
CHAPTER 3 

PERFORMANCE ANALYSIS OF SUPERVISED ALGORITHMS 

FOR THE LAND FEATURES CLASSIFICATION 
 

 

3.1 INTRODUCTION 

Crops are the primary and essential necessities for the livelihood and for any 

growing country of the world. Timely and precise information about diverse crop 

provide vital and imperative role in the local area crop management during different 

growing season (Yang et al., 2007). This information is very much expedient for 

production estimation, timely transportation of crop products and for accurate crop price 

determination. However, some difficulties may be in separating these crop species due 

to variations in soil properties, planting dates, fertilization, irrigation, intercropping, pest 

conditions and tillage practices (Ryerson et al., 1997). Crop classification is associated 

with the global climate change, agricultural environment and urban development. 

Therefore, it has attracted widespread interests in the community of geography, 

ecology, hydrology, Geographical Information System (GIS), remote sensing, 

environment and onward (Srivastava et al., 2012).  

Availability of different satellite imagery, image processing algorithms and 

advancement in digital image processing enabled the researches and increased the 

potential to find accurate crop information like as crop type, crop condition and growth 

of diverse crop in agriculture (Turker and Arikan, 2005; Akbari et al., 2006). The 

spectral knowledge of diverse crop in satellite imagery is obligatory as a training data 

for the discrimination of crops in the same or other area (Nidamanuri and Zbell, 2012). 

High spatial resolution, multi-spectral satellite sensor LISS-IV data in optical and NIR 

bands emerged as a possible approach for monitoring of crop types and other land 



features (Sesha Sai and Narasimha Rao, 2008). Foremost restrictions on agricultural 

crop type’s discrimination by satellite imagery relate to resemblance of reflectance of 

diverse crop and field-to-field inconsistency of plant reflectance of the same crops. The 

particular combinations of the crops in a specified region, the array of specific crop 

phenologies, spatial and spectral variability within fields are also the major limitations 

(Wheeler and Misra, 1980; Buechel et al., 1989). The LISS-IV sensor data has the 

potential to capture and remove somewhat these limitations. The usefulness of 

multispectral satellite imageries have been recognised for the discrimination and 

mapping of diverse crop by several researchers (WitDe and Clevers, 2004; Conrad et 

al., 2010; Turker and Ozdarici, 2011). 

The crop classification maps are essential for the assessment of amount and type 

of crops harvested in a certain area and for the management and assessment of 

agricultural disaster compensation; however, those algorithms have till now to be 

recognized (Sonobe et al., 2014). Nonparametric algorithms like SVMs, ANN and RF 

have been found more robust than the conventional statistical algorithms and create no 

assumptions nearby the statistical nature of the data. These are the good additions to the 

existing catalogue of image classification algorithms which may allow accurate 

classification. SVMs algorithm is widely used algorithm in the remote sensing 

community due to its ability to produce better classification results than the other 

algorithms even with limited and spectral-mixed training data (Foody and Mathur, 

2006; Mountrakis et al., 2011; Shao and Lunetta, 2012). The output of SVMs algorithm 

depends on the input pixels and pointing out that the training is potentially a significant 

stage for augmenting classification accuracy (Pouteau and Collin, 2013). However, 

major anxieties in the design of SVMs classifier such as choice of kernel specific 

parameters, suitable kernel function, regularization parameter and strategies for 



multiclass classification can affect the crop discrimination accuracy results (Huang et 

al., 2002; Pal 2009; Mountrakis et al., 2011). 

ANN algorithm has been well proven as a useful tool in remote sensing and in the 

other different applications (Mass and Flores, 2008; Kavzoglu, 2009; Gupta et al., 2015; 

2016; Mishra and Rai, 2016). The ANN process is a mainly parallel disseminated 

process which is made from the simple processing units. This has a regular tendency to 

store experiential information and to make it available in use with unseen data-set 

(Dastorani et al., 2010; Islam et al., 2012). Further relative studies (e.g. Paola and 

Schowengerdt, 1995; Mas and Flores, 2008) have demonstrated the superiority of 

ANNs because they do not assume the training samples to be normally distributed. For 

example, a back propagation ANN classification process involves a repeated 

feedforward and back propagation process to minimize the root mean square error 

(RMSE) between the models predicted and target values. However, few studies have 

conveyed some problems regarding use of back propagation ANN for crop and other 

land cover features classification (Foody and Arora, 1997; Kavzoglu and Mather, 2003). 

ANN algorithms run slowly during the training phase due to involvement of several 

setting parameters and nature of input data (Arora et al., 2000). The classification 

accuracy depends on so many factors and may be affected due to variation in the 

dimensionality of satellite imagery and on training and testing data-sets (Foody and 

Arora, 1997). RF algorithm is a non–parametric rule based algorithm and it can be 

trained rapidly. This algorithm is very effective for the classification through complex 

and non-linear patterns of the landscape. Furthermore, the RF algorithm runs efficiently 

on large data-sets and does not require normally distributed model training data 

(Rodriguez-Galiano et al., 2012). SVM needs a several user-defined parameters whereas 



RF algorithm requires only two parameters as numbers of trees and number of predictor 

variables. Classification results by RF were found equally well to SVM (Pal, 2005).  

At the advent of a numeral satellites, no insufficiency of data since remotely 

sensed sources; however, appropriate classification accuracy has remained a big 

challenge. Despite many research papers published in the field of remote sensing, there 

is still a lack of comparative studies on different supervised classification algorithms 

using LISS-IV data. In the presented study, demanding assessment of SVMs with 

respect to linear, radial basis, polynomial of degree 2, sigmoid function kernels, ANN 

and RF were endeavoured to perform the crop type and other land features classification 

and accuracy enhancement by post-processing. The spectral separability along with 

different bands was analysed for better separation between the crops/non-crops by TD 

and J-M distance methods. The crops/non-crops classification accuracy results were 

investigated statistically by Z-test and compared. This study offers significant 

information regarding the presence of diverse crop in the area dominated by agricultural 

practices. Such information is vital for the successful management and monitoring of 

diversity and crop productivity etc.  

3.2 DESCRIPTION OF THE STUDY AREA AND MATERIALS 

 The study area, ground truth information and satellite data used in this chapter is 

same as described in the chapter 2. Nowadays, it is needed to utilize imagery having 

high spatial resolution for the better classification. Single-date LISS-IV multispectral 

imagery can be utilized for the crop classification if the imagery is acquired during the 

optimum crop discrimination period for a given region. Bearing in mind about the cost 

of imagery and weather constraints, it is more effective to use single-date imagery for 

crop discrimination studies if majority of the crops can be covered on a single-date 

imagery in a region; otherwise multi-date images may be necessary (Yang et al., 2011). 



3.3  METHODOLOGY 

3.3.1 Image processing of satellite data 

Figure 3.1 displays the flowchart of the adopted methodology for the 

classification of diverse crop and non-crop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flow-chart of methodology 

3.3.2   Image pre-processing 

 In the remote sensing applications such as image classification, the atmospheric 

correction was not required in the same calendar date. This was due to atmospheric 

correction for single date imagery comparable to subtracting a constant from all sample 

pixels in a spectral band (Song et al., 2001). The layer stacking of three different band 

Separability analysis 

(TD and J-M method) 
Training data 

 
Testing data 

 

Post processing 

 

Data Pre-processing  

(Image registration, subset area) 

ANN based 

classification 

Classified maps 

Supervised 

Classification 

SVMs based 

classification 
RF based 

classification 

Signature selection and 

evaluation 

Identification of land 

use/cover classes 

Accuracy assessment 

 

 LISS-IV data  

(6 April 2013) 

Generation of FCC 

Field investigation 

data 

Statistical analysis 

 

Selected measures 

 



data was done to get the FCC image. The required area was clipped from original image 

which was found helpful to diminish the dimension of the image file to focus only on 

the ROI. This procedure not only eliminates the unnecessary data in the file, but also 

speeds up the processing time, which was much essential for the classification 

algorithms. The ROI files were generated after the collection of ground samples 

randomly. The spectral separability before the classification was performed to check the 

separation between the classes. One ROI file was used to train the classification 

algorithms and other ROI file was used to test the classifiers. The training/testing pixels 

used for the discrimination are given in Table 3.1. 

Table 3.1 Training and testing pixels used in the classification 

 

3.3.3  Separability analysis 

 To define the spectral separability between classes, the TD (Swain and Davis, 

1978) and J-M (Richards, 1999) distance methods were analysed. 

3.3.3.1 Transformed divergence method 

TD method was used for the class separability analysis between the classes 

before the image classification. TD is a statistical distance measurement between the 

classes, calculated from means and covariance matrices of each class. The range of TD 

values is from 0.0 to 2.0 and shows how well the chosen training samples are 

statistically separated. The TD values larger than 1.9 show that the classes have good 

Class                        Training         Testing             Class                                 Training          Testing         

name                          pixels             pixels              name                                   pixels              pixels 

Barley 379 126 Sugarcane 316 108 

Wheat 604 200 Other crops 734 247 

Lentil 381 125 Water 625 209 

Mustard 368 122 Sand 663 220 

Pigeon pea 352 111 Built up 462 154 

Linseed 337 114 Fallow land 427 142 

Corn 491 164 Sparse vegetation 780 269 

Pea 385 128 Dense vegetation 739 244 



separability. It was obtained using the equations 3.1 and 3.2 given by Swain and Davis, 

1978 as 

𝑇𝐷𝑖𝑗 = 2 (1 − 𝑒𝑥𝑝 (
−𝐷𝑖𝑗

8
))          (3.1)  

𝐷𝑖𝑗 = divergence among two signatures and it can be obtained using equation as 

𝐷𝑖𝑗 =  
1
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where i and j are the two classes or signatures being compared, 𝐶𝑖 and 𝐶𝑗 are the 

covariance matrices of signatures i and j, µ𝑖 and  µ𝑗 are the mean vectors of signatures i 

and j, tr indicates about the trace function which computes the sum of the components 

on the chief diagonal and T is the transpose of the matrix used. 

3.3.3.2 Jeffries-Matusita distance method 

J-M distance allows to indicate how well a selected spectral class pair is 

statistically separated. The measurement is based on Bhattacharya distance. J-M 

distance for two classes’ a and b was computed by the following equations.  

𝐽𝑀𝑎𝑏 = √2(1 − 𝑒𝑥𝑝(−𝛼)          (3.3) 
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1
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where Ca and Cb are the covariance matrices used for the category a and b, µa and µb are 

the mean values for the category a and b, and T signifies the transpose of a vector. J-M 

distance method delivers a catalogue between 0.0 to 2.0, values ˃ 1.7 demonstrate that 

the classes are well separated (ITT Industries Inc., 2006). A J-M value ˂ 1.0 indicates 

poor separability between the pair of crops used in the classification. 

 

 

 



3.3.4 Image classification 

3.3.4.1 Support vector machines based classification  

 SVMs algorithm is a non-parametric algorithm associated to the statistical 

learning theory. This algorithm was designed in the late 1970s, nevertheless its fame in 

remote sensing began to surge about decades ago (Vapnik, 1998; Mountrakis et al., 

2011). SVMs utilises a user-defined kernel function to design a set of non-linear verdict 

boundaries in the original data-set in to linear boundaries of a higher-dimension (Han et 

al., 2007). This algorithm classifies the sample training data-set into upper dimensional 

space and finds the best hyperplanes that separate the classes with least classification 

errors. An optimal hyperplane is firmed using training data-set and its simplification 

ability is verified using validation data. The best hyperplanes are located using training 

samples which lie at the boundaries of class distribution in a feature space. The training 

data-set associated to train the algorithm defines the hyperplane of maximum margin 

which are called support vectors (Vapnik, 1998; Huang et al., 2002). The remaining 

training samples can be discarded which are making any involvement to guess 

hyperplane locations (Brown et al., 2000). An appropriate choice of kernel permits the 

data to become mostly independent in the feature space in spite of being non-separable 

in the original input space (Srivastava et al., 2012). The kernel functions, namely linear, 

polynomial of order 2, radial basis and sigmoidal were used. The gamma parameter 

(i.e., 0.25) and penalty parameter were set in to their value (i.e., 1000), imposing all the 

pixels in the training data to unite to a class. The zero identification probability 

threshold was used for limiting image pixels to acquire exactly one class label and no 

unclassified pixels remain left (Petropoulos et al., 2011). 

3.3.4.2 Artificial neural network based classification 

 The ANN algorithm is a layered feed forward model in ENVI version 5.1 for the 

supervised learning. In the satellite image classification, every neuron in the input layer 



signifies one input feature as one satellite image band. In case of output layer each 

neuron resembles to one of the classes to be classified. The back propagation ANN 

algorithm is one of the utmost normally used forms of neural computing in the remote 

sensing (Srivastava et al., 2012). ANN is able to process massive amounts of complex 

and noisy data. The main importance of ANN algorithm is because of its proficiency 

adaptively to simulate non-linear and difficult patterns with suitable topological 

structures (Atkinson and Tatnall, 1997). The learning rate parameter was set to 0.01 and 

momentum value 0.99 for single hidden layer, while stopping criteria was fixed to 

0.001. Weights in the ANN were initialized using a uniform distribution, and iteration 

process was stopped when the RMSE reached at the optimum level. The structure of the 

ANN is shown in Figure 3.2.  

 

Figure 3.2 The structure of a three- layer ANN 



 The network has three layers; hidden and output layers contain processing 

elements at each node. The input layer nodes are simply an interface to the input data 

and do not do any processing. The input arrays are the features associated in the 

classification or they are the multispectral trajectories of the training pixels, one band 

per node (Paola and Schowengerdt, 1995). According to Schowengerdt (2006) within 

each processing node there is a summation and transformation. At each hidden layer 

node j, the operation performed on the input pattern pi produces the output hj, 

hidden layer: 𝑆𝑗 = ∑ 𝑤𝑗𝑖𝑗 𝑝𝑖                                                                                         (3.5) 

                      hj = f (Sj)          (3.6) 

which is directed to each output layer node k, where the output ok is calculated as  

output layer: Sk = ∑ 𝑤𝑘𝑗𝑗 ℎ𝑗                                                                                          (3.7) 

                      Ok = f (Sk)                                                                                               (3.8) 

3.3.4.3 Random forest based classification 

RF classification algorithm is a robust and an ensemble learning algorithm. The 

classification analysis using this algorithm is done via statistical software R. RF 

classification algorithm builds many decision trees based on random bootstrapped 

training sample data-set. Individually, a tree is made of using a different subset from the 

available training data-set and the nodes in the tree are splited using the best split 

variable out of a group of randomly selected variables. This approach delivers 

robustness to over-fitting and can process thousands of dependent/independent variables 

without deleting variables. To split the nodes user-defined parameters such as number 

of trees and the number of variables are used. The simplification error always converges 

on increasing the number of the trees. Therefore, selecting the larger numerals of 

decision trees is recommended for the RF classification (Breiman, 2001). Some samples 

do not exist in the training subset which is within another subset named as out-of-bag 



(OOB). These remaining OOB elements can also be classified for evaluating the 

performance of the algorithm by the tree (Rodriguez-Galiano et al., 2012).  

 3.3.5  Selected measures 

3.3.5.1 Marginal rates 

  A number of asymmetric class measures such as true positive rate (TPR) and 

true negative rate (TNR) are reference oriented. All measures lies among 0 to 1. They 

consider the columns (true classes) of the error matrix and estimated as: 

TPRi = nTP / (nTP + nFN)          (3.9) 

TNRi = nTN / (nTN+nFP)                   (3.10) 

 The correspondent estimation oriented measures such as positive predictive 

value (PPV) and negative predictive value (NPV) based on error matrix rows (estimated 

classes) (Witten and Frank, 2005) are assessed as: 

PPVi = nTP / (nTP +nFP)                              (3.11) 

NPVi =nTN / (nTN+nFN)                   (3.12) 

where nTP (number of true positives) = nii (number of correctly classified pixels in row 

i); nFP  (number of false positives) = ni+ (sum of pixels in the error matrix over row i) - 

nii ; nFN  (number of false negatives) = n+j (sum of pixels in the error matrix over column 

j) - nii ; and nTN (number of true negatives) = n (total number of pixels used to test the 

classification accuracy) - nTP - nFP - nFN (Labatut and Cherifi 2011). 

3.3.5.2 F-measure 

 The F-measure relates to the harmonic mean of PPV and TPR (Witten and 

Frank, 2005). F-measure can be evaluated using relation as: 

Fi = 2
𝑃𝑃𝑉𝑖×𝑇𝑃𝑅𝑖

 𝑃𝑃𝑉𝑖+𝑇𝑃𝑅𝑖
 = 

2𝑛𝑇𝑃

2𝑛𝑇𝑃+𝑛𝐹𝑁+𝑛𝐹𝑃
                  (3.13) 

F measure can be inferred as an extent of overlapping concerning the true and estimated 

classes. 



3.3.5.3 Jaccard Coefficient 

 Jaccard Coefficient is well known as Jaccard’s Coefficient of Community (JCC) 

defined to compare data-sets (Jaccard, 1912). The class specific symmetric measure can 

be defined as: 

JCCi = 
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑃+𝑛𝐹𝑁
                    (3.14) 

JCCi is related to the Fi as given in the relation 

JCCi = 
𝐹𝑖

2−𝐹𝑖
                                (3.15) 

3.3.5.4 Classification success Index 

 The individual classification success index (ICSI) is defined for the 

classification purpose. It is a class specific symmetric measure defined as: 

ICSIi = 1-(1 -  𝑃𝑃𝑉𝑖 + 1 − 𝑇𝑃𝑅𝑖 ) = 𝑃𝑃𝑉𝑖 + 𝑇𝑃𝑅𝑖 – 1               (3.16) 

The CSI is an overall measure defined by averaging ICSI over all the classes 

(Koukoulas and Blackburn, 2001). 

3.4  Statistical significance of classification accuracy by Z-test 

The Z-test is statistical test usually performed to check whether two classification 

algorithms providing similar classification accuracy. The difference in the crop/non-

crop classification accuracy between two algorithms is statistically significant (p ≤ 0.05) 

if the Z value is greater than 1.96. The value of Z > |1.96| indicates the statistically 

significant of difference in classification accuracy at the 95% confidence level 

(Congalton et al., 1983). The statistical significance between two algorithms may be 

evaluated using equation: 

Z = 
𝑏−𝑐

𝑁𝜎
                                                                                                                        (3.17) 

σ =√
(𝑏+𝑐)−(𝑏−𝑐)2/𝑁

𝑁(𝑁−1)
                                                                                                     (3.18) 



where N is the total number of training pixels, b represents the number of sample pixels 

that were correctly classified by the first algorithm but misclassified by the second 

algorithm. Similarly, c represents the sample pixels those were misclassified by first 

algorithm and found correctly classified by the second algorithm (Kanji, 2006). The 

number of correctly/wrongly classified sample pixels for two algorithms is presented by 

Table 3.2. 

Table 3.2 Number of correctly and wrongly classified pixels for the two algorithms 

 

3.5  RESULTS AND DISCUSSION 

To evaluate the accuracy, actual land cover types for all the fields was were 

checked on the ground and compared with the pixels or polygons from a classified map 

developed from satellite data-set. The OA and κ of classified images were estimated 

from error matrices (Congalton and Green, 1999; Jensen, 2005). The OA was found by 

dividing the sum of correctly classified sample pixels to the total reference sample 

pixels (Lillesand and Kiefer, 1999). The κ is a measurement of how well associated 

reference data and classified map agree with each other. The strong agreement, 

moderate agreement and poor agreement occurs if the κ is greater than 0.80, between 

0.40-0.80 and less than 0.40 respectively (Jensen, 2005).  

Before the discrimination of diverse crop and non-crop, the training samples 

between the band combinations B2-B3, B3-B4 and B4-B2 were analysed to check the 

separation among the classes to be classified. The high spectral reflectance in the red 

and NIR band between classes may be one of the reasons for overall good separation of 

Allocation                                                     Classification 2 

Classification 1          Correct Incorrect              Sum 

Correct               a b              a+b 

Incorrect               c d             c+d 

Sum             a+c b+d  



the classes using the band combination B3-B4. Representation of training pixels in 2D 

space between bands 3 and 4 is shown in Figure 3.3.  

 

Figure 3.3 Representation of training pixels in 2D space between bands 3 and 4 

The two different methods such as TD and J-M were analyzed and evaluated to 

check the separability between the classes of crop and non-crop. Almost all the classes 

were found well separated using TD method, however no well separation between all 

the classes was found using J-M method. Although, so many classes provided the same 

or nearly similar results using J-M and TD method, but for the some classes, J-M 

method provided less separability between the classes. The J-M method provided 

almost same separability as TD method for almost non-crop classes because of its 

unique spectral response. The separability analysis using TD and J-M methods are 

presented in Tables 3.3 and 3.4, respectively. 

A comparison between kernels based SVM reveals that the performance of the 

radial basis function kernel was less affected as compared to linear, polynomial of 



degree 2 and sigmoid kernels. The classification accuracy results were also good using 

RF and ANN algorithms but found lesser in comparison to SVMs except sigmoid 

kernel. Sixteen-class classification maps generated from the kernel based SVMs 

algorithm are shown in Figure 3.4.  

Table 3.3 Separability analysis between diverse crop and non-crop classes using TD 

method 

 

Table 3.4 Separability analysis between diverse crop and non-crop classes using J-M 

distance method 

 

1 – Barley, 2 – Wheat, 3 – Lentil, 4 – Mustard, 5 - Pigeon pea, 6 – Linseed, 7 – Corn, 8 

– Pea, 9 – Sugarcane, 10 - Other crops, 11 – Water, 12 – Sand, 13 - Built up, 14 - 

Fallow land, 15 - Sparse vegetation, and 16 - Dense vegetation 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1  1.99 1.97 1.98 2.00 1.98 2.00 1.90 2.00 1.82 2.00 2.00 1.98 2.00 1.97 2.00 

2 1.99  1.96 1.95 1.98 1.97 2.00 1.91 2.00 1.73 2.00 2.00 1.98 2.00 1.99 2.00 

3 1.97 1.96  1.99 2.00 1.98 2.00 1.96 2.00 1.98 2.00 2.00 2.00 1.98 1.99 2.00 

4 1.98 1.95 1.99  1.97 1.71 1.97 1.95 1.99 1.98 2.00 2.00 2.00 2.00 1.97 1.99 

5 2.00 1.98 2.00 1.97  1.96 1.98 1.94 1.68 1.77 2.00 2.00 2.00 1.99 1.98 1.47 

6 1.98 1.97 1.98 1.71 1.96  1.95 1.96 1.99 1.64 2.00 2.00 2.00 1.88 1.92 2.00 

7 2.00 2.00 2.00 1.97 1.98 1.95  1.30 1.93 1.99 2.00 2.00 2.00 2.00 1.84 1.96 

8 1.90 1.91 1.96 1.95 1.94 1.96 1.30  1.90 1.98 2.00 2.00 2.00 2.00 1.31 1.99 

9 2.00 2.00 2.00 1.99 1.68 1.99 1.93 1.90  1.93 2.00 2.00 2.00 2.00 2.00 1.76 

10 1.82 1.73 1.98 1.98 1.77 1.64 1.99 1.98 1.93  2.00 2.00 1.99 1.99 1.92 1.97 

11 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  2.00 2.00 2.00 2.00 2.00 

12 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  1.99 2.00 2.00 2.00 

13 1.98 1.98 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99  2.00 2.00 2.00 

14 2.00 2.00 1.98 2.00 1.99 1.88 2.00 2.00 2.00 1.99 2.00 2.00 2.00  1.99 2.00 

15 1.97 1.99 1.99 1.97 1.98 1.92 1.84 1.31 2.00 1.92 2.00 2.00 2.00 1.99  2.00 

16 2.00 2.00 2.00 1.99 1.47 2.00 1.96 1.99 1.76 1.97 2.00 2.00 2.00 2.00 2.00  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1  1.98 1.70 1.88 1.99 1.95 2.00 1.89 2.00 1.71 2.00 2.00 1.97 2.00 1.91 2.00 

2 1.98  1.92 1.87 1.97 1.95 2.00 1.85 1.99 1.67 2.00 2.00 1.97 2.00 1.95 2.00 

3 1.70 1.92  1.93 1.99 1.87 2.00 1.92 2.00 1.97 2.00 2.00 1.99 1.97 1.82 2.00 

4 1.88 1.87 1.93  1.95 1.34 1.95 1.89 1.98 1.92 2.00 2.00 2.00 1.99 1.90 1.97 

5 1.99 1.97 1.99 1.95  1.82 1.96 1.57 1.25 1.69 2.00 2.00 2.00 1.98 1.97 1.32 

6 1.95 1.95 1.87 1.34 1.82  1.93 1.84 1.98 1.61 2.00 2.00 1.99 1.86 1.71 2.00 

7 2.00 2.00 2.00 1.95 1.96 1.93  1.25 1.89 1.98 2.00 2.00 2.00 1.99 1.78 1.82 

8 1.89 1.85 1.92 1.89 1.57 1.84 1.25  1.77 1.93 2.00 2.00 2.00 1.99 1.27 1.98 

9 2.00 1.99 2.00 1.98 1.25 1.98 1.89 1.77  1.90 2.00 2.00 1.99 2.00 1.99 1.56 

10 1.71 1.67 1.97 1.92 1.69 1.61 1.98 1.93 1.90  2.00 2.00 1.96 1.98 1.87 1.95 

11 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  2.00 1.99 2.00 2.00 2.00 

12 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  1.79 2.00 2.00 2.00 

13 1.97 1.97 1.99 2.00 2.00 1.99 2.00 2.00 1.99 1.96 1.99 1.79  2.00 1.99 2.00 

14 2.00 2.00 1.97 1.99 1.98 1.86 1.99 1.99 2.00 1.98 2.00 2.00 2.00  1.98 2.00 

15 1.91 1.95 1.82 1.90 1.97 1.71 1.78 1.27 1.99 1.87 2.00 2.00 1.99 1.98  1.99 

16 2.00 2.00 2.00 1.97 1.32 2.00 1.82 1.98 1.56 1.95 2.00 2.00 2.00 2.00 1.99  



Visual comparison of kernel based SVMs, ANN and RF indicated good 

separations between the classes in the classification maps. Although, it was not visually 

clear how the crops were separated due to different growing stages and the management 

conditions of the crop fields. Most of the crop fields had one dominant crop; however 

some fields contained small presences of other classes. 

 

 

 

 

 

 

 

Figure 3.4 (a) SVMs with linear kernel (b) SVMs with polynomial of degree 2 kernel 

(c) SVMs with radial basis kernel (d) SVMs with sigmoid function kernel 

based classification 

 

3.5.1  Support vector machines based summary of classification accuracy  

Summary of accuracy assessment results for the kernels based SVM maps are 

presented in Tables 3.5, 3.6, 3.7 and 3.8. The highest OA achieved by the radial basis 

function kernel classified map was 87.89% which specifies the probability of image 

pixel existence correctly identified approximately 88% in the map. In the case of SVMs 

(a) (b) 

(c) (d) 

Barley Wheat Lentil Mustard Pigeon pea Linseed 

Corn Pea Sugarcane Other crops Water Sand 

Built up Fallow land Sparse vegetation  Dense vegetation 



with linear kernel, TPRi ranged from 0.5223 for linseed to 0.9446 for wheat in crop 

classes and from 0.8696 for built up to 1.0000 for water in the non-crop classes. The 

PPVi ranged from 0.6939 for linseed to 0.9692 for wheat in crop classes. It was also 

ranged from 0.8038 for sparse vegetation to 1.0000 for water in non-crop classes. The 

same (0.9930) TPRi and PPVi for fallow land indicate that the fallow land was correctly 

identified on the ground as well as actually classified on the map. 

Table 3.5 Selected measures (SVMs with linear kernel) 

 

Table 3.6 Selected measures (SVMs with polynomial kernel) 

Classes     TPRi   TNRi      PPVi   NPVi       Fi    JCCi   ICSIi 

Barley 0.8270 0.9898 0.8014 0.9914 0.8140 0.6863 0.6284 

Wheat 0.9446 0.9976 0.9692 0.9956 0.9567 0.9170 0.9138 

Lentil 0.8097 0.9910 0.8159 0.9906 0.8128 0.6846 0.6256 

Mustard 0.8100 0.9895 0.7838 0.9910 0.7967 0.6621 0.5938 

Pigeon pea 0.7054 0.9918 0.7902 0.9872 0.7454 0.5941 0.4956 

Linseed 0.5223 0.9899 0.6939 0.9792 0.5960 0.4245 0.2162 

Corn 0.8648 0.9897 0.8446 0.9913 0.8546 0.7461 0.7094 

Pea 0.7365 0.9914 0.8118 0.9867 0.7723 0.6291 0.5483 

Sugarcane 0.8226 0.9891 0.7588 0.9926 0.7894 0.6521 0.5814 

Other crops 0.9195 0.9873 0.8800 0.9917 0.8993 0.8171 0.7995 

Water 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sand 0.9909 0.9919 0.9166 0.9992 0.9523 0.9089 0.9075 

Built up 0.8696 0.9992 0.9849 0.9922 0.9237 0.8582 0.8545 

Fallow land 0.9930 0.9996 0.9930 0.9996 0.9930 0.9861 0.9860 

Sparse vegetation 0.9027 0.9756 0.8038 0.9891 0.8504 0.7397 0.7065 

Dense vegetation 0.8820 0.9910 0.9074 0.9881 0.8945 0.8092 0.7894 

Classes     TPRi   TNRi      PPVi   NPVi        Fi     JCCi   ICSIi 

Barley 0.7949 0.9906 0.8083 0.9898 0.8015 0.6688 0.6032 

Wheat 0.9446 0.9976 0.9692 0.9956 0.9567 0.9171 0.9138 

Lentil 0.8255 0.9894 0.7941 0.9914 0.8095 0.6800 0.6196 

Mustard 0.8100 0.9891 0.7780 0.9910 0.7937 0.6579 0.5880 

Pigeon pea 0.7143 0.9911 0.7770 0.9876 0.7443 0.5928 0.4913 

Linseed 0.5219 0.9899 0.6939 0.9792 0.5957 0.4242 0.2158 

Corn 0.8463 0.9901 0.8469 0.9901 0.8466 0.7340 0.6932 

Pea 0.7439 0.9902 0.7935 0.9871 0.7679 0.6232 0.5374 

Sugarcane 0.8129 0.9864 0.7128 0.9921 0.7596 0.6123 0.5257 

Other crops 0.9115 0.9873 0.8795 0.9909 0.8952 0.8103 0.7910 

Water 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sand 0.9909 0.9919 0.9165 0.9992 0.9523 0.9088 0.9074 

Built up 0.8694 0.9992 0.9850 0.9922 0.9236 0.8580 0.8544 

Fallow land 0.9930 0.9996 0.9930 0.9996 0.9930 0.9861 0.9860 

Sparse vegetation 0.9066 0.9756 0.8050 0.9895 0.8528 0.7434 0.7116 

Dense vegetation 0.8776 0.9943 0.9391 0.9878 0.9073 0.8303 0.8167 



In case of SVMs with polynomial of degree 2, the OA and κ were found 87.51% 

and 0.8658 respectively which were little bit lesser from SVMs with linear kernel but 

results were found almost similar. The 0.8505 TPRi and 0.7222 PPVi for sugarcane 

using SVMs having radial basis kernel function indicate that 85.05% of the sugarcane 

areas on the ground were correctly identified as sugarcane, but only 72.22% of the areas 

named sugarcane on the classified map were found actually sugarcane. SVM with 

sigmoid kernel achieved similar but somewhat lesser accuracy in comparison to all 

other SVMs kernel functions.  

Table 3.7 Selected measures (SVMs with radial basis kernel) 

 

The best estimated κ for the SVMs with radial kernel based classification 

algorithms was 0.8698 which indicates the classification achieved an accuracy that was 

87% better than would be expected from random assignment of pixels to classes. The 

values of all selected measures were found excellent for wheat, sand, other crops, water 

and fallow land classes, very good for other classes of crop and non-crop and also good 

results were found for linseed crop. The overall low TPRi, PPVi, Fi, JCCi and ICSIi for 

Classes   TPRi     TNRi    PPVi  NPVi        Fi   JCCi    ICSIi 

Barley 0.7559 0.9910 0.8067 0.9879 0.7805 0.6400 0.5626 

Wheat 0.9548 0.9976 0.9694 0.9964 0.9620 0.9268 0.9242 

Lentil 0.8175 0.9879 0.7687 0.9910 0.7923 0.6561 0.5861 

Mustard 0.9091 0.9902 0.8148 0.9957 0.8594 0.7534 0.7239 

Pigeon pea 0.6875 0.9930 0.8105 0.9865 0.7440 0.5923 0.4980 

Linseed 0.5841 0.9891 0.7021 0.9818 0.6377 0.4681 0.2862 

Corn 0.8405 0.9948 0.9133 0.9897 0.8754 0.7784 0.7538 

Pea 0.8527 0.9906 0.8209 0.9925 0.8365 0.7190 0.6736 

Sugarcane 0.8505 0.9864 0.7222 0.9937 0.7811 0.6408 0.5727 

Other crops 0.9113 0.9926 0.9262 0.9910 0.9187 0.8496 0.8375 

Water 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sand 0.9955 0.9923 0.9205 0.9996 0.9565 0.9167 0.9160 

Built up 0.8758 0.9996 0.9926 0.9925 0.9306 0.8701 0.8684 

Fallow land 0.9930 0.9996 0.9930 0.9996 0.9930 0.9861 0.9860 

Sparse vegetation 0.8806 0.9785 0.8194 0.9866 0.8489 0.7375 0.7000 

Dense vegetation 0.8857 0.9930 0.9274 0.9886 0.9061 0.8282 0.8131 



the linseed crop were mainly because of spectral similarities between lentil, pea, sparse 

vegetation and other crops in some of the fields. 

Table 3.8 Selected measures (SVMs with sigmoid kernel) 

 

3.5.2  Artificial neural network based summary of classification accuracy  

The ANN algorithm provided nearly similar accuracy results to the kernel based 

SVMs and RF whereas these results were lowest except SVMs with sigmoid kernel. 

The classification map produced by the ANN is shown in Figure 3.5. The OA and 

estimated κ using ANN algorithm were found 85.98% and 0.8496 respectively. For the 

wheat crop, all the algorithms provided TPRi of nearly 94% indicates that all of the 

collected validation samples belong to the same class. The wheat crop was found easily 

in the identification while linseed was the most difficult to differentiate clearly among 

the crop classes. The unique reflectance value of wheat crop and less mixing of other 

classes with wheat crop was one of the reasons for identification of this crop easily. The 

accuracy for linseed crop was found low due to the reflectance values from some of 

these pixels were similar to the other classes. The OA of wheat was found fairly high in 

comparison to other crop classes; however value 1.0000 of selected measures for water 

Classes    TPRi    TNRi     PPVi    NPVi       Fi   JCCi     ICSIi 

Barley 0.7478 0.9879 0.7539 0.9875 0.7508 0.6011 0.5017 

Wheat 0.9400 0.9976 0.9690 0.9952 0.9543 0.9126 0.9090 

Lentil 0.7699 0.9867 0.7407 0.9886 0.7550 0.6064 0.5106 

Mustard 0.7934 0.9887 0.7678 0.9902 0.7804 0.6399 0.5612 

Pigeon pea 0.6874 0.9895 0.7406 0.9864 0.7130 0.5540 0.4280 

Linseed 0.5219 0.9867 0.6345 0.9792 0.5727 0.4013 0.1564 

Corn 0.8466 0.9893 0.8363 0.9901 0.8414 0.7262 0.6829 

Pea 0.7363 0.9902 0.7920 0.9867 0.7631 0.6170 0.5283 

Sugarcane 0.7567 0.9884 0.7299 0.9899 0.7431 0.5911 0.4866 

Other crops 0.8749 0.9848 0.8543 0.9872 0.8645 0.7613 0.7292 

Water 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sand 0.9909 0.9919 0.9159 0.9992 0.9519 0.9083 0.9068 

Built up 0.8693 0.9992 0.9849 0.9922 0.9235 0.8579 0.8542 

Fallow land 0.9930 0.9996 0.9930 0.9996 0.9930 0.9861 0.9860 

Sparse vegetation 0.8920 0.9760 0.8050 0.9878 0.8463 0.7335 0.6970 

Dense vegetation 0.8817 0.9906 0.9040 0.9881 0.8927 0.8062 0.7857 



indicated perfect prediction because of its unique reflectance and no mixing with the 

other classes in almost all algorithms implemented. The summary of accuracy 

assessment results are given in Table 3.9. 

 
 

Figure 3.5 ANN based classification 

 

Table 3.9 Selected measures (ANN based classification) 

 

Classes TPRi TNRi PPVi NPVi Fi JCCi ICSIi 

Barley 0.7640 0.9879 0.7580 0.9883 0.7610 0.6142 0.5220 

Wheat 0.9347 0.9980 0.9740 0.9948 0.9540 0.9119 0.9087 

Lentil 0.7780 0.9875 0.7540 0.9890 0.7658 0.6205 0.5320 

Mustard 0.7932 0.9871 0.7439 0.9902 0.7678 0.6231 0.5371 

Pigeon pea 0.7501 0.9895 0.7670 0.9891 0.7585 0.6109 0.5171 

Linseed 0.5130 0.9887 0.6666 0.9788 0.5798 0.4083 0.1796 

Corn 0.8465 0.9885 0.8264 0.9900 0.8363 0.7187 0.6729 

Pea 0.7364 0.9902 0.7920 0.9867 0.7632 0.6171 0.5284 

Sugarcane 0.7568 0.9876 0.7170 0.9899 0.7364 0.5827 0.4738 

Other crops 0.8789 0.9848 0.8550 0.9876 0.8668 0.7649 0.7339 

Water 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sand 0.9909 0.9919 0.9165 0.9992 0.9522 0.9089 0.9074 

Built up 0.8693 0.9992 0.9849 0.9922 0.9235 0.8590 0.8542 

Fallow land 0.9930 0.9996 0.9930 0.9996 0.9930 0.9861 0.9860 

Sparse vegetation 0.8989 0.9760 0.8057 0.9887 0.8498 0.7388 0.7046 

Dense vegetation 0.8779 0.9947 0.9429 0.9878 0.9092 0.8336 0.8208 
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The TNRi and NPVi values were found high for linseed crop whereas the JCCi 

and ICSIi measures provided relatively low values. The excellent values of all the 

measures were found for the wheat, water, sand and fallow land.  

3.5.3  Random forest based summary of classification accuracy 

The RF classification algorithm based map is presented in Figure 3.6. The OA and 

κ, 86.81% and 0.8582 respectively, were found near to SVMs and ANN algorithms. The 

TPRi ranged from 0.4960 for linseed to 0.9400 for wheat crop in crop classes and 

0.8693 for built up to 1.0000 for water in non-crop classes. The PPVi for crop classes 

ranged from 0.6914 for linseed to 0.9740 for wheat but it was ranged from 0.8010 for 

sparse vegetation to 1.0000 for water in non-crop classes.  

  

Figure 3.6 RF based classification 

The OA of wheat crop was highest, because it was the major crop of this season. It 

may be one of the reasons of high accuracy of wheat crop. The wheat crop has less 

similarity between sugarcane, pigeon pea, corn and dense vegetation categories. High 

accuracy results achieved by RF algorithm indicate that there was less mixing among 

the classes. The corn crop was generally not grown in Varanasi when image acquisition 
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was done. However, it is grown for the research purpose in the BHU agriculture farm 

house and some other places in Varanasi. The variability in corn crop fields was 

originated due to different time of sowing of corn in different fields. It may cause a 

chance of mixing of corn crop with sparse and dense type of crop classes. The overall 

high TPRi and PPVi for fallow land indicates less mixing with built up and sand classes. 

The TPRi (0.4960) and PPVi (0.6914) values for linseed were found lowest using RF in 

comparison to other classification algorithms. The summary of accuracy assessment 

results using RF algorithm are given in Table 3.10. 

Table 3.10 Selected measures (RF based classification) 
 

 

3.5.4  Post-processing summary of classification accuracy  

To overcome the problem of mixing, the classified maps were filtered by post 

processing to eradicate the minor inclusions of other classes within the dominant 

classes. The different filters such as majority, sieve and clump and the combination of 

these filters were used to eradicate minor inclusions and for accuracy enhancement. The 

comparison of the unfiltered and filtered OA and κ are given in Table 3.11. 

 

Classes   TPRi     TNRi    PPVi   NPVi       Fi   JCCi     ICSIi 

Barley 0.8190 0.9879 0.7700 0.9910 0.7937 0.6580 0.5890 

Wheat 0.9400 0.9980 0.9740 0.9960 0.9567 0.9170 0.9240 

Lentil 0.7780 0.9902 0.7970 0.9891 0.7874 0.6493 0.5750 

Mustard 0.8019 0.9891 0.7758 0.9906 0.7886 0.6510 0.5777 

Pigeon pea 0.6785 0.9918 0.7835 0.9861 0.7272 0.5714 0.4620 

Linseed 0.4960 0.9903 0.6914 0.9781 0.5776 0.4061 0.1874 

Corn 0.8400 0.9889 0.8305 0.9897 0.8352 0.7171 0.6705 

Pea 0.7363 0.9898 0.7849 0.9867 0.7598 0.6127 0.5212 

Sugarcane 0.8037 0.9876 0.7291 0.9918 0.7646 0.6189 0.5328 

Other crops 0.8989 0.9864 0.8708 0.9897 0.8846 0.7931 0.7697 

Water 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sand 0.9864 0.9919 0.9157 0.9988 0.9497 0.9043 0.9021 

Built up 0.8693 0.9988 0.9780 0.9922 0.9205 0.8526 0.8473 

Fallow land 0.9930 0.9996 0.9930 0.9996 0.9930 0.9861 0.9860 

Sparse vegetation 0.9139 0.9747 0.8010 0.9903 0.8537 0.7448 0.7149 

Dense vegetation 0.8776 0.9910 0.9069 0.9877 0.8920 0.8051 0.7845 



Table 3.11 Classification algorithms OA, κ results before and after post processing steps 

 

 

The majority filter increased the OA and κ values of all type of classification 

algorithms. Whereas, the OA and κ values were decreased after using sieve filter except 

for SVMs with radial basis function whose results were found unchanged after the post-

processing. Although clump filter provided less OA and κ values than the majority filter 

however, it provided better results than the sieve filter for all classification algorithms. 

The equal outcomes were found using majority filter and combination of majority with 

sieve filter. However, the small decrease in the OA and κ were found using the 

combination of majority and sieve filter for the SVMs with sigmoid kernel. The small 

increment in the OA and κ were found using combination of majority, sieve and clump 

filter in comparison to combination of majority and clump filter. The large mixing of 

the other crop classes in the dominant crop may be the cause of small decrease in the 

OA and κ using SVMs with sigmoid function kernel. Obviously, image filtering 

improved not only the OA and κ, but also the TPRi and PPVi values for almost all the 

classes. Nevertheless, an unfiltered classification maps provide well distinction between 

the classes. 

 

 

Classification algorithms               No post     Majority    Sieve       Clump      Majority+   Majority+     Majority+ 

                                                      processing   filter         filter         filter          sieve           clump       sieve+clump 

SVMs with linear kernel 

classification 

OA 

κ 

87.63% 

0.8670 

91.46% 

0.9083 

87.59% 

0.8667 

88.26% 

0.8740 

91.46% 

0.9083 

92.10% 

0.9151 

92.14% 

0.9155 

SVMs with polynomial 

2 kernel classification 

OA 

κ 

87.51% 

0.8658 

91.43% 

0.9079 

87.48% 

0.8655 

88.15% 

0.8727 

91.43% 

0.9079 

92.51% 

0.9195 

92.58% 

0.9203 

SVMs with radial basis 

kernel classification 

OA 

κ 

87.89% 

0.8698 

91.76% 

0.9115 

87.89% 

0.8698 

88.67% 

0.8784 

91.76% 

0.9115 

92.47% 

0.9191 

92.51% 

0.9195 

SVMs with sigmoid 

kernel classification 

OA 

κ 

85.76% 

0.8470 

89.75% 

0.8899 

85.69% 

0.8463 

87.48% 

0.8655 

89.75% 

0.8899 

90.64% 

0.8995 

90.83% 

0.9015 

ANN classification OA 

κ 

85.98% 

0.8496 

90.36% 

0.8952 

85.92% 

0.8489 

86.95% 

0.8588 

90.36% 

0.8952 

91.28% 

0.9048 

91.42% 

0.9094 

RF classification OA 

κ 

86.81% 

0.8582 

90.76% 

0.9006 

86.76% 

0.8577 

87.89% 

0.8695 

90.76% 

0.9006 

91.62% 

0.9094 

91.73% 

0.9104 



3.5.5 Analyses of statistical significance in the classification accuracy between two 

algorithms 

 

The almost all classification accuracy combinations provided Z values more than 

1.96 except SVMs with radial basis kernel vs. SVMs with linear kernel (Z = 1.42, p = 

0.1556) and SVMs with polynomial of degree 2 (Z = 1.66, p = 0.0969) which showed 

insignificant results. Since Z values were less than the value of 1.96, so we do not reject 

the null hypothesis of no difference. All other combinations were found significantly 

different with different Z and p values.  The significant increases in the accuracy were 

found for mustard, linseed, pigeon pea, pea and sugarcane crop. The statistical 

significance between the algorithms using Z-test is presented in Table 3.12.  

Table 3.12 Statistical significance in the accuracy between two different algorithms by 

Z-test 

 

 The combinations using SVMs with radial basis kernel vs. SVMs with linear 

kernel and SVMs with polynomial of degree 2 were more accurate than the other 

combinations. The Z values were found less than 1.96 at the 95% confidence level for 

these two combinations. 

3.6  CONCLUSION 

The kernel based SVMs, ANN and RF provided nearly similar results in the 

present study. The unfiltered classified maps provided fairly good crop classification. 

However, results were much improved after filtering the classified maps which 

eradicates the inclusions of other classes within the dominant class. The results were 

significant except SVMs having radial basis function vs. SVMs having linear kernel and 

polynomial kernel of degree 2 by Z-test. The LISS-IV sensor was found much useful for 

the discrimination of diverse crop like corn, lentil, linseed, barley, mustard, pigeon pea, 

wheat, sugarcane, pea and other crops and also for non-crop using different supervised 

Classification1                              Classification 2                                                                                                                                                                                          Z-test        p value     

SVMs with radial basis kernel SVMs with linear kernel   1.42 = 0.1556 

SVMs with radial basis kernel SVMs with polynomial of degree 2 1.66   = 0.0969 

SVMs with radial basis kernel SVMs with sigmoid kernel 4.08 ˂ 0.0001 

SVMs with radial basis kernel ANN classification 4.02 = 0.0001 

SVMs with radial basis kernel RF classification 3.86 = 0.0001 



classification algorithms. The high spatial resolution of LISS-IV sensor makes it easier 

to delineate boundaries among various crop fields. It also enabled improvement for crop 

discrimination by avoiding overlapping of land covers. Forthcoming investigation 

should be more focused on accuracy enhancement of linseed crop and some other less 

accuracy classes with involvement of some more recent algorithms. The approaches and 

algorithms presented for crop discrimination and mapping can be useful for different 

crop grown in the other regions.  

 

 


