Contents

	LIST	ΓOFF	IGURES		xxiv
	LIST	Г ОГ Т	ABLES		XXV
	LIST	Г OF A	BBREVI	ATIONS	xxvi
	LIST	ГOFS	YMBOLS	8	xxviii
	PRE	EFACE			XXX
1	INT	ROD	UCTION	N AND LITERATURE REVIEW	1
	1.1	Introd	uction .		2
	1.2	Photo	odetection	n Theory	2
		1.2.1	Absorpt	ion	2
		1.2.2	Photocu	rrent Generation Mechanisms	4
			1.2.2.1	Photoconductive Effects	5
			1.2.2.2	Photovoltaic Effects	6
			1.2.2.3	Photo-thermoelectric Effects	6
		1.2.3	Figure o	of Merits (FOMs) of Photodetectors	6
			1.2.3.1	Sensitivity (S)	7
			1.2.3.2	External Quantum Efficiency (EQE)	7
			1.2.3.3	Responsivity (A/W) \ldots	7
			1.2.3.4	Specific Detectivity (cm.Hz^{1/2}.W^{-1} or Jones) \ldots .	8
			1.2.3.5	Time Response	8
	1.3	Typic	al Photod	letector Structures	9
		1.3.1	Photodi	ode	9
		1.3.2	Phototra	ansistor	12
		1.3.3	Photoco	nductor	12

		1.3.3.1 Merits of Photoconductor Structures	15
1.4	Broad	band Photodetectors	16
	1.4.1	Applications of Broadband Photodetectors	17
	1.4.2	Traditional Materials for Broadband Photodetection	18
	1.4.3	Limitations and Challenges of Traditional Materials in Broad-	
		band Photodetection	20
1.5	Needs	of New Materials	21
1.6	Nanos	tructures and their Classification	22
	1.6.1	Zero Dimensional (0-D) Nanostructures	22
		1.6.1.1 Quantum Dots	23
	1.6.2	One Dimensional (1-D) Nanostructures	27
	1.6.3	Two Dimensional (2-D) Nanostructures	27
	1.6.4	Merits of Quantum Dots (0D) and 2D-Nanostructures	28
1.7	Synthe	esis of Nanostructures	29
	1.7.1	Top-Down Approach	30
	1.7.2	Bottom–Up Approach	30
1.8	Chara	cterizations Techniques for Nanostructures	31
	1.8.1	Structural Characterizations Techniques	31
		1.8.1.1 X-Ray Diffraction (XRD)	31
		1.8.1.2 Transmission Electron Microscopy (TEM)	32
		1.8.1.3 Scanning Electron Microscope (SEM)	34
		1.8.1.4 Atomic Force Microscopy(AFM)	34
		1.8.1.5 Raman Spectroscopy	36
	1.8.2	Optical characterizations Techniques	38
		1.8.2.1 Spectroscopic Analysis (UV-Visible-NIR Spectroscopy)	38
		1.8.2.2 Photo-Luminescence (PL)	39
	1.8.3	Electrochemical Characterization Technique	40
		1.8.3.1 Cyclic Voltammetry (CV)	40
1.9	Intro	duction of Cu_2SnS_3 (CTS) and 2D-Materials	41
	1.9.1	Cu_2SnS_3 (CTS) and its Nanostructures	41

			1.9.1.1	Electronic Property	42
			1.9.1.2	Optical Property	45
		1.9.2	2D-Grap	hene	47
			1.9.2.1	Electronic Property	48
			1.9.2.2	Optical Property	51
		1.9.3	TMDs: 2	$2D-SnS_2$	53
			1.9.3.1	Electronic Property	55
			1.9.3.2	Optical Property	58
	1.10	Literat	ure Revie	2W	59
		1.10.1	Some Sta	ate-of-Art work on 0D, 2D and 2D/0D Nanostructures	
			for Broad	lband Photodetection	60
			1.10.1.1	Conventional Quantum Dots (QDs) for Broadband Pho-	
				todetection	60
			1.10.1.2	$\rm Cu_2SnS_3$ Nanostructures and their QDs Based Broad-	
				band Photodetection	62
			1.10.1.3	2D-Graphene and their Hybrid (2D/0D) Structures for	
				Broadband Photodetection	64
			1.10.1.4	2D-Transition Metal Dichalcogenides (MX_2 ; $M = Mo$,	
				W, Sn etc., & X = S, Se) Based Broadband Photodetection	66
			1.10.1.5	$2\mathrm{D}\text{-}\mathrm{SnS}_2$ and their Hybrid (2D/0D) Structures for Broad-	
				band Photodetection	68
		1.10.2	Major O	bservation from Literature Review	69
	1.11	Motiva	tion and	Problem Definition	71
	1.12	Scope	and Orga	nization of the Thesis	72
2	LOV	V COS	T SOLV	OTHERMAL PROCESSED CTS QDs BASED BRC)AD-
	BAI	ND (V	ISIBLE-	NIR) PHOTOCONDUCTOR	75
	2.1	Introdu	uction		76
	2.2	Experi	mental D	etails	78
		2.2.1	Synthesis	s of CTS QDs	78
		2.2.2	Device I	Fabrication	78

	2.3	Result	ts and Dis	scussion	79
		2.3.1	Structur	al Characterization of CTS QDs	79
		2.3.2	Optical	and Electrical Characterizations of Device	80
	2.4	Princi	ple of Op	eration	86
	2.5	Concl	usion		87
3	HIC	GHLY	EFFICI	ENT AND BROADBAND HYBRID PHOTODE	-
	TE	CTOR	BASED	ON 2D-GRAPHENE/CTS QUANTUM DOTS	88
	3.1	Introd	luction .		89
	3.2	Exper	imental D	Details	90
		3.2.1	Solvothe	ermal Synthesis of CTS Quantum Dots	90
		3.2.2	Chemica	al Vapor Deposition (CVD) Synthesis of Graphene	91
		3.2.3	Device I	Fabrication	92
			3.2.3.1	Substrate Cleaning	92
			3.2.3.2	Preparation of Oxide Layer on Silicon Substrate	92
			3.2.3.3	Transferring Graphene on SiO ₂ /Si Substrate	93
			3.2.3.4	Hybrid Structure of CTS-QDs/Graphene on ${\rm SiO}_2/{\rm Si}$ Sub-	
				strate	93
	3.3	Result	ts and Dis	scussion	94
		3.3.1	Structur	al Characterizations of Solvothermal Synthesized CTS-	
			QDs and	d CVD Grown Graphene	94
			3.3.1.1	Characterizations of Solvothermal Synthesized CTS-QD	s 94
			3.3.1.2	Characterizations of CVD Grown Graphene	98
			3.3.1.3	Composite Characterizations of CTS-QDs and CVD	
				Grown Graphene	98
		3.3.2	Electrica	al and Optical Characterization	99
	3.4	Concl	usions .		105
4	2D-	\mathbf{SnS}_2 ľ	IANOFI	LAKES BASED EFFICIENT ULTRAVIOLET PHO)_
	TO	DETE	CTOR		107
	4.1	Introd	luction .		108

	4.2	Exper	imental E	Details	110
		4.2.1	Solvothe	ermal Synthesis of SnS_2 Nanoflakes	110
		4.2.2	Device I	Fabrication	110
	4.3	Result	s and Dis	scussion	111
		4.3.1	Structur	al and Optical Characterization	111
		4.3.2	Electrica	al Characterization	114
	4.4	Conclu	usion		119
5	HY	BRID	$2\mathrm{D}/0\mathrm{D}$	SnS ₂ NANOFLAKES/CTS QDs-BASED BROAD)_
	BA	ND (U	V-VISI	BLE-NIR) PHOTODETECTOR	121
	5.1	Introd	uction .		122
	5.2	Exper	imental E	Details	124
		5.2.1	Solvothe	ermal Synthesis of SnS_2 Nanoflakes $\ldots \ldots \ldots \ldots$	124
		5.2.2	Solvothe	ermal Synthesis of CTS QDs	124
		5.2.3	Device I	Fabrication Steps	124
			5.2.3.1	Substrates Cleaning	124
			5.2.3.2	Oxidation of Si Substrate	125
			5.2.3.3	Transferring ${\rm SnS}_2$ Nanoflakes on SiO_2/Si Substrate $~$.	125
			5.2.3.4	Metal Contact Formation on ${\rm SnS}_2$ Nanoflakes/SiO_2/Si	
				Structure	125
			5.2.3.5	$Drop\ Casting\ of\ CTS\ QDs\ over\ SnS_2\ Nanoflakes/SiO_2/Si$	
				Structure	126
	5.3	Result	and Disc	cussion	126
		5.3.1	Structur	cal Characterization of SnS_2 Nanoflakes $\ldots \ldots \ldots$	126
		5.3.2	Structur	al Characterization of CTS QDs	127
		5.3.3	Structur	cal Characterizations of the Hybrid CTS QDs/SnS_2 Nanofla	kes
			Based S	tructure	128
		5.3.4	Electrica	al and Optical Characterization of Fabricated Device	129
	5.4	Princi	ple of Op	eration	132
	5.5	Conclu	usion		135

6	CO	NCLUSION AND FUTURE WORK	136
	6.1	Introduction	137
	6.2	Summary and Conclusion	138
	6.3	Future Scope of the Thesis	142
	RE	FERENCES	143
	\mathbf{PU}	BLICATIONS	171

List of Figures

1.1	Carriers transition under light illumination (a) Intrinsic transition (h v	
	\geq E _g), (b) Extrinsic transition (h $v <$ E _g) from trap energy state (c)	
	Extrinsic transition in quantum well structure	3
1.2	Optical absorption co-efficient of some UV-Vis-NIR photodetector ma-	
	terials with light penetration depth (From Ref. $[1]$)	4
1.3	Photoconductive mechanism (a) Under dark and, (b) Illumination con-	
	dition	5
1.4	Schematic of a (a) pn, (b) pin, (c) Avalanche, and (d) Schottky type	
	photodiode structures	10
1.5	(a) A typical photoconductor structure with channel length (L) and effec-	
	tive illumination area (A): (b) Lateral type photoconductor (c) Vertical	
	type photoconductor	13
1.6	Electromagnetic spectrum of UV-Visible-Infrared as a function of wave-	
	lengths	17
1.7	Photo responsivity of traditional materials used for UV-Visible-IR pho-	
	todetection applications	19
1.8	Classification of nanomaterials on the basis of their carriers motion re-	
	striction	23
1.9	Principle of (a) Band gap engineering of QDs nanostructures over bulk	
	materials (b) Quantum confinement effect	25
1.10	Scheme of the basic processes involving various excited states in a QDs	
	upon photo-excitation	26

1.11 Synthesis process of nanostructures: Top-down and Bottom-top approach \$29\$

1.12	X-ray diffraction: Principle of operation with basic components \ldots .	32
1.13	Basic principle of transmission electron microscopy (TEM)	33
1.14	Basic principle of scanning electron microscopy (SEM)	35
1.15	Basic principle of atomic force microscopy (AFM)	36
1.16	Basic principle of Raman spectroscopy (From Ref. $[2]$)	37
1.17	Basic principle of UV-Visible-NIR spectroscopy	38
1.18	Basic principle of photo-luminescence (PL) process	39
1.19	Crystallographic structures of Cu_2SnS_3 (a) Monoclinic, (b) Cubic, (c)	
	Wurtzite, (d) Tetragonal, and (e) Hexagonal (From Ref. $[3, 4]$)	44
1.20	Optical spectrum of various QDs materials over CTS QDs (From Ref.	
	$[5, 6, 7]) \ldots \ldots$	46
1.21	(a) Absorption coefficient of Cu_2SnS_3 (From Ref. [8]) (b) Broad absorp-	
	tion spectrum of CTS QDs of average size ${\sim}3$ nm (From Ref. [5]) $~.~.$	47
1.22	(a) The hexagonal lattice structure of graphene, (b) Band structure of	
	graphene. (From Ref. [9])	50
1.23	(a) Optical absorption of graphene along with its conductivity, (b) Image	
	of an aperture partially covered by graphene and bi-layer graphene, (c)	
	Experimentally calculated optical conductivity (From Ref. $[9]$)	52
1.24	2D materials and their corresponding detection ranges	54
1.25	(a) Layered atomic structure of SnS_2 , (b) Top and side view of mono	
	layer 1H-SnS ₂ , and 1T-SnS ₂ (c),(d) Band gap variation in few layer SnS ₂	
	(From Ref. $[10, 11]$)	56
1.26	Optical absorption of SnS_2 nanostructures synthesized by different tech-	
	niques	59
2.1	Solvothermal synthesis process to synthesize CTS QDs	78
2.2	(a) Fabrication steps to realize a low cost Ag/CTS QDs/Ag photocon-	
	ductor over glass substrate, (b) Fabricated device structure (c) Optical	
	image of the fabricated device with marked channel dimension	79

2.3	(a) XRD pattern of CTS QDs (b) TEM image along with SAED pattern	
	(Inset) (c) Magnified TEM image of synthesized CTS QDs along with	
	histogram plot relating size of QDs vs frequency (%) (Inset) with average	
	size ~ 3.4 nm, (d) FE-SEM image of CTS QDs and the corresponding Cu,	
	Sn and S element mapping, (e) AFM image of agglomerated CTS QDs	
	over glass substrate, (f) Height profile of CTS QDs film with estimated	
	height $\sim 100 \text{ nm}$	81
2.4	(a) Absorption spectra of solvothermal synthesized CTS QDs and Tauc	
	plot (Inset) to estimate the optical band gap of CTS QDs (The optical	
	band gap of CTS QDs is 1.68 eV), (b) Cyclic voltammetry (C-V) scan	
	of the CTS QDs (The measured electrochemical bandgap of CTS QDs	
	is ${\sim}1.2$ eV), (c) I-V characteristics of device under dark, 730 and 940	
	nm illumination wavelengths and $\ln(I)$ -V plot (Inset), (d) Responsivity	
	(R), detectivity (D [*]) and EQE (%) of the device for broad spectral range	
	illumination at 5 V, (e) Time response of the fabricated detector under	
	Vis-NIR light source with spectral response (Inset), at 5V applied bias	
	with $\sim 1 \text{ mW/cm}^2$ illuminated power density, (f) Rise (t _r) and fall (t _f)	
	time calculation for the selected pulse as shown in Fig.2.4 (e)	84
2.5	(a) Illustrations of QDs relating its energy band diagram with its size,	
	(b) Size dependent light absorption by CTS QDs in visible and NIR	
	spectrum, (c) Energy band diagram of Ag/p-CTS QDs/Ag under thermal	
	equilibrium with applied bias along with illumination $\ldots \ldots \ldots \ldots$	87
3.1	Schematic of CVD setup for growing graphene films	91
3.2	Experimental CVD setup used to synthesized mono or few layers of	
	graphene	92
3.3	Transferring of CVD grown graphene on SiO_2/Si substrate by using wet	
	polymer methods	93
3.4	(a) Complete device schematic of CTS QDs/Graphene/SiO ₂ /Si based	
	photodetector and (b) Fabricated device under consideration	94
3.5	X-ray diffraction pattern of the CTS QDs	95

3.6	(a) TEM micrograph showing highly dispersed CTS- QDs with frequency	
	(occurrence) of particle vs particles size plot inset, (b) TEM image of	
	CTS QDs at 20 nm scale with circled CTS QDs, (c) HR-TEM image	
	of CTS QDs with marked interplanar spacing and plane indexing, (d)	
	SAED pattern of CTS QDs with plane indexing, (e) FFT of HR-TEM.	96
3.7	(a) Absorption spectra of CTS QDs, (b) Tauc-plot to estimate band gap	97
3.8	Cyclic voltammetry of the CTS QDs sample	97
3.9	(a) TEM micrographs showing single layer graphene (darker region) hav-	
	ing some multilayer islands (darker region) over it, (b) Raman spectra of	
	single/few layers graphene film grown by CVD technique $\ . \ . \ . \ .$	98
3.10	(a) FE-SEM image of CTS QDs on Graphene/SiO ₂ /Si substrate at 10	
	μm scale, (b) SEM image of the thin layer of agglomerated CTS-QDs	
	dispersed over Graphene/SiO $_2/{\rm Si}$ substrate at 200 nm scale, (c) FE-SEM	
	image of CTS QDs with marked spot, (d) The EDS of marked spot in (c)	99
3.11	J-V characteristics of CTS QDs/Graphene/SiO ₂ /Si based photodetector	
	at different wavelengths with magnification scale plot inset $\ldots \ldots$	101
3.12	(a) Photo current density vs wavelength characteristics of CTS QDs/Graphe	ne
	based photodetector at 2.5 V and, (b) at 4.5 V $\ldots \ldots \ldots$	101
3.13	(a) Responsivity vs wavelength, (b) Detectivity vs wavelength plot of	
	CTS QDs-Graphene based photodetector under vis-NIR light illumina-	
	tion, (c) Time response under Vis-NIR illumination and, (d) C-V re-	
	sponse under dark and Vis-NIR illumination	103
3.14	Band diagram of carriers transportation for Ag-Graphene-Ag component	105
3.15	Energy band diagram of Ag/Graphene/CTS QDs hetero structures (a)	
	Zero bias, (b) Forward bias, (c) Reverse bias.	106
4.1	Solvothermal synthesis of SnS_2 nanoflakes $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	110
4.2	(a) The device schematic of Ag/SnS_2 nanoflakes/SiO ₂ /Si photodetector,	
	(b) Fabricated device under consideration, and (c) Atomic arrangement	
	$2D-SnS_2$	111

4.3	(a) X-RD pattern of solvo thermal synthesized SnS_2 nanoflakes, (b) Ra-	
	man spectra of SnS_2 nanoflakes with A_{1g} mode, (c) Absorption spectra	
	of SnS_2 with Tauc-plot inset, (d) PL spectra of solvothermal synthesized	
	SnS_2 nanoflakes with three excitation wavelengths i.e 230, 240, and 260	
	nm with constant emission peak at ~ 387 nm. \ldots \ldots \ldots \ldots \ldots	112
4.4	(a) TEM micrographs showing high resolution hexagonal shaped SnS_2	
	nanoflakes, (b) TEM image of SnS_2 nanoflakes with marked dimensions	
	at 200 nm scale, (c) HR-TEM image of SnS_2 nanoflakes with inter pla-	
	nar spacing, (d) SAED pattern of SnS_2 nanoflakes with plane index-	
	ing, (e) FE-SEM image of SnS_2 over SiO_2/Si substrate, (f) EDS spectra	
	for selected spot in Fig.4.4 (e) with element Sn, S and their elemen-	
	tal weight(%), (g) AFM image of SnS_2 nanoflakes over SiO_2/Si substrate	
	with height profile (Inset), (h) 3D profile of SnS_2 nanoflakes over SiO_2/Si	
	for corresponding AFM image in Fig.4.4 (g)	113
4.5	(a) I–V characteristics of fabricated Ag/SnS_2 nanoflakes/SiO ₂ /Si pho-	
	to detector with an alternate $\ln(\mathrm{I})\mathrm{-V}$ plot (Inset), (b) Contrast ratio of	
	the photodetector under UV light (\sim 365 nm) illumination	115
4.6	(a) Band energy diagram of Ag and n-type SnS_2 nanoflakes before con-	
	tact, (b) After contact at thermal equilibrium with UV light illumination;	
	For case-(I) left side Ag electrode at positive voltage, and for case-(II)	
	right side Ag electrode at positive voltage.	116
4.7	ln (I)–V characteristics of Ag/SnS_2 nanoflakes/SiO ₂ /Si photodetector at	
	various temperature.	117
4.8	(a) Current density, (b) Responsivity (Inset EQE (%)), (c) Detectivity	
	of device as function of wavelength, and (d) Time response of device at	
	${\sim}365~\mathrm{nm}$ wavelength with optical power density ${\sim}1.112~\mathrm{mW/cm^2}$	119
5.1	(a) Schematic of proposed device structure, (b) Fabricated broadband	
	photodetectors under consideration	126

- 5.3 (a) TEM image of CTS QDs at 200 nm scale, (b) TEM image of CTS QDs with their estimated dimension along with their size distribution histogram plot inset, (c) HR-TEM image of CTS QDs with plane indexing and the SAED pattern of corresponding HR-TEM image inset . . . 129
- 5.4 (a) AFM image of SnS₂ nanoflakes over SiO₂/Si substrate, (b) AFM image of agglomerated CTS QDs over SnS₂ nanoflakes/ SiO₂/Si structure.129
- 5.5 (a) Current density-voltage characteristics under dark condition, (b) Current density variation with respect to illumination light wavelength at 5 V and 2.5 V (Inset), (c) Absorption spectra of SnS₂ nanoflakes along with absorption spectra of CTS QDs (Inset), (d) Responsivity of the device at various wavelength with applied bias 5 V and 2.5 V, (e) Detectivity of the device at various wavelength with applied bias 5 V and 2.5 V, (f) C-V characteristics of the fabricated device at 1-MHz 131

List of Tables

1.1	Typical Values of Gain and Response Time for Photoconductor Structure	
	over Some Common Photodetectors (From Ref. $[1]$)	16
1.2	Optical Performance of Lateral type Photoconductor over Other Pho-	
	to detection Structures (From Ref. [12]) \ldots \ldots \ldots \ldots \ldots	16
1.3	Some Typical Properties of Cu_2SnS_3 Nanostructures	42
1.4	Some Typical Opto-electronic Properties of $SnS_2 \ldots \ldots \ldots \ldots$	55
2.1	Comparison With Other Broadband Photodetectors	85
2.2	Time Response Comparison With CTS and Other Vis/NIR Photodetectors	85
3.1	Comparison Among Other Reported CTS QDs and Graphene Based	
	Broadband Photodetectors.	104
4.1	Comparison With Some Other Reported UV-Photodetectors	120
5.1	Comparison Table With Some Other Reported Photodetectors	133

LIST OF ABBREVIATIONS

PDs	Photodetectors
CTS	Copper Tin Sulfide (Cu_2SnS_3)
CB	Conduction Band
VB	Valence Band
0D	Zero Dimensional
1D	One Dimensional
$2\mathrm{D}$	Two Dimensional
3D	Three Dimensional
XRD	X-Ray Diffraction
TEM	Transmission Electron Microscopy
SAED	Selected Area Electron Diffraction
EDX	Energy Dispersive X-Ray
SEM	Scanning Electron Microscope
AFM	Atomic Force Microscopy
DI	Deionized
HF	Hydrogen Fluoride
PVP	Polyvinylpyrrolidone
PMMA	Poly(methyl methacrylate)
CVD	Chemical Vapor Deposition
UV	Ultraviolet
Vis	Visible
NIR	Near Infra Red

LIST OF SYMBOLS

E_{q}	Band Gap
h	Plank' Constant
v	Frequency
λ	Wavelength
С	Speed of Light
μ_e	Electron Mobility
μ_h	Hole Mobility
ϵ	Effective Dielectric Constant
Ag	Silver
E_C	Conduction Band
E_V	valence Band
E_F	Fermi Level
ϕ	Work Function.
χ	Electron affinity.
k	Boltzmann constant
q	Electronic Charge
R	Responsivity
D	Detectivity
D^*	Specific Detectivity
η	External Quantum Efficiency
S	Effective Illumination Area
J_P	Photo Current Density
P_{opt}	Optical Power Density