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CHAPTER III 

OPP FOR FULL OBSERVABILITY USING BINARY GRAVITATIONAL 

SEARCH ALGORITHM 

 

3.1. INTRODUCTION 

Many optimization techniques have been proposed in the literature which 

strive to optimize the number of PMUS in the power networks for providing the 

full observability of the system. These techniques can be broadly classified into 

two categories, i.e. conventional and non-conventional technique. Reliance on 

the selection of initial solution in conventional techniques makes it inadequate 

for application to large number of non-linear complex optimization problems. The 

absence of dependence on selection of initial solution in case of non-conventional 

technique makes them advantageous as random selection of initial solution can 

be done. 

Owing to the above mentioned advantages of non-conventinal techniques 

and presence of discerete binary variables in the basic OPP problem, BGSA has 

been proposed in this work. It is modified form of GSA whereby discrete binary 

variables are incorporated in optimization process. BGSA parameters play a 

major role in achieving the optimal solution hence the procedure of parameter 

selection along with the basic overview of BGSA methodology has been given in 

this chapter. 

3.2. BASIC PROBLEM FORMULATION OF OPP  

The OPP formulation finds a minimal set of PMUs such that a bus must 

be reached at least once by the PMUs. The optimal placement of PMUs for n bus 

system is formulated as follows: 


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   0,1 ic             (3.4) 

where, b is the unit vector matrix, wti is the weight factor accounting for the cost 

of installed PMU at bus i, for convenience purpose wti is taken to be equal to 1. 

C is the binary variable vector whose entries are defined as equation (3.4). If ci=0 

then PMU is not available at bus i, if ci=1 then PMU is available at bus i. The 

entries of connectivity matrix (A) are defined as follows: 
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a if i and j are connected
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        (3.5) 

After getting the optimal number of PMUs, we can easily check the observability 

of each bus of the system and expression for total observability (Ototal) is given as: 

 
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P

total Lp k
k

O A            (3.6) 

where, P is the total optimal number of PMUs and Lp is the location of PMUs at 

the power system buses. 

 

3.2.1. Solution methodology 

Let us assume that there are no zero injection (ZI) buses in the test system 

under consideration. Now, in order to form the constraint set, the binary 

connectivity matrix A, will be formed first. Matrix A can be directly obtained from 

the bus admittance matrix by transforming its entries into binary form. 
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Figure 3.1 7-bus system 

Consider the 7-bus system and its measurement configuration shown 

above. Building the A matrix for the 7-bus system of Figure 3.1 is as follows: 
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A        (3.7) 

The constraints (3.2) for this problem can be formed as: 
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    The operator “+” serves as the logical “OR” and the use of 1 in the right hand 

side of the inequality ensures that at least one of the variables appearing in the 

sum will be non-zero. The constraint f1 ≥ 1 implies that at least one PMU must 

be placed at either one of buses 1 or 2 (or both) in order to make bus 1 observable. 

Similarly, the second constraint f2 ≥ 1 indicates that at least one PMU should be 

installed at any one of the buses 1, 2, 3, 6, or 7 in order to make bus 2 observable. 

3.2.2. Concept of observability 

In recent years, phasor measurement have been extensively placed in the 

power system. They provide the synchronized voltage and current measurements 

in microsecond. The presence of a PMU at a bus, calculate the voltage phasor of 

that bus and current phasors of each branch which are directly connected to 

that bus [36]. Therefore, a given system is said to be fully observable when all 

the buses of the system are observable through direct or indirect measurement.  

The voltage phasors of the buses next to the PMU installed bus can be 

determined by calculating the current phasors of the branches, bus voltage 

phasor and line parameters [124]. Therefore, the placement of PMUs at a bus not 

only to monitor that bus but also all the neighboring buses attached to it. As 

displayed in Figure 3.2(a), assume PMUs are placed at buses 2 & 3. PMU at bus 

2 will observe buses 1, 2, 3, 6 and 7 and PMU at bus 3 will observe buses 2, 3, 

4 and 6. All the buses of the 7-bus system are observable except bus 5, therefore 
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the system is not fully observable in Figure 3.2(a). Similarly, in Figure 3.2(b), 

PMUs at buses 2 and 7 will observe the buses (1, 2, 3, 6 and 7) and buses (2, 4 

and 7) respectively, and finally bus 5 will be unobservable. Therefore, the system 

is not fully observable in Figure 3.2(b). Figures 3.2 (c) and (d) show the fully 

observable system because all the buses in both the figures are observable 

through directly or indirectly measurement.   
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(c)                                                 (d) 

Figure 3.2 7-bus system (a) Unobservable system (b) Unobservable system 

(c) Observable system (d) Observable system 

3.3. GRAVITATIONAL SEARCH ALGORITHM (GSA) 

  The GSA is a stochastic algorithm that uses the concept of gravity and 

laws of motion to provide a solution for an optimization problem. It is a well-

known fact that any two particles in the universe attract each other by a 

gravitational force directly proportional to the product of their masses and 

inversely proportional to the distance between them [52].  In GSA, this concept is 

utilized along with the laws of motion, where agents are considered as objects and 

their performance is measured by their masses with a gravitational force acting 

as a mode of communication between them. 

  A review of Newton’s gravitational laws can give a better understanding of 

GSA. Newton’s first law of gravity can be stated mathematically as:  
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Newton’s second law says that a force applied to a particle is equal to the product 

of its mass and the particle acceleration (Acc). Mathematically 


F

Acc
M

                             (3.10) 

Both of the above mentioned laws can be rewritten as 
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where Maj represents the active gravitational mass of particle j and Mpi  represents 

the passive gravitational mass of particle i. The acceleration, Acci  is proportional 

to Fij and inversely proportional to Mii, inertial mass of particle i. 

Now, consider a system with Q agents (masses). We define the position of the ith 

agent by: 

 1( ,....., ,...., )d n

i i i iX x x x  for i =1, 2, 3.., Q     (3.13) 

where d

ix  represents the position of ith agent in the dth dimension. At a specific 

time ‘t’, the force acting on mass ‘i’ from mass ‘j’ can be defined as following: 
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The total force acting on the ith agent  (t)d

iF is calculated as follows:  


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d d
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j k
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F rand F          (3.15) 

where kbest is a function of time, with the initial value of K0 at the beginning and 

decreasing with time. This way, all agents apply the force at the beginning, and 

as time passes, kbest is decreased linearly and at the end, there will be just one 

agent applying force to the others. By the law of motion, the acceleration of the 

agent i at time t, in direction dth is given by:  


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d i
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ii

F
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M
             (3.16) 

  Furthermore, the next velocity of an agent is a function of its current 
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velocity added to its current acceleration. Therefore, the next velocity and the next 

position of an agent can be calculated as follows: 

        1d d d

i i i iv t rand v t Acc t        (3.17) 

   ( 1) ( ) ( 1)d d d

i i ix t x t v t         (3.18) 

where randi is a uniform random variable in the interval [0, 1]. The gravitational 

constant G, is initialized at the beginning of the problem and will be decreased 

with time to control the search accuracy [52]. In other words, G is a function of 

the initial value (G0) and time (t)  

( ) ( , )oG t G G t             (3.19) 

  Gravitational and inertial masses are simply calculated by the fitness 

evaluation. Both of the masses namely gravitational and inertial are assumed to 

be equal and their values are calculated using the map of fitness. The inertial and 

gravitational masses are updated by using following equations: 

  ai pi ii iM M M M          (3.20) 

where, i = 1, 2, 3....,Q  
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where  fiti (t) represents the fitness value of the agent i at time t. The best (t) and 

worst (t) in the population of agents respectively indicate the strongest and the 

weakest agent according to their fitness and can be defined as follows: 

For a minimization problem:  

 


1,2,..
( ) min ( )jjÎ Q

best t fit t          (3.23) 

 


1,2,..
( ) max ( )jj Q

worst t fit t          (3.24) 

3.4. BGSA AND IT’S IMPLEMENTATION FOR OPP PROBLEM  

This chapter proposes an algorithm for optimal PMU placement. The 

concept of GSA expressed by (3.9) through (3.24) can be used for OPP problem 

provided it can handle binary variables. This objective can be met by converting 
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the agent velocity and position expressed by (3.17) and (3.18) respectively in 

binary form. The basic property of sigmoid function has been explored in this 

work to convert the agent position and velocity into binary form. This would allow 

to squeeze position and velocity components within the interval [0, 1]. Velocity 

component expressed by expression (3.17) in GSA can be expressed as   

 



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1
( ( ))

1
d
i

d

i
v t

sigmoid v t
e

         (3.25) 

The mass position vector  d

ix  expressed by expression (3.18) in GSA can be 

expressed as  

  
 
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 1,  ( )
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0,                           

d

j id

i

if rand sigmoid v t
x t

otherwise
       (3.26) 

The gravitational constant G in expression (3.27) is updated as follows:  



( )
t

T
oG t G e            (3.27) 

where, t is the current iteration and T is the total iterations. Figure 3.3 shows the 

flow chart of proposed BGSA. 

Generate initial population

Evaluate fitness for each agent

Identify and update the G, best and 

worst of the population

Calculate M and Acc for each 

agent

Squeeze velocity and position 

vector between '0' and '1'

Termination criterion met.?

Return with best solution

No

Yes
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Figure 3.3 Flowchart of the BGSA 

 The detail procedure to apply the BGSA based on Newton’s Law of Gravity and 

Mass interactions for solving the basic OPP problem is as follow: 

Step 1. Read bus data and line data of the test system. 

Step 2. Identify the search space. 

Step 3. Initialize BGSA parameters: total iterations (T), population size (Q),   

     initial gravitational constant (Go) and user specified constant (β). 

Step 4. Initialize population within min and max values of the control  

     variables. 

Step 5. Calculate the fitness values of each agent in the population. 

Step 6. Update G(t), best(t), worst(t) and Mi(t) for i=1, 2, ….., Q based on  

     fitness value. 

Step 7. Calculate total force in different directions using Equation (3.15). 

Step 8. Modify acceleration of each agent using Equation (3.16). 

Step 9.     Update velocity and position of each agent using Equation (3.25)  

     and Equation (3.26) respectively.  

Step 10.     Repeat steps 6 to 9 until the termination criterion is reached. 

Step 11.     Stop 

3.5.  SELECTION OF BGSA PARAMETERS 

Solution of a problem by BGSA is governed by four parameters namely, 

initial gravitational constant (Go), user specified constant (β), population size (Q) 

and total iterations (T). Therefore, it is imperative to select appropriate values of 

these parameters. However, the values of these parameters can only be 

determined sequentially one at a time keeping other three parameters fixed. The 

parameter Q affects the accuracy of the solution whereas T determines the 

accuracy and termination point. Therefore, selection process can begin with 

selecting some values of Q and T and Go and β can be determined by trial and 

error. Once the value of Go and β are determined, the values of Q and T can be 

determined a fresh following the similar procedure as used for Go and β.  

 In present work, selection of parameters begun with determination of 

parameter Go, keeping parameters Q, T and β fixed. Parameter Go was varied 

from 1 to 40 in steps of 1 keeping Q, T and β at 100, 300 and 3 respectively. The 

value of Go at which the solution converged was assumed to be the best value of 

Go. Once, Go was determined, the value of β was varied from 0.2 to 10 in steps of 
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0.2 till convergence was achieved. It is to be noted that the Go and β were 

determined for fixed values of Q and T. Afterward, Q was varied from 10 to 200 in 

steps of 10 for previously determined values of Go and β and fixed value of T till 

convergence was achieved. Choosing this value of Q and predetermined values of 

Go and β, T was varied from 80 to 500 in steps of 10 till convergence. The value 

of T was chosen to be the final value at which solution converged. Above exercise 

was carried out for base case of all the systems on which test was to be carried.  

The values of the four parameters were varied according to the above 

procedure. Various values of the parameters, starting from beginning to end, are 

shown in Table 3.1. It can be observed from this table that the set of Go, β, Q 

and T of values 29, 4, (40-200) and (140-500) produced converged solution for 

all the tested systems. However, convergence was achieved for a range of (40-

200) and (140-500) of Q and T respectively, indicating any value in this range is 

suitable. Vowing this fact, a value of 50 for Q and 150 for T lying in the above 

range was finally selected in this work. Finally a set of Q, T and Go and β was 

chosen as shown in Table 3.2 which yield converged solution for all the test 

systems. It can further be observed from Table 3.2 that the parameters selected 

for three systems worked well for other system also. However, it is also observe 

that the number of iteration (T) increases with increase in system size. Moreover, 

increase in search space may also be required for larger systems. 

3.6. TEST RESULTS  

 This chapter proposed the BGSA for optimizing the number and location 

of PMUs in the power network. For this, a basic OPP formulation has been used 

to check the effectiveness of proposed optimization algorithm. The proposed 

algorithm has been tested on IEEE 14-bus, 30-bus, and 118-bus test systems 

and data of test systems has been taken from [125]. The locations of PMUs have 

been determined such that the entire system becomes observable. Table 3.3 

shows the results in terms of optimal number of PMUs and their locations for all 

the above mentioned test systems. For IEEE 14-bus test system, optimal number 

of PMUs for full system observability is 4 and their locations are 2, 8, 10 and 13. 

In IEEE 30-bus test systems, 10 PMUs are obtained for full observability of the 

system. Figure 3.4 shows the IEEE 30-bus test system with installations of 

obtained PMUs of Table 3.3. Column four in Table 3.3 represents the total 

observability of the test system for obtained PMUs. The given objective function 
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contained only the optimal PMUs function, besides, maximum observability (MO) 

function has been considered in objective functions of Chapter 4 and Chapter 5. 

Table 3.1.  Selection of BGSA parameters 

Parameters Range 
Step 

Size 

Fixed 

parameters 

Selection of parameters 

Value of 

parameter 

Converged 

system size 

Q 
10-

200 
10 T, Go, β 

10-20 NOS 

30 14, 30 

40-200 14, 30, 118, 246 

T 
80-

500 
10 Q, Go, β 

80-110 NOS 

120 14 

130 14, 30, 118 

140-500 14, 30, 118, 246 

Go 1-40 1 Q, T, β 

1-24, 26, 28, 

30-31, 33-40 
NOS 

25 14, 118 

27 30, 246 

29 14, 30, 118, 246 

32 118 

β 0.2-10 0.2 Q, T, Go 

0.2-3.4, 4.6-

10 
NOS 

3.6 118 

3.8 30 

4 14, 30, 118, 246 

4.2 14, 118 

4.4 246 

NOS: No Optimal Solution 

Table 3.2.  BGSA parameters 

G0 β T Q 

29 4 150 50 
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Figure 3.4 IEEE 30-bus with installed PMUs 

 A comparison of present result with other results reported in the 

literature has been tabulated in Table 3.4 for three test systems. It can be seen 

from Table 3.4 that the results obtained by proposed method produced same 

number of PMUs as obtained by other reported methods. This chapter contains 

only the basic case of PMU placement, therefore, there are no more differences 

in the proposed results with results reported in other literature.  
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 In order to minimize the number of PMUs, Figure 3.5 shows the 

convergence characteristics of proposed BGSA method for all the test systems. A 

steep decline in objective function value is observed in Figure 3.5. It is observed 

from Figure 3.5 that the BGSA converged in ten iterations for IEEE 14-bus test 

system and suggested 4 PMUs for full observability of the system. Similarly, IEEE 

30-bus and IEEE 118-bus test systems converged in 43 iterations and 53 

iterations and suggest 10 PMUs and 32 PMUs respectively. The computational 

times of proposed BGSA method for IEEE 14-bus, IEEE 30-bus and IEEE 118-

bus systems are 0.63 sec, 0.79 sec, and 2.71 sec respectively. Figure 3.5 also 

reveals that the number of iterations increases as the size of the system 

increases, whereas, it is not proportional to size of the system. 

Table 3.3.  Optimal number and location of PMUs for IEEE test systems 

Test system 
Optimal no. 

of PMUs 
Optimal location of PMUs Ototal 

IEEE 14-bus 4 2, 8, 10, 13 14 

IEEE 30-bus 10 1,5,8,10,11,12,19,23,26,29 35 

IEEE 118-

bus 
32 

2,5,10,12,15,17,21,25,29,34,37,41,45,4

9,53,56,62,64,72,73,75,77,80,85,87,91,

94,101,105,110,114,116 

151 

Table 3.4.  Comparison of proposed results with other methods 

Test  

system 
Proposed 

Ref.  

[22] 

Ref.  

[27] 

Ref.  

[36] 

Ref.  

[38] 

Ref. 

[126] 

IEEE 14-bus 4 4 4 4 4 4 

IEEE 30-bus 10 10 10 10 10 10 

IEEE 118-bus 32 32 NA NA 32 32 
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Figure 3.5 Convergence of BGSA for all the test systems 

 

3.7. CONCLUSION 

 This chapter presents the basic problem formulation of PMU placement in 

the power system. To solve this problem, a technique has proposed, called as 

BGSA. This technique is basically based on the newton’s law of gravity and mass 

interaction. The OPP problem deals with discrete binary variables. Therefore, the 

basic concepts of GSA has modified into the discrete binary variables. The 

procedure of appropriate parameters selection to achieve the global optimal 

solution has been explained. The test results reveal that the BGSA based basic 

OPP problem provides same number of PMUs as compared to other methods 

reported in the literature. The performance of novel PMU placement formulation 

using BGSA method on various test systems also on real system are evaluated 

and discussed in the subsequent chapters. 

 

  


