIR) spectrum of synthesized biodiesel	93
Figure 6.2	Effect of molar ratio and catalyst concentration on the biodiesel yield	95
Figure 6.3	Effect of reaction temperature on biodiesel yield	96
Figure 6.4	Effect of mixing rate on biodiesel yield	98
Figure 6.5	Effect of reaction time on biodiesel yield	99
Figure 6.6	Proton NMR analysis of synthesized biodiesel	100
Figure 6.7	Reusability of β -tricalcium phosphate catalyst	103
Figure 7.1	Fourier transform infra-red (FTIR) spectrum of synthesized biodiesel	107
Figure 7.2	Effect of catalyst concentration and methanol to oil molar ratio on biodiesel production	105
Figure 7.3	Effect of reaction time on biodiesel production	111
Figure 7.4	Impact of reaction temperature on biodiesel	112
Figure 7.5	Impact of agitation rate on biodiesel production	113
Figure 7.6	The proton NMR of synthesized biodiesel	115

Figure 7.7	Reusability of calcium oxide catalyst	118
Figure 8.1	Fourier transform infra-red (FTIR) spectrum of synthesized biodiesel	122
Figure 8.2	The effect of catalyst concentration and methanol to oil molar ratio on biodiesel yield	124
Figure 8.3	The effect of reaction temperature on biodiesel yield	125
Figure 8.4	The effect of reaction time on biodiesel yield	126
Figure 8.5	The proton NMR spectrum of synthesized biodiesel	127
Figure 8.6	The effect of stirrer speed on biodiesel yield	129
Figure 8.7	The reusability of β -tricalcium phosphate catalyst	132

LIST OF TABLES

Table No.	Table Caption	Page No.
Table 2.1	Synthesis of biodiesel from different feedstocks	20
Table 2.2	Summary of different homogeneous and heterogeneous catalysts for biodiesel synthesis.	25
Table 4.1	Elemental composition of calcium oxide catalyst	40
Table 4.2	Elemental composition of β -tricalcium phosphate	47
Table 4.3	Solvent extraction of <i>Pongamia pinnata</i> seeds using different solvents	49
Table 4.4	Physical and chemical properties of <i>Pongamia</i> pinnata oil	40
Table 4.5	Fatty acid composition of <i>Pongamia pinnata</i> oil	52
Table 4.6	Physical and chemical properties of waste fish oil	61
Table 4.7	Fatty acid composition of waste fish oil	62
Table 5.1	Physical and chemical properties of biodiesel from <i>Pongamia pinnata</i> oil as a feedstock and calcium oxide as catalyst	88
Table 6.1	Physical and chemical properties of biodiesel synthesized from <i>Pongamia pinnata</i> oil and calcium oxide as catalyst	102
Table 7.1	Physical and chemical properties of biodiesel from waste fish oil as a feedstock and calcium oxide as a solid base catalyst	117
Table 8.1	Physical and chemical properties of biodiesel synthesized from waste fish oil using β - tricalcium phosphate as a catalyst	131