References

- V. Terzija, G. Valverde, P. Regulski, V. Madani, J. Fitch, S. Skok, M. M. Begovic, and A. Phadke, "Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks," *Proc. IEEE*, vol. 99, no. 1, pp. 80–93, Jan. 2011.
- [2] M. Gol and A. Abur, "Optimal PMU placement for state estimation robustness," *IEEE PES Innov. Smart Grid Technol. Conf. Eur.*, vol. 2015-Janua, no. January, pp. 1–6, 2015.
- [3] S. Akhlaghi, N. Zhou, and N. E. Wu, "PMU placement for state estimation considering measurement redundancy and controlled islanding," *IEEE Power Energy Soc. Gen. Meet.*, vol. 2016-Novem, pp. 6–10, 2016.
- [4] L. Huang, Y. Sun, J. Xu, W. Gao, J. Zhang, and Z. Wu, "Optimal PMU Placement Considering Controlled Islanding of Power System," *IEEE Trans. Power Syst.*, vol. 29, no. 2, pp. 742–755, Mar. 2014.
- [5] L. M. Putranto, R. Hara, H. Kita, and E. Tanaka, "Voltage stability-based PMU placement considering N- 1 line contingency and power system reliability," in *Proceedings - ICPERE 2014: 2nd IEEE Conference on Power Engineering and Renewable Energy 2014*, 2014, pp. 120–125.
- [6] K. P. Lien, C. W. Liu, C. S. Yu, and J. A. Jiang, "Transmission network fault location observability with minimal PMU placement," *IEEE Trans. Power Deliv.*, vol. 21, no. 3, pp. 1128–1136, 2006.
- [7] C. W. Taylor, "Wide-Area Measurement Systems (WAMS) in Western North America." workshop on Wide Area Measurement, Monitoring and Control in Power Systems, Imperial College, London, 16-17 March, 2006.
- [8] J. F. Hauer and C. W. Taylor, "Information, reliability, and control in the new power system," in *Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)*, 1998, no. June, pp. 2986– 2991 vol.5.
- [9] J. Y. Cai, Z. Huang, J. Hauer, and K. Martin, "Current status and experience of WAMS implementation in North America," *Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf.*, vol. 2005, pp. 1–7, 2005.

- [10] M. Shahraeini and M. H. Javidi, "Wide Area Measurement Systems," in Advanced Topics in Measurements, 2012, pp. 303–322.
- [11] A. G. Phadke, J. S. Thorp, and K. J. Karimi, "State Estimlation with Phasor Measurements," *IEEE Trans. Power Syst.*, vol. 1, no. 1, pp. 233–238, 1986.
- [12] A. G. Phadke, J. S. Thorp, and M. G. Adamiak, "A New Measurement Technique for Tracking Voltage Phasors, Local System Frequency, and Rate of Change of Frequency," *IEEE Power Eng. Rev.*, vol. PER-3, no. 5, pp. 23–23, May 1983.
- [13] A. G. Phadke, "Synchronized phasor measurements in power systems," *IEEE Comput. Appl. Power*, vol. 6, no. 2, pp. 10–15, Apr. 1993.
- [14] T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa, "Power System Observability with Minimal Phasor Measurement Placement," *IEEE Trans. Power Syst.*, vol. 8, no. 2, pp. 707–715, May 1993.
- [15] L. Mili, T. Baldwin, and R. Adapa, "Phasor measurement placement for voltage stability analysis of power systems," in 29th IEEE Conference on Decision and Control, 1990, no. December, pp. 3033–3038 vol.6.
- [16] J. Chen and A. Abur, "Placement of PMUs to Enable Bad Data Detection in State Estimation," *IEEE Trans. Power Syst.*, vol. 21, no. 4, pp. 1608– 1615, Nov. 2006.
- [17] B. Xu and A. Abur, "Observability analysis and measurement placement for systems with PMUs," in *IEEE PES Power Systems Conference and Exposition*, 2004., 2004, no. 1, pp. 1472–1475.
- [18] D. Dua, S. Dambhare, R. K. Gajbhiye, and S. A. Soman, "Optimal Multistage Scheduling of PMU Placement: An ILP Approach," *IEEE Trans. Power Deliv.*, vol. 23, no. 4, pp. 1812–1820, Oct. 2008.
- [19] F. Aminifar, A. Khodaei, M. Fotuhi-Firuzabad, and M. Shahidehpour, "Contingency-Constrained PMU Placement in Power Networks," *IEEE Trans. Power Syst.*, vol. 25, no. 1, pp. 516–523, Feb. 2010.
- [20] S. Azizi, A. S. Dobakhshari, S. A. Nezam Sarmadi, and A. M. Ranjbar,
 "Optimal PMU Placement by an Equivalent Linear Formulation for Exhaustive Search," *IEEE Trans. Smart Grid*, vol. 3, no. 1, pp. 174–182,

Mar. 2012.

- [21] S. M. Mahaei and M. T. Hagh, "Minimizing the number of PMUs and their optimal placement in power systems," *Electr. Power Syst. Res.*, vol. 83, no. 1, pp. 66–72, Feb. 2012.
- [22] L. Huang, Y. Sun, J. Xu, W. Gao, J. Zhang, and Z. Wu, "Optimal PMU Placement Considering Controlled Islanding of Power System," *IEEE Trans. Power Syst.*, vol. 29, no. 2, pp. 742–755, Mar. 2014.
- [23] J. Aghaei, A. Baharvandi, A. Rabiee, and M. A. Akbari, "Probabilistic PMU Placement in Electric Power Networks: An MILP-Based Multiobjective Model," *IEEE Trans. Ind. Informatics*, vol. 11, no. 2, pp. 332–341, 2015.
- [24] J. Aghaei, A. Baharvandi, M.-A. Akbari, K. M. Muttaqi, M.-R. Asban, and
 A. Heidari, "Multi-objective Phasor Measurement Unit Placement in Electric Power Networks: Integer Linear Programming Formulation," *Electr. Power Components Syst.*, vol. 43, no. 17, pp. 1902–1911, 2015.
- [25] A. Enshaee, R. A. Hooshmand, and F. H. Fesharaki, "A new method for optimal placement of phasor measurement units to maintain full network observability under various contingencies," *Electr. Power Syst. Res.*, vol. 89, pp. 1–10, 2012.
- [26] S. M. Mazhari, H. Monsef, H. Lesani, and A. Fereidunian, "A multi-objective PMU placement method considering measurement redundancy and observability value under contingencies," *IEEE Trans. Power Syst.*, vol. 28, no. 3, pp. 2136–2146, 2013.
- [27] K. Jamuna and K. S. Swarup, "Multi-objective biogeography based optimization for optimal PMU placement," *Appl. Soft Comput. J.*, vol. 12, no. 5, pp. 1503–1510, 2012.
- [28] M. Esmaili, "Inclusive multi-objective PMU placement in power systems considering conventional measurements and contingencies," Int. Trans. Electr. Energy Syst., vol. 26, no. 3, pp. 609–626, Mar. 2016.
- [29] M. Esmaili, K. Gharani, and H. A. Shayanfar, "Redundant observability PMU placement in the presence of flow measurements considering contingencies," *IEEE Trans. Power Syst.*, vol. 28, no. 4, pp. 3765–3773,

2013.

- [30] B. Milosevic and M. Begovic, "Nondominated sorting genetic algorithm for optimal phasor measurement placement," *IEEE Trans. Power Syst.*, vol. 18, no. 1, pp. 69–75, Feb. 2003.
- [31] F. J. Marin, F. García-Lagos, G. Joya, and F. Sandoval, "Genetic algorithms for optimal placement of phasor measurement units in electrical networks," *Electron. Lett.*, vol. 39, no. 19, p. 1403, 2003.
- [32] F. Aminifar, C. Lucas, A. Khodaei, and M. Fotuhi-Firuzabad, "Optimal Placement of Phasor Measurement Units Using Immunity Genetic Algorithm," *IEEE Trans. Power Deliv.*, vol. 24, no. 3, pp. 1014–1020, Jul. 2009.
- [33] J. Peng, Y. Sun, and H. F. Wang, "Optimal PMU placement for full network observability using Tabu search algorithm," Int. J. Electr. Power Energy Syst., vol. 28, no. 4, pp. 223–231, May 2006.
- [34] N. C. Koutsoukis, N. M. Manousakis, P. S. Georgilakis, and G. N. Korres, "Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method," *IET Gener. Transm. Distrib.*, vol. 7, no. 4, pp. 347–356, Apr. 2013.
- [35] P. Yang, Z. Tan, A. Wiesel, and A. Nehorai, "Placement of PMUs Considering Measurement Phase-Angle Mismatch," *IEEE Trans. Power Deliv.*, vol. 30, no. 2, pp. 914–922, 2015.
- [36] S. Chakrabarti and E. Kyriakides, "Optimal Placement of Phasor Measurement Units for Power System Observability," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1433–1440, Aug. 2008.
- [37] R. J. Albuquerque and V. Leonardo Paucar, "Evaluation of the PMUs measurement channels availability for observability analysis," *IEEE Trans. Power Syst.*, vol. 28, no. 3, pp. 2536–2544, Aug. 2013.
- [38] A. Ahmadi, Y. Alinejad-Beromi, and M. Moradi, "Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy," *Expert Syst. Appl.*, vol. 38, no.
 6, pp. 7263–7269, Jun. 2011.

- [39] M. Hajian, A. M. Ranjbar, T. Amraee, and B. Mozafari, "Optimal placement of PMUs to maintain network observability using a modified BPSO algorithm," *Int. J. Electr. Power Energy Syst.*, vol. 33, no. 1, pp. 28–34, Jan. 2011.
- [40] T. K. Maji and P. Acharjee, "Multiple Solutions of Optimal PMU Placement Using Exponential Binary PSO Algorithm for Smart Grid Applications," *IEEE Trans. Ind. Appl.*, vol. 53, no. 3, pp. 2550–2559, May 2017.
- [41] M. Hurtgen and J. C. Maun, "Optimal PMU placement using Iterated Local Search," *Int. J. Electr. Power Energy Syst.*, vol. 32, no. 8, pp. 857–860, Oct. 2010.
- [42] C. Peng, H. Sun, and J. Guo, "Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm," Int. J. Electr. Power Energy Syst., vol. 32, no. 8, pp. 886–892, Oct. 2010.
- [43] N. M. Manousakis and G. N. Korres, "A weighted least squares algorithm for optimal PMU placement," *IEEE Trans. Power Syst.*, vol. 28, no. 3, pp. 3499–3500, Aug. 2013.
- [44] J. Qi, K. Sun, and W. Kang, "Optimal PMU Placement for Power System Dynamic State Estimation by Using Empirical Observability Gramian," *IEEE Trans. Power Syst.*, vol. 30, no. 4, pp. 2041–2054, Jul. 2015.
- [45] F. Aminifar, M. Fotuhi-Firuzabad, and A. Safdarian, "Optimal PMU Placement Based on Probabilistic Cost/Benefit Analysis," *IEEE Trans. Power Syst.*, vol. 28, no. 1, pp. 566–567, Feb. 2013.
- [46] M. Dalali and H. Kazemi Karegar, "Optimal PMU placement for full observability of the power network with maximum redundancy using modified binary cuckoo optimisation algorithm," *IET Gener. Transm. Distrib.*, vol. 10, no. 11, pp. 2817–2824, Aug. 2016.
- [47] A. Pal, A. K. S. Vullikanti, and S. S. Ravi, "A PMU Placement Scheme Considering Realistic Costs and Modern Trends in Relaying," *IEEE Trans. Power Syst.*, vol. 32, no. 1, pp. 552–561, 2017.
- [48] T. Venkatesh and T. Jain, "Intelligent-search technique based strategic placement of synchronized measurements for power system observability,"

Expert Syst. Appl., vol. 42, no. 10, pp. 4768–4777, 2015.

- [49] R. Sodhi, S. C. Srivastava, and S. N. Singh, "Optimal PMU placement to ensure system observability under contingencies," in 2009 IEEE Power and Energy Society General Meeting, PES '09, 2009.
- [50] K. Sadanandan Sajan, A. Kumar Mishra, V. Kumar, and B. Tyagi, "Phased Optimal PMU Placement Based on Revised Analytical Hierarchy Process," *Electr. Power Components Syst.*, vol. 44, no. 9, pp. 1005–1017, 2016.
- [51] H. Aminzadeh and M. Miri, "Optimal placement of phasor measurement units to obtain network observability using a hybrid PSO-GSA algorithm," *Aust. J. Electr. Electron. Eng.*, vol. 12, no. 4, pp. 342–349, 2015.
- [52] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "GSA: A Gravitational Search Algorithm," Inf. Sci. (Ny)., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.
- [53] R. K. Swain, N. C. Sahu, and P. K. Hota, "Gravitational Search Algorithm for Optimal Economic Dispatch," *Procedia Technol.*, vol. 6, pp. 411–419, Jan. 2012.
- [54] M. Nath, S. Mishra, and D. Nath, "Gravitational search algorithm based Economic load Dispatch Problem incorporating wind generating system," in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–4.
- [55] P. K. Roy, B. Mandal, and K. Bhattacharya, "Gravitational search algorithm based optimal reactive power dispatch for voltage stability enhancement," *Electr. Power Components Syst.*, vol. 40, no. 9, pp. 956–976, Jun. 2012.
- [56] S. Duman, Y. Sönmez, U. Güvenc, and N. Yörükeren, "Optimal reactive power dispatch using a gravitational search algorithm," *IET Gener. Transm. Distrib.*, vol. 6, no. 6, pp. 563–576, 2012.
- [57] M. R. Babu and M. Lakshmi, "Gravitational search algorithm based approach for optimal reactive power dispatch," in 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM), 2016, vol. 40, no. 9, pp. 360–366.
- [58] J. Sarker and S. K. Goswami, "Solution of multiple UPFC placement

problems using Gravitational Search Algorithm," Int. J. Electr. Power Energy Syst., vol. 55, pp. 531–541, 2014.

- [59] B. Bhattacharyya and S. Kumar, "Loadability enhancement with FACTS devices using gravitational search algorithm," Int. J. Electr. Power Energy Syst., vol. 78, pp. 470–479, 2016.
- [60] M. Packiasudha, S. Suja, and J. Jerome, "A new Cumulative Gravitational Search algorithm for optimal placement of FACT device to minimize system loss in the deregulated electrical power environment," *Int. J. Electr. Power Energy Syst.*, vol. 84, pp. 34–46, 2017.
- [61] G. Nadakuditi, V. Sharma, and R. Naresh, "Non-dominated Sorting Disruption-based Gravitational Search Algorithm with Mutation Scheme for Multi-objective Short-Term Hydrothermal Scheduling," *Electr. Power Components Syst.*, vol. 44, no. 9, pp. 990–1004, 2016.
- [62] R. K. Khadanga and A. Kumar, "Hybrid adaptive 'gbest'-guided gravitational search and pattern search algorithm for automatic generation control of multi-area power system," *IET Gener. Transm. Distrib.*, vol. 11, no. 13, pp. 3257–3267, 2017.
- [63] P. Dahiya, V. Sharma, and R. Naresh, "Automatic generation control using disrupted oppositional based gravitational search algorithm optimised sliding mode controller under deregulated environment," *IET Gener. Transm. Distrib.*, vol. 10, no. 16, pp. 3995–4005, 2016.
- [64] B. Vedik and A. K. Chandel, "Power system state estimation using gravitational search algorithm," Comput. Comput. Sci. (ICCCS), 2015 Int. Conf., pp. 32–38, 2015.
- [65] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "BGSA: binary gravitational search algorithm," *Nat. Comput.*, vol. 9, no. 3, pp. 727–745, Sep. 2010.
- [66] T. Van Cutsem, "Voltage instability: Phenomena, countermeasures, and analysis methods," *Proc. IEEE*, vol. 88, no. 2, pp. 208–227, Feb. 2000.
- [67] C. W. Taylor, D. C. Erickson, K. E. Martin, R. E. Wilson, and V. Venkatasubramanian, "WACS Wide-area stability and voltage control

system: R&D and online demonstration," *Proc. IEEE*, vol. 93, no. 5, pp. 892–906, 2005.

- [68] S. Corsi, "Wide area voltage regulation and protection," 2009 IEEE Bucharest PowerTech Innov. Ideas Towar. Electr. Grid Futur., pp. 1–7, 2009.
- [69] S. Corsi, "Wide area voltage protection," *IET Gener. Transm. Distrib.*, vol. 4, no. 10, pp. 1164–1179, 2010.
- [70] Y. Gong, N. Schulz, and A. Guzmán, "Synchrophasor-based real-time voltage stability index," in 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, 2006, no. October 2005, pp. 1029– 1036.
- [71] S. Corsi and G. N. Taranto, "Voltage instability The different shapes of the 'nose," in 2007 iREP Symposium- Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability, 2007, pp. 1–16.
- [72] M. Larsson, C. Rehtanz, and J. Bertsch, "Real-Time Voltage Stability Assessment of Transmission Corridors," *IFAC Proc. Vol.*, vol. 36, no. 20, pp. 27–32, Sep. 2003.
- [73] H. Mesgarnejad and S. M. Shahrtash, "Power system voltage stability assessment employing phasor measurement units," in *Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on,* 2010, vol. 5, pp. 13–19.
- [74] C. Rehtanz and J. Bertsch, "Wide area measurement and protection system for emergency voltage stability control," in *Power Engineering Society Winter Meeting*, 2002. *IEEE*, 2002, vol. 2, no. c, pp. 842–847 vol.2.
- [75] S. Corsi and G. N. Taranto, "A real-time voltage instability identification algorithm based on local phasor measurements," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1271–1279, 2008.
- [76] C. Chen, J. Wang, Z. Li, H. Sun, and Z. Wang, "PMU Uncertainty Quantification in Voltage Stability Analysis," *IEEE Trans. Power Syst.*, vol. 30, no. 4, pp. 2196–2197, Jul. 2015.
- [77] B. Milosevic and M. Begovic, "Voltage-stability protection and control using a wide-area network of phasor measurements," *IEEE Trans. Power Syst.*,

vol. 18, no. 1, pp. 121-127, Feb. 2003.

- [78] M. Glavic and T. Van Cutsem, "Wide-Area Detection of Voltage Instability From Synchronized Phasor Measurements. Part I: Principle," *IEEE Trans. Power Syst.*, vol. 24, no. 3, pp. 1408–1416, Aug. 2009.
- [79] M. Glavic and T. Van Cutsem, "Wide-area detection of voltage instability from synchronized phasor measurements. Part II: Simulation Results," *IEEE Trans. Power Syst.*, vol. 24, no. 3, pp. 1417–1425, 2009.
- [80] M. H. Haque, "On-line monitoring of maximum permissible loading of a power system within voltage stability limits," *IEE Proc. - Gener. Transm. Distrib.*, vol. 150, no. 1, pp. 107–112, 2003.
- [81] G. Mevludin and T. Van Cutsem, "Adaptive wide-area closed-loop undervoltage load shedding using synchronized measurements," *IEEE PES Gen. Meet. PES 2010*, pp. 1–8, 2010.
- [82] D. Q. Zhou, U. D. Annakkage, and A. D. Rajapakse, "Online monitoring of voltage stability margin using an artificial neural network," *IEEE Trans. Power Syst.*, vol. 25, no. 3, pp. 1566–1574, 2010.
- [83] V. Mani, M. Sherwood, and V. Ajjarapu, "Real-Time Security Assessment of Angle Stability Using Synchrophasors Real-Time Security Assessment of Angle Stability," PSERC Documents, 2010.
- [84] J. Zhao, Y. Zeng, W. Wei, and H. Jia, "Fast assessment of regional voltage stability based on WAMS," *IEEE Asia-Pacific Conf. Circuits Syst. Proceedings, APCCAS*, no. 1, pp. 635–638, 2008.
- [85] H. Shah and K. Verma, "PMU-ANN based approach for real time voltage stability monitoring," in 2016 IEEE 6th International Conference on Power Systems (ICPS), 2016, pp. 1–5.
- [86] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their Applications. Boston, MA: Springer US, 2008.
- [87] A. G. Phadke and J. Thorp, "History and Applications of Phasor Measurements," in 2006 IEEE PES Power Systems Conference and Exposition, 2006, pp. 331–335.

- [88] "IEEE Standard for synchrophasors for power systems." IEEE 1344-1995.
- [89] "IEEE Standard for synchrophasors for power systems." IEEE C37.118 -2005.
- [90] "IEEE Standard for Synchrophasor Measurements for Power Systems." IEEE C37.118.1-2011.
- [91] "IEEE Standard for Synchrophasor Data Transfer for Power Systems." IEEE C37.118.2-2011.
- [92] "IEEE Standard for Synchrophasor Measurements for Power Systems -Amendment 1: Modification of Selected Performance Requirements." IEEE C37.118.1a-2014.
- [93] N. H. Abbasy and H. M. Ismail, "A unified approach for the optimal PMU location for power system state estimation," *IEEE Trans. Power Syst.*, vol. 24, no. 2, pp. 806–813, 2009.
- [94] L. Zhao and a. Abur, "Multi area state estimation using synchronized phasor measurements," *Power Syst. IEEE Trans.*, vol. 20, no. 2, pp. 611– 617, 2005.
- [95] D. Shi, D. J. Tylavsky, and N. Logic, "An adaptive method for detection and correction of errors in PMU measurements," *IEEE Trans. Smart Grid*, vol. 3, no. 4, pp. 1575–1583, 2012.
- [96] M. Lixia, A. Benigni, A. Flammini, C. Muscas, F. Ponci, and A. Monti, "A Software-Only PTP Synchronization for Power System State Estimation With PMUs," *IEEE Trans. Instrum. Meas.*, vol. 61, no. 5, pp. 1476–1485, May 2012.
- [97] G. N. Korres and N. M. Manousakis, "State estimation and observability analysis for phasor measurement unit measured systems," *IET Gener. Transm. Distrib.*, vol. 6, no. 9, pp. 902–913, 2012.
- [98] S. Chakrabarti and E. Kyriakides, "PMU measurement uncertainty considerations in WLS state estimation," *IEEE Trans. Power Syst.*, vol. 24, no. 2, pp. 1062–1071, 2009.
- [99] S. Chakrabarti, E. Kyriakides, and M. Albu, "Uncertainty in power system

state variables obtained through synchronized measurements," *IEEE Trans. Instrum. Meas.*, vol. 58, no. 8, pp. 2452–2458, 2009.

- [100] Y. Chakhchoukh, V. Vittal, and G. T. Heydt, "PMU based state estimation by integrating correlation," *IEEE Trans. Power Syst.*, vol. 29, no. 2, pp. 617– 626, 2014.
- [101] I. Kamwa, R. Grondin, and L. Loud, "Time-varying contingency screening for dynamic security assessment using intelligent-systems techniques," *IEEE Trans. Power Syst.*, vol. 16, no. 3, pp. 526–536, Aug. 2001.
- [102] M. M. Eissa, M. E. Masoud, and M. M. M. Elanwar, "A novel back up wide area protection technique for power transmission grids using phasor measurement unit," *IEEE Trans. Power Deliv.*, vol. 25, no. 1, pp. 270–278, Jan. 2010.
- [103] J.-A. Jiang, J.-Z. Yang, Y.-H. Lin, C.-W. Liu, and J.-C. Ma, "An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines Part I: Theory and Algorithms," *IEEE Trans. Power Deliv.*, vol. 15, no. 4, pp. 486–493, 2000.
- [104] C. S. Yu, C. W. Liu, S. L. Yu, and J. A. Jiang, "A new PMU-based fault location algorithm for series compensated lines," *IEEE Trans. Power Deliv.*, vol. 17, no. 1, pp. 33–46, 2002.
- [105] Quanyuan Jiang, Xingpeng Li, Bo Wang, and Haijiao Wang, "PMU-Based Fault Location Using Voltage Measurements in Large Transmission Networks," *IEEE Trans. Power Deliv.*, vol. 27, no. 3, pp. 1644–1652, Jul. 2012.
- [106] C.-W. Liu, T.-C. Lin, C.-S. Yu, and J.-Z. Yang, "A Fault Location Technique for Two-Terminal Multisection Compound Transmission Lines Using Synchronized Phasor Measurements," *IEEE Trans. Smart Grid*, vol. 3, no. 1, pp. 113–121, Mar. 2012.
- [107] B. Singh, N. K. Sharma, A. N. Tiwari, K. S. Verma, and S. N. Singh, "Applications of phasor measurement units (PMUs) in electric power system networks incorporated with FACTS controllers," *Int. J. Eng. Sci. Technol.*, vol. 3, no. 3, pp. 64–82, Jul. 2011.

- [108] N. Kakimoto, M. Sugumi, T. Makino, and K. Tomiyama, "Monitoring of interarea oscillation mode by synchronized phasor measurement," *IEEE Trans. Power Syst.*, vol. 21, no. 1, pp. 260–268, 2006.
- [109] Y. Zhang and A. Bose, "Design of wide-area damping controllers for interarea oscillations," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1136– 1143, 2008.
- [110] V. Venkatasubramanian and R. G. Kavasseri, "Direct computation of generator internal dynamic states from terminal measurements," in 37th Annual Hawaii Int. Conference on System Sciences, 2004, pp. 1–6.
- [111] J. A. de la O Serna, "Dynamic phasor estimates for power system oscillations," *IEEE Trans. Instrum. Meas.*, vol. 56, no. 5, pp. 1648–1657, 2007.
- [112] A. T. Muñoz and J. A. De La O Serna, "Shanks' method for dynamic phasor estimation," *IEEE Trans. Instrum. Meas.*, vol. 57, no. 4, pp. 813–819, 2008.
- [113] R. K. Mai, Z. Y. He, L. Fu, W. He, and Z. Q. Bo, "Dynamic phasor and frequency estimator for phasor measurement units," *IET Gener. Transm. Distrib.*, vol. 4, no. 1, pp. 73–83, 2010.
- [114] B. A. Archer, U. D. Annakkage, B. Jayasekara, and P. Wijetunge, "Accurate prediction of damping in large interconnected power systems with the aid of regression analysis," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1170– 1178, 2008.
- [115] A. R. Messina, V. Vittal, G. T. Heydt, and T. J. Browne, "Nonstationary approaches to trend identification and denoising of measured power system oscillations," *IEEE Trans. Power Syst.*, vol. 24, no. 4, pp. 1798– 1807, 2009.
- [116] R. K. Mai, Z. Y. He, L. Fu, B. Kirby, and Z. Q. Bo, "A dynamic synchrophasor estimation algorithm for online application," *IEEE Trans. Power Deliv.*, vol. 25, no. 2, pp. 570–578, 2010.
- [117] J. C.-H. Peng and N.-K. C. Nair, "Adaptive sampling scheme for monitoring oscillations using Prony analysis," *IET Gener. Transm. Distrib.*, vol. 3, no. 12, pp. 1052–1060, 2009.

- [118] R. K. Varma and S. Auddy, "Mitigation of subsynchronous resonance by SVC using PMU-acquired remote generator speed," 2006 IEEE Power India Conf., vol. 2005, pp. 893–900, 2005.
- [119] N. R. Chaudhuri, A. Domahidi, R. Majumder, B. Chaudhuri, P. Korba, S. Ray, and K. Uhlen, "Wide-area power oscillation damping control in Nordic equivalent system," *IET Gener. Transm. Distrib.*, vol. 4, no. 10, pp. 1139–1150, 2010.
- [120] N. R. Chaudhuri, B. Chaudhuri, S. Ray, and R. Majumder, "Wide-area phasor power oscillation damping controller: a new approach to handling time-varying signal latency," *IET Gener. Transm. Distrib.*, vol. 4, no. 5, pp. 620–630, 2010.
- [121] A. Salemnia, M. Khederzadeh, and A. Ghorbani, "Mitigation of subsynchronous oscillations by 48-pulse VSC STATCOM using remote signal," in 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future, 2009, pp. 1–7.
- [122] P. Kundur, Power System Stability And Control. New York: McGraw-Hill, 1994.
- [123] M. Moghavvemi and F. M. Omar, "Technique for contingency monitoring and voltage collapse prediction," *IEE Proc. - Gener. Transm. Distrib.*, vol. 145, no. 6, pp. 634–640, 1998.
- [124] B. Gou, "Generalized Integer Linear Programming Formulation for Optimal PMU Placement," *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1099–1104, Aug. 2008.
- [125] "Power System Test Archive," 1999. [Online]. Available: http://www.ee.washington.edu/research/pstca.
- [126] B. K. Saha Roy, A. K. Sinha, and A. K. Pradhan, "An optimal PMU placement technique for power system observability," *Int. J. Electr. Power Energy Syst.*, vol. 42, no. 1, pp. 71–77, Nov. 2012.
- [127] "NRPG 246-bus Data." [Online]. Available: http://www.iitk.ac.in/eeold/facilities/Research_labs/Power _System/ NRPG-DATA.pdf.

- [128] "MATPOWER Software." [Online]. Available: http://www.pserc.cornell.edu/matpower.
- [129] M. Shahraeini, M. S. Ghazizadeh, and M. H. Javidi, "Co-Optimal Placement of Measurement Devices and Their Related Communication Infrastructure in Wide," vol. 3, no. 2, pp. 684–691, 2012.
- [130] M. B. Mohammadi, R. A. Hooshmand, and F. H. Fesharaki, "A new approach for optimal placement of PMUs and their required communication infrastructure in order to minimize the cost of the WAMS," *IEEE Trans. Smart Grid*, vol. 7, no. 1, pp. 84–93, 2016.
- [131] E. W. Dijkstra, "A note on two problems in connection with graphs," *Numerische Mathematik*, vol. 1. pp. 269–271, 1959.
- [132] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, "Faster algorithms for the shortest path problem," *J. ACM*, vol. 37, no. 2, pp. 213–223, Apr. 1990.
- [133] N. H. A. Rahman and A. F. Zobaa, "Integrated Mutation Strategy With Modified Binary PSO Algorithm for Optimal PMUs Placement," in *IEEE Transactions on Industrial Informatics*, vol. 13, no. 6, pp. 3124-3133, Dec. 2017.
- [134] P. K. Ghosh, S. Chatterjee and B. K. Saha Roy, "Optimal PMU placement solution: graph theory and MCDM-based approach," in *IET Generation, Transmission & Distribution*, vol. 11, no. 13, pp. 3371-3380, 2017.
- [135] E. Khorram and M. Taleshian Jelodar, "PMU placement considering various arrangements of lines connections at complex buses," *International Journal* of Electrical Power & Energy Systems, vol. 94, pp. 97-103, 2018.

Appendix I

Test Systems Data

	Voltage		Gen	eration	Load	
Bus	Mag (pu)	Ang (deg)	P _a (MW)	Q _r (MVAr)	P _a (MW)	Qr (MVAr)
1	1.06	0.000*	1440.41	272.85	-	-
2	1.045	-35.519	185.92	1129.2	88.31	51.68
3	1.01	-86.972	0	547.57	383.34	77.32
4	0.706	-71.598	-	-	194.52	-15.87
5	0.684	-60.864	-	-	30.93	6.51
6	1.07	-107.154	0	443.28	45.58	30.52
7	0.803	-94.863	-	-	-	-
8	1.09	-94.863	0	177.73	-	-
9	0.713	-107.008	-	-	120.05	67.55
10	0.733	-109.058	-	-	36.62	23.6
11	0.881	-108.504	-	-	14.24	7.32
12	0.976	-111.201	-	-	24.82	6.51
13	0.926	-111.255	-	-	54.94	23.6
14	0.688	-117.101	-	-	60.63	20.35

Table A.I.1 Bus Data of IEEE 14-bus test system

Lines	From bus	To bus	Resistance	Reactance	Susceptance
1	1	2	0.01938	0.05917	0.0528
2	1	5	0.05403	0.22304	0.0492
3	2	3	0.04699	0.19797	0.0438
4	2	4	0.05811	0.17632	0.034
5	2	5	0.05695	0.17388	0.0346
6	3	4	0.06701	0.17103	0.0128
7	4	5	0.01335	0.04211	0
8	4	7	0	0.20912	0
9	4	9	0	0.55618	0
10	5	6	0	0.25202	0
11	6	11	0.09498	0.1989	0
12	6	12	0.12291	0.25581	0
13	6	13	0.06615	0.13027	0
14	7	8	0	0.17615	0
15	7	9	0	0.11001	0
16	9	10	0.03181	0.0845	0
17	9	14	0.12711	0.27038	0
18	10	11	0.08205	0.19207	0
19	12	13	0.22092	0.19988	0
20	13	14	0.17093	0.34802	0

Table A.I.2Branch Data of IEEE 14-bus test system

	Voltage		Gen	eration	Load	
Bus	Mag (pu)	Ang (deg)	P _a (MW)	Q _r (MVAr)	P _a (MW)	Q _r (MVAr)
1	1	0.000*	25.97	-1	-	-
2	1	-0.415	60.97	32	21.7	12.7
3	0.983	-1.522	-	-	2.4	1.2
4	0.98	-1.795	-	-	7.6	1.6
5	0.982	-1.864	_	-	_	-
6	0.973	-2.267	-	-	-	-
7	0.967	-2.652	-	-	22.8	10.9
8	0.961	-2.726	-	_	30	30
9	0.981	-2.997	-	-	-	-
10	0.984	-3.375	-	-	5.8	2
11	0.981	-2.997	-	-	-	-
12	0.985	-1.537	-	-	11.2	7.5
13	1	1.476	37	11.35	-	-
14	0.977	-2.308	-	-	6.2	1.6
15	0.98	-2.312	-	-	8.2	2.5
16	0.977	-2.644	-	-	3.5	1.8
17	0.977	-3.392	-	-	9	5.8
18	0.968	-3.478	-	-	3.2	0.9
19	0.965	-3.958	-	-	9.5	3.4
20	0.969	-3.871	-	-	2.2	0.7
21	0.993	-3.488	-	-	17.5	11.2
22	1	-3.393	21.59	39.57	-	-
23	1	-1.589	19.2	7.95	3.2	1.6
24	0.989	-2.631	-	-	8.7	6.7
25	0.99	-1.69	-	-	-	-
26	0.972	-2.139	-	-	3.5	2.3
27	1	-0.828	26.91	10.54	-	-
28	0.975	-2.266	-	-	-	-
29	0.98	-2.128	-	_	2.4	0.9
30	0.968	-3.042	-	-	10.6	1.9

Table A.I.3 Bus Data of IEEE 30-bus test system

Table A.I.4 Branch Data of IEEE 30-bus test system

Lines	From bus	To bus	Resistance	Reactance	Susceptance
1	1	2	0.02	0.06	0.03
2	1	3	0.05	0.19	0.02
3	2	4	0.06	0.17	0.02

4	3	4	0.01	0.04	0
5	2	5	0.05	0.2	0.02
6	2	6	0.06	0.18	0.02
7	4	6	0.01	0.04	0
8	5	7	0.05	0.12	0.01
9	6	7	0.03	0.08	0.01
10	6	8	0.01	0.04	0
11	6	9	0	0.21	0
12	6	10	0	0.56	0
13	9	11	0	0.21	0
14	9	10	0	0.11	0
15	4	12	0	0.26	0
16	12	13	0	0.14	0
17	12	14	0.12	0.26	0
18	12	15	0.07	0.13	0
19	12	16	0.09	0.2	0
20	14	15	0.22	0.2	0
21	16	17	0.08	0.19	0
22	15	18	0.11	0.22	0
23	18	19	0.06	0.13	0
24	19	20	0.03	0.07	0
25	10	20	0.09	0.21	0
26	10	17	0.03	0.08	0
27	10	21	0.03	0.07	0
28	10	22	0.07	0.15	0
29	21	22	0.01	0.02	0
30	15	23	0.1	0.2	0
31	22	24	0.12	0.18	0
32	23	24	0.13	0.27	0
33	24	25	0.19	0.33	0
34	25	26	0.25	0.38	0
35	25	27	0.11	0.21	0
36	28	27	0	0.4	0
37	27	29	0.22	0.42	0
38	27	30	0.32	0.6	0
39	29	30	0.24	0.45	0
40	8	28	0.06	0.2	0.02
41	6	28	0.02	0.06	0.01

	Vol	Voltage Generation Load		Generation		oad
Bus	Mag(pu)	Ang(deg)	P _a (MW)	Q _r (MVAr)	P _a (MW)	Q _r (MVAr)
1	0.955	10.973	0	-3.1	51	27
2	0.971	11.513	-	-	20	9
3	0.968	11.856	-	-	39	10
4	0.998	15.574	0	-15.01	39	12
5	1.002	16.019	-	-	-	-
6	0.99	13.292	0	15.93	52	22
7	0.989	12.847	-	-	19	2
8	1.015	21.041	0	63.14	28	0
9	1.043	28.295	-	-	-	-
10	1.05	35.876	450	-51.04	-	-
11	0.985	13.006	-	-	70	23
12	0.99	12.489	85	91.29	47	10
13	0.968	11.63	-	-	34	16
14	0.984	11.771	-	-	14	1
15	0.97	11.474	0	7.16	90	30
16	0.984	12.187	-	-	25	10
17	0.995	13.995	-	-	11	3
18	0.973	11.781	0	28.43	60	34
19	0.962	11.315	0	-14.27	45	25
20	0.957	12.191	-	_	18	3
21	0.958	13.778	-	-	14	8
22	0.969	16.332	-	-	10	5
23	0.999	21.249	-	-	7	3
24	0.992	21.114	0	-14.91	13	0
25	1.05	28.18	220	50.04	-	-
26	1.015	29.96	314	10.12	-	-
27	0.968	15.604	0	3.98	71	13
28	0.962	13.879	-	_	17	7
29	0.963	12.885	-	-	24	4
30	0.985	19.034	-	-	-	-
31	0.967	13.002	7	32.59	43	27
32	0.963	15.061	0	-16.28	59	23
33	0.971	10.854	-	-	23	9
34	0.984	11.511	0	-20.83	59	26
35	0.98	11.055	-	-	33	9
36	0.98	11.056	0	7.73	31	17
37	0.991	11.967	-	-	-	-

Table A.I.5 Bus Data of IEEE 118-bus test system

38	0.961	17.108	-	-	-	-
39	0.97	8.577	-	-	27	11
40	0.97	7.496	0	28.45	66	23
41	0.967	7.052	-	-	37	10
42	0.985	8.653	0	41.03	96	23
43	0.977	11.46	-	-	18	7
44	0.984	13.943	-	-	16	8
45	0.986	15.773	-	-	53	22
46	1.005	18.576	19	-5.03	28	10
47	1.017	20.799	-	-	34	0
48	1.021	20.019	-	-	20	11
49	1.025	21.022	204	115.85	87	30
50	1.001	18.983	-	-	17	4
51	0.967	16.364	-	-	17	8
52	0.957	15.411	-	-	18	5
53	0.946	14.436	-	-	23	11
54	0.955	15.348	48	3.9	113	32
55	0.952	15.058	0	4.66	63	22
56	0.954	15.245	0	-2.29	84	18
57	0.971	16.449	-	-	12	3
58	0.959	15.592	-	-	12	3
59	0.985	19.448	155	76.83	277	113
60	0.993	23.23	-	_	78	3
61	0.995	24.121	160	-40.39	-	-
62	0.998	23.505	0	1.26	77	14
63	0.969	22.827	-	-	-	-
64	0.984	24.593	-	_	-	-
65	1.005	27.719	391	81.51	-	-
66	1.05	27.559	392	-1.96	39	18
67	1.02	24.919	-	-	28	7
68	1.003	27.598	-	-	-	-
69	1.035	30.000*	513.86	-82.42	-	-
70	0.984	22.618	0	9.67	66	20
71	0.987	22.207	_	_	_	_
72	0.98	21.109	0	-11.13	12	0
73	0.991	21.995	0	9.65	6	0
74	0.958	21.669	0	-5.63	68	27
75	0.967	22.93	-	-	47	11
76	0.943	21.799	0	5.27	68	36
77	1.006	26.751	0	12.17	61	28

78	1.003	26.447	-	-	71	26
79	1.009	26.745	_	-	39	32
80	1.04	28.99	477	105.47	130	26
81	0.997	28.145	-	-	-	-
82	0.989	27.272	-	-	54	27
83	0.984	28.464	-	-	20	10
84	0.98	31	-	-	11	7
85	0.985	32.556	0	-5.61	24	15
86	0.987	31.186	-	-	21	10
87	1.015	31.445	4	11.02	-	-
88	0.987	35.69	-	-	48	10
89	1.005	39.748	607	-5.9	-	-
90	0.985	33.338	0	59.31	163	42
91	0.98	33.351	0	-13.09	10	0
92	0.99	33.881	0	-13.96	65	10
93	0.985	30.849	-	-	12	7
94	0.99	28.682	-	-	30	16
95	0.98	27.71	-	-	42	31
96	0.992	27.543	-	-	38	15
97	1.011	27.916	-	-	15	9
98	1.024	27.433	-	-	34	8
99	1.01	27.067	0	-17.54	42	0
100	1.017	28.059	252	95.55	37	18
101	0.991	29.647	-	-	22	15
102	0.989	32.365	-	-	5	3
103	1.01	24.318	40	75.42	23	16
104	0.971	21.748	0	2.39	38	25
105	0.965	20.644	0	-18.33	31	26
106	0.961	20.383	-	-	43	16
107	0.952	17.583	0	6.56	50	12
108	0.966	19.443	-	-	2	1
109	0.967	18.991	-	_	8	3
110	0.973	18.144	0	0.28	39	30
111	0.98	19.789	36	-1.84	-	-
112	0.975	15.045	0	41.51	68	13
113	0.993	13.993	0	6.75	6	0
114	0.96	14.726	-	-	8	3
115	0.96	14.718	-	-	22	7
116	1.005	27.163	0	51.32	184	0
117	0.974	10.948	-	-	20	8
118	0.949	21.942	-	-	33	15

Lines	From bus	To bus	Resistance	Reactance	Susceptance
1	1	2	0.0303	0.0999	0.0254
2	1	3	0.0129	0.0424	0.01082
3	4	5	0.00176	0.00798	0.0021
4	3	5	0.0241	0.108	0.0284
5	5	6	0.0119	0.054	0.01426
6	б	7	0.00459	0.0208	0.0055
7	8	9	0.00244	0.0305	1.162
8	8	5	0	0.0267	0
9	9	10	0.00258	0.0322	1.23
10	4	11	0.0209	0.0688	0.01748
11	5	11	0.0203	0.0682	0.01738
12	11	12	0.00595	0.0196	0.00502
13	2	12	0.0187	0.0616	0.01572
14	3	12	0.0484	0.16	0.0406
15	7	12	0.00862	0.034	0.00874
16	11	13	0.02225	0.0731	0.01876
17	12	14	0.0215	0.0707	0.01816
18	13	15	0.0744	0.2444	0.06268
19	14	15	0.0595	0.195	0.0502
20	12	16	0.0212	0.0834	0.0214
21	15	17	0.0132	0.0437	0.0444
22	16	17	0.0454	0.1801	0.0466
23	17	18	0.0123	0.0505	0.01298
24	18	19	0.01119	0.0493	0.01142
25	19	20	0.0252	0.117	0.0298
26	15	19	0.012	0.0394	0.0101
27	20	21	0.0183	0.0849	0.0216
28	21	22	0.0209	0.097	0.0246
29	22	23	0.0342	0.159	0.0404
30	23	24	0.0135	0.0492	0.0498
31	23	25	0.0156	0.08	0.0864
32	26	25	0	0.0382	0
33	25	27	0.0318	0.163	0.1764
34	27	28	0.01913	0.0855	0.0216
35	28	29	0.0237	0.0943	0.0238
36	30	17	0	0.0388	0
37	8	30	0.00431	0.0504	0.514
38	26	30	0.00799	0.086	0.908

Table A.I.6Branch Data of IEEE 118-bus test system

39	17	31	0.0474	0.1563	0.0399
40	29	31	0.0108	0.0331	0.0083
41	23	32	0.0317	0.1153	0.1173
42	31	32	0.0298	0.0985	0.0251
43	27	32	0.0229	0.0755	0.01926
44	15	33	0.038	0.1244	0.03194
45	19	34	0.0752	0.247	0.0632
46	35	36	0.00224	0.0102	0.00268
47	35	37	0.011	0.0497	0.01318
48	33	37	0.0415	0.142	0.0366
49	34	36	0.00871	0.0268	0.00568
50	34	37	0.00256	0.0094	0.00984
51	38	37	0	0.0375	0
52	37	39	0.0321	0.106	0.027
53	37	40	0.0593	0.168	0.042
54	30	38	0.00464	0.054	0.422
55	39	40	0.0184	0.0605	0.01552
56	40	41	0.0145	0.0487	0.01222
57	40	42	0.0555	0.183	0.0466
58	41	42	0.041	0.135	0.0344
59	43	44	0.0608	0.2454	0.06068
60	34	43	0.0413	0.1681	0.04226
61	44	45	0.0224	0.0901	0.0224
62	45	46	0.04	0.1356	0.0332
63	46	47	0.038	0.127	0.0316
64	46	48	0.0601	0.189	0.0472
65	47	49	0.0191	0.0625	0.01604
66	42	49	0.0715	0.323	0.086
67	42	49	0.0715	0.323	0.086
68	45	49	0.0684	0.186	0.0444
69	48	49	0.0179	0.0505	0.01258
70	49	50	0.0267	0.0752	0.01874
71	49	51	0.0486	0.137	0.0342
72	51	52	0.0203	0.0588	0.01396
73	52	53	0.0405	0.1635	0.04058
74	53	54	0.0263	0.122	0.031
75	49	54	0.073	0.289	0.0738
76	49	54	0.0869	0.291	0.073
77	54	55	0.0169	0.0707	0.0202
78	54	56	0.00275	0.00955	0.00732

79	55	56	0.00488	0.0151	0.00374
80	56	57	0.0343	0.0966	0.0242
81	50	57	0.0474	0.134	0.0332
82	56	58	0.0343	0.0966	0.0242
83	51	58	0.0255	0.0719	0.01788
84	54	59	0.0503	0.2293	0.0598
85	56	59	0.0825	0.251	0.0569
86	56	59	0.0803	0.239	0.0536
87	55	59	0.04739	0.2158	0.05646
88	59	60	0.0317	0.145	0.0376
89	59	61	0.0328	0.15	0.0388
90	60	61	0.00264	0.0135	0.01456
91	60	62	0.0123	0.0561	0.01468
92	61	62	0.00824	0.0376	0.0098
93	63	59	0	0.0386	0
94	63	64	0.00172	0.02	0.216
95	64	61	0	0.0268	0
96	38	65	0.00901	0.0986	1.046
97	64	65	0.00269	0.0302	0.38
98	49	66	0.018	0.0919	0.0248
99	49	66	0.018	0.0919	0.0248
100	62	66	0.0482	0.218	0.0578
101	62	67	0.0258	0.117	0.031
102	65	66	0	0.037	0
103	66	67	0.0224	0.1015	0.02682
104	65	68	0.00138	0.016	0.638
105	47	69	0.0844	0.2778	0.07092
106	49	69	0.0985	0.324	0.0828
107	68	69	0	0.037	0
108	69	70	0.03	0.127	0.122
109	24	70	0.00221	0.4115	0.10198
110	70	71	0.00882	0.0355	0.00878
111	24	72	0.0488	0.196	0.0488
112	71	72	0.0446	0.18	0.04444
113	71	73	0.00866	0.0454	0.01178
114	70	74	0.0401	0.1323	0.03368
115	70	75	0.0428	0.141	0.036
116	69	75	0.0405	0.122	0.124
117	74	75	0.0123	0.0406	0.01034
118	76	77	0.0444	0.148	0.0368

119	69	77	0.0309	0.101	0.1038
120	75	77	0.0601	0.1999	0.04978
121	77	78	0.00376	0.0124	0.01264
122	78	79	0.00546	0.0244	0.00648
123	77	80	0.017	0.0485	0.0472
124	77	80	0.0294	0.105	0.0228
125	79	80	0.0156	0.0704	0.0187
126	68	81	0.00175	0.0202	0.808
127	81	80	0	0.037	0
128	77	82	0.0298	0.0853	0.08174
129	82	83	0.0112	0.03665	0.03796
130	83	84	0.0625	0.132	0.0258
131	83	85	0.043	0.148	0.0348
132	84	85	0.0302	0.0641	0.01234
133	85	86	0.035	0.123	0.0276
134	86	87	0.02828	0.2074	0.0445
135	85	88	0.02	0.102	0.0276
136	85	89	0.0239	0.173	0.047
137	88	89	0.0139	0.0712	0.01934
138	89	90	0.0518	0.188	0.0528
139	89	90	0.0238	0.0997	0.106
140	90	91	0.0254	0.0836	0.0214
141	89	92	0.0099	0.0505	0.0548
142	89	92	0.0393	0.1581	0.0414
143	91	92	0.0387	0.1272	0.03268
144	92	93	0.0258	0.0848	0.0218
145	92	94	0.0481	0.158	0.0406
146	93	94	0.0223	0.0732	0.01876
147	94	95	0.0132	0.0434	0.0111
148	80	96	0.0356	0.182	0.0494
149	82	96	0.0162	0.053	0.0544
150	94	96	0.0269	0.0869	0.023
151	80	97	0.0183	0.0934	0.0254
152	80	98	0.0238	0.108	0.0286
153	80	99	0.0454	0.206	0.0546
154	92	100	0.0648	0.295	0.0472
155	94	100	0.0178	0.058	0.0604
156	95	96	0.0171	0.0547	0.01474
157	96	97	0.0173	0.0885	0.024
158	98	100	0.0397	0.179	0.0476

159	99	100	0.018	0.0813	0.0216
160	100	101	0.0277	0.1262	0.0328
161	92	102	0.0123	0.0559	0.01464
162	101	102	0.0246	0.112	0.0294
163	100	103	0.016	0.0525	0.0536
164	100	104	0.0451	0.204	0.0541
165	103	104	0.0466	0.1584	0.0407
166	103	105	0.0535	0.1625	0.0408
167	100	106	0.0605	0.229	0.062
168	104	105	0.00994	0.0378	0.00986
169	105	106	0.014	0.0547	0.01434
170	105	107	0.053	0.183	0.0472
171	105	108	0.0261	0.0703	0.01844
172	106	107	0.053	0.183	0.0472
173	108	109	0.0105	0.0288	0.0076
174	103	110	0.03906	0.1813	0.0461
175	109	110	0.0278	0.0762	0.0202
176	110	111	0.022	0.0755	0.02
177	110	112	0.0247	0.064	0.062
178	17	113	0.00913	0.0301	0.00768
179	32	113	0.0615	0.203	0.0518
180	32	114	0.0135	0.0612	0.01628
181	27	115	0.0164	0.0741	0.01972
182	114	115	0.0023	0.0104	0.00276
183	68	116	0.00034	0.00405	0.164
184	12	117	0.0329	0.14	0.0358
185	75	118	0.0145	0.0481	0.01198
186	76	118	0.0164	0.0544	0.01356

Appendix II

Transmission Line Length of the Test Systems

From	То	Length (km)	From	То	Length (km)
1	2	29.8	6	12	16.1
1	5	94.4	6	13	8.4
2	3	82.8	9	10	46.5
2	4	89.2	9	14	16.8
2	5	87.6	10	11	11.4
3	4	96.6	12	13	20.5
4	5	20.8	13	14	22.1
6	11	12.4			

Table A.II.1 Line Length of IEEE 14-bus test system

Table A.II.2 Line Length of IEEE 30-bus test system

From	То	Length (km)	From	То	Length (km)
1	2	29.3	19	20	4.4
1	3	78.7	10	20	12.7
2	4	87.6	10	17	47
3	4	19.8	10	21	4.6
2	5	83.1	10	22	9.4
2	6	89.2	21	22	1.5
4	6	19.3	15	23	12.9
5	7	66	22	24	13.1
6	7	41.2	23	24	17.1
6	8	19.5	24	25	22.6
12	14	16.1	25	26	28.4
12	15	8.4	25	27	13.7
12	16	12.4	27	29	27.4
14	15	20.5	27	30	39.8
16	17	11.5	29	30	29.9
15	18	13.8	8	28	99
18	19	8.2	6	28	27.6

From	То	Length (km)	From	То	Length (km)
1	2	48	38	65	311.8
1	3	20.4	64	65	94.3
4	5	3.2	49	66	34.8
3	5	43.7	49	66	34.8
5	6	21.7	62	66	87.9
6	7	8.4	62	67	47.1
8	9	90.5	65	66	0.1
9	10	95.6	66	67	40.9
4	11	33.1	65	68	49.2
5	11	32.4	47	69	133.7
11	12	9.4	49	69	156
2	12	29.6	69	70	53
3	12	76.8	24	70	176.5
7	12	14.7	70	71	15.2
11	13	35.2	24	72	84.2
12	14	34	71	72	77.1
13	15	117.8	71	73	17
14	15	94.1	70	74	63.6
12	16	36.2	70	75	67.8
15	17	21	69	75	62
16	17	77.9	74	75	19.5
17	18	21.4	76	77	70.7
18	19	20.8	69	77	48.8
19	20	46.5	75	77	95.6
15	19	19	77	78	6
20	21	33.8	78	79	9.9
21	22	38.6	77	80	25.5
22	23	63.2	77	80	48.2
23	24	22.3	79	80	28.4
23	25	30.3	68	81	62.2
25	27	61.7	77	82	44.7
27	28	34.7	82	83	17.7

Table A.II.3 Line Length of IEEE 118-bus test system

28	29	40.7	83	84	8.2
8	30	154.3	83	85	69.4
26	30	274.2	84	85	4
17	31	75.2	85	86	57
29	31	16.6	86	87	201.5
23	32	52.3	85	88	38.7
31	32	47.3	85	89	169.1
27	32	36.3	88	89	27
15	33	60.1	89	90	85.5
19	34	119	89	90	41.8
35	36	4.1	90	91	40.2
35	37	20	89	92	19.2
33	37	66.8	89	92	67.8
34	36	13.4	91	92	61.3
34	37	4.2	92	93	40.9
37	39	50.9	92	94	76.1
37	40	88.7	93	94	35.3
30	38	165.7	94	95	20.9
39	40	29.1	80	96	69
40	41	23	82	96	25.6
40	42	88	94	96	42.3
41	42	65	80	97	35.4
43	44	105.1	80	98	43.5
34	43	71.7	80	99	82.9
44	45	38.7	92	100	118.5
45	46	64.1	94	100	28.1
46	47	60.6	95	96	26.8
46	48	93.5	96	97	33.5
47	49	30.2	98	100	72.3
42	49	130.3	99	100	32.8
42	49	130.3	100	101	50.7
45	49	100.8	92	102	22.5
48	49	26.7	101	102	45
49	50	39.8	100	103	25.3

49	51	72.5	100	104	82.2
51	52	30.6	103	104	74.8
52	53	70	103	105	82.1
53	54	48.5	100	106	101.6
49	54	125.1	104	105	16.7
49	54	138.6	105	106	23.9
54	55	29.7	105	107	85.6
54	56	4.5	105	108	38.3
55	56	7.5	106	107	85.6
56	57	51.2	108	109	15.5
50	57	70.8	103	110	72.1
56	58	51.2	109	110	41.1
51	58	38.1	110	111	35.5
54	59	92	110	112	35.8
56	59	126.7	17	113	14.5
56	59	122.3	32	113	97.5
55	59	86.7	32	114	24.6
59	60	58.1	27	115	29.9
59	61	60.1	114	115	4.2
60	61	5.1	68	116	12.3
60	62	22.5	12	117	58.3
61	62	15.1	75	118	23
63	64	61.4	76	118	26.1
64	61	0.1			