
CHAPTER 2 

STATISTICAL SIGNIFICANCE IN THE CROP CLASSIFICATION 

ACCURACY USING DIFFERENT ALGORITHMS 

 

 
2.1 INTRODUCTION 

The advent of high resolution satellite imagery is now offering new possibilities in 

accurate crop classification than the traditional satellite imagery (Yang et al., 2011). 

Crop classification maps are very useful for the estimation of crop diversity as well as 

for making agricultural disaster compensation. These maps are also helpful in the 

management of agricultural fields in order to get a better crop yield production. 

However, because of high spectral variability or heterogeneity in the agricultural fields, 

crop monitoring is not always possible through coarse resolution images. The high 

spatial resolution multi-spectral satellite sensors such as LISS-IV in optical and NIR 

bands emerged as a possible approach for crop type monitoring. The LISS-IV sensor 

has the potential to capture the intrafield variability within the crop fields (Sesha Sai 

and Narasimha Rao, 2008).  

Single date multispectral satellite imagery is often used for the crop identification 

and classification. Whereas, numerous researchers have recognized the benefits of using 

multi-date imagery to map agricultural crops (Panigrahy and Sharma, 1997; 

Simonneaux et al., 2008). The use of single-date or multi-date imagery depends on 

different factors such as type of the imagery and the number of bands contained in the 

imagery (Singh et al., 2015), weather constraints, types of crops grown in the region and 

their growing periods. Crop calendars can be used to determine whether all the major 

crops can be covered on a single date image in a region otherwise multi-date images 

need to be used. Many times only a single date cloud free satellite scene can be taken 



during the optimum crop identification and classification period for a given region. 

Thus, different types of classification algorithms and large number of training samples 

were usually employed for accurately identifying the crops from the single date imagery 

(Yang et al., 2011).  

In the field of remote sensing, several classification algorithms have been 

developed to undertake the problems related to the multispectral satellite data 

classification (Banerjee and Srivastava, 2013; 2014). In this study, kernel based SVMs, 

ML classification and NDVI algorithms were used for the different crop classification. 

SVMs algorithm was selected among the others due to its increasingly far-reaching 

demands with the remote sensing data for the classification (Islam et al., 2012; Singh et 

al., 2014; Srivastava et al., 2014). Kernel based SVM algorithm has been extensively 

used with remote-sensing data for the classification during the last decades (Huang et 

al., 2002; Foody and Mathur, 2004; Pal and Mather, 2004; Mountrakis et al., 2011; Pal 

et al., 2013; Islam et al., 2014; Singh et al., 2014). Huang et al. (2002) compared the 

accuracy achieved by SVM, ANN, ML and DT algorithms for classifying land cover 

from Landsat TM and MODIS data-sets and found satisfactory results using SVMs with 

polynomial and radial basis function kernels.  

Furthermore, SVMs have been demonstrated to achieve high classification 

accuracy in comparison to several other classification algorithms. The output of SVMs 

depends on the input pixels, pointing out that training is potentially a significant stage 

for optimizing classification accuracy (Pouteau and Collin, 2013). Out of several forms 

of kernel methods, the polynomial and radial basis functions have shown good results 

for land use/land cover classification with remotely sensed data (Pal and Mather, 2005). 

SVMs algorithm does not depend only on the type of kernel function. There are some 

major concerns in the design of SVMs. The choice of specific kernel parameters, 



suitable kernel function, regularization parameter and strategies for multiclass 

classification can affect the classification accuracy (Vapnik, 1998; Pal, 2009; 

Mountrakis et al., 2011; Srivastava et al., 2012).  

Several other classification algorithms such as ML and NDVI classification have 

been developed. Despite limitations due to its assumption of normal distribution of class 

signature (Swain and Davis, 1978), ML algorithm is perhaps one of the most widely 

used algorithms (Wang, 1990; Hansen et al., 1996). ML classification algorithm 

quantitatively evaluates the variance and covariance of the category spectral response 

patterns during classification of an unknown pixel (Lillesand and Kiefer, 2002). The 

potential of NDVI has created great interest to study the global biosphere dynamics 

(Goward et al., 1990). Numerous investigators have related the NDVI with several 

vegetation phenomena such as vegetation seasonal dynamics, percentage ground cover 

determination, LAI measurement, biomass estimation, and FPAR (Fraction of Absorbed 

Photosynthetically Active Radiation) at global and continental scales (Lillesand and 

Kiefer, 2002). NDVI values do not provide land cover type directly; it generally 

quantifies the biophysical activity of the land surface. However, a time series of NDVI 

values can separate various land cover types based on their phenology or seasonal 

signals (Lenney et al., 1996). The multi-temporal phenological metrics have been 

developed and used by Reed et al. (1994) and DeFries et al. (1998) to derive land cover 

classifications from AVHRR data. In this study, the ranges of NDVI value for different 

crop types were defined with the help of ground truth information and performed 

classification. 

In the previous studies, several researches indicated the radial basis function 

kernel to work well with the remote sensing data-sets (Foody and Mathur, 2004; Pal and 

Mather, 2004). Paneque-Gálvez et al. (2013) have shown better performance of SVM 



radial basis function and SVM sigmoid classifiers in comparison to SVM linear and 

SVM polynomial classifiers. In few studies, the performance of second-order 

polynomial kernel was found better in comparison to radial basis kernel for the 

classification using hyperspectral data (Bahria et al., 2011). Schwert et al. (2013) used 

the third-order polynomial function kernel with gamma parameter 1 for the change 

detection classification which yielded the most accurate results in comparison to linear, 

radial basis and sigmoid function kernels. Limited research has been conducted on 

LISS-IV data using SVMs, ML and NDVI algorithm for the crop classification in 

Varanasi, India.  

Rigorous assessment of SVMs with respect to different kernel functions and 

degrees of polynomial were attempted along with the ML and NDVI based 

classification. Sophisticated statistical analysis such as Z-test and χ
2
-test were attempted 

to estimate the significance of differences in the classification accuracies achieved by 

different algorithms. This study offers significant information of crop type in the area 

dominated by agricultural practices.  

2.2  STUDY AREA AND MATERIALS 

The ground truth information of 16 different crop and non-crop classes were 

collected from the study area carried out in Varanasi district of Uttar Pradesh, India. It is 

situated at the bank of holy river Ganga. This ground truth information was collected 

with the help of Global Positioning System (GPS) during field visit on 6 April 2013. 

Wheat is the most significant crop of Rabi season in Varanasi. The study area, located 

between 25° 12′ 09ʺ to 25° 17′ 09″ N and from 82° 55ʹ 07ʺ to 83° 03ʹ 14″ E, is about 

12576 ha. The specification of LISS-IV sensor data, acquired on 6 April 2013, is given 

in the Table 2.1. 

 



Table 2.1 Specification of LISS-IV sensor  

 

The crop classification study was done using different algorithms as implemented in the 

Environment for Visualizing Images (ENVI) software version 5.1. Figure 2.1 shows the 

study area used in the classification. 

 

Figure 2.1 The location map of study area with false colour composite (FCC) image of 

LISS-IV sensor 

 

2.3  METHODOLOGY 

2.3.1 Image pre-processing and data preparation 

The atmospheric correction for a single date image is often equivalent to 

subtracting a constant from all pixels in a spectral band. Thus, the atmospheric 

correction is not required for remote sensing applications such as image classification 

Specification LISS-IV sensor 

Sensor type Multispectral 

No of bands 3 

Spectral bands (μm) B2 0.52-0.59, B3 0.62-0.68, B4 0.77-0.86 

Spatial resolution (m) 5.8 

Swath (km) 70 

Temporal resolution (days) 24 

Radiometric resolution 10-bit 



for the same calendar date image (Song et al., 2001). The 3 bands such as B2 (green, 

0.52-0.59 μm), B3 (red, 0.62-0.68 μm) and B4 (NIR, 0.77-0.86 μm) were taken for the 

layer stacking to generate the FCC image. After the generation of FCC image, the 

geometrical correction was done. The subset selection was done to extract the data 

covering the study area for crop and non-crop classification. After selecting the subset, 

training areas were selected and region of interest (ROI) files were generated. The 

training and testing samples were collected from the different fields within and outside 

Banaras Hindu University (BHU) agriculture farm house located in the Varanasi 

district. The training and validation data-sets used for the classification are presented in 

Table 2.2. 

 Table 2.2 Training and validation data-sets used for the classification 

 

A random sampling was done to collect the training and testing samples. One of 

the ROI files was used as training data-set. These training samples were used to train 

the classification algorithms for the crop classification. Other ROI file was used for the 

ground validation. An independent data-set consisting of total 2683 pixels were used to 

test the classification accuracy and more than two times of the test pixels were used to 

train the algorithms.  

2.3.2 Spectral separability 

To determine the spectral separability among crop types, the M-statistic (Kaufman 

and Remer, 1994) and J-M distance method (Richards, 1999) were used. The M-statistic 

Class                     Training        Validation             Class                              Training        Validation   

name                      data-set          data-set                name                               data-set          data-set 

Barley 249 127 Sugarcane 208 107 

Wheat 411 199 Other crops 493 248 

Lentil 252 126 Water 412 208 

Mustard 237 121 Sand 457 221 

Pigeon pea 230 112 Built up 306 153 

Linseed 229 113 Fallow land 289 143 

Corn 346 163 Sparse vegetation 498 268 

Pea 263 129 Dense vegetation 499 245 



determines class separability between two bands of LISS-IV sensor from two sample 

class distributions characterized by mean and standard deviation values. M-statistic used 

in the present study is given by the equation 2.1. 

M = (µ1-µ2)/ (σ1+σ2)                                 (2.1) 

where µ1 is the mean reflectance value of crop type 1, µ2 is the mean reflectance value 

of crop type 2, σ1 is the standard deviation value of crop type 1 and σ2 is the standard 

deviation value of crop type 2. The value of M < 1 indicates that the classes are 

significantly overlapping and the ability to separate the regions is poor. On other hand, 

the value of M > 1 indicates that the histogram means are well separated and the regions 

are relatively easy to discriminate. M-statistics were compared for each pair of crop 

types for given spectral bands of LISS-IV image. 

The J-M measurement is based on Bhattacharya distance. It allows to indicate 

how well a selected spectral class pair is statistically separated. J-M distance for two 

classes’ a and b is given by the equations 2.2 and 2.3. 

𝐽𝑀𝑎𝑏 = √2(1 − 𝑒𝑥𝑝(−𝛼)                      (2.2) 
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where µa and µb are mean values for classes a and b, Ca and Cb are the covariance 

matrices for classes a and b, and T denotes the transpose of a vector. J-M distance 

provides an index between 0.0 and 2.0. Its values ˃ 1.7 demonstrates that the classes are 

well separated (ITT Industries Inc., 2006). A J-M distance value ˂ 1.0 indicates poor 

separability between the pair of classes. 

2.3.3 Support vector machines based classification  

SVM is a non-parametric classification algorithm, originating from statistical 

learning theory (Vapnik, 1998; Mountrakis et al., 2011). It is initially projected to 

construct an optimal separating hyperplane when the training data are linearly 



separable. The algorithm maximizes the margin between the optimal linear separating 

hyperplane and the closest training samples. The training samples closest to the 

hyperplane used to measure the margin are termed as support vectors (Vapnik, 1998; 

Huang et al., 2002). In the case of two class classification problem, algorithm selects the 

one that provides the maximum margin between the two classes, among the infinite 

number of linear decision boundaries. The margin is defined as the sum of the distances 

to the hyperplane from the closest points of the two classes (Vapnik, 1998). At the same 

time SVMs identify the optimal decision boundary between the classes to minimize the 

misclassification (Mountrakis et al., 2011). When it is not possible to avoid 

misclassification between some training samples then penalty parameter is introduced to 

indicate the trade-off between penalty of misclassification against simplicity of the 

hyperplane. A smaller value of penalty parameter indicates more tolerance of 

misclassification. The SVMs has the capability to grip the extremely non-linear 

problems even with noisy training data-set. It transforms essentially the non-linear 

problems into a linear one by using kernel functions to map the original input space into 

a new feature space with higher dimensions (Vapnik, 1998). The function K (xi,xj) = 

ϕ(xi)
Т 

ϕ(xj) is called the kernel function and C > 0 is the penalty parameter of the error 

term. Here, the training vectors xi are mapped into a higher dimensional space by the 

function ϕ. The four SVM kernels used in this study (linear, polynomial, radial basis 

and sigmoid) are given in the equations 2.4, 2.5, 2.6 and 2.7. 

Linear: K (xi, xj) = xi
T

 xj          (2.4) 

: ( , ) ( ) , 0T d

i j i jPolynomial K r   x x x x        (2.5) 

Radial basis :function   
2

( , ) exp , , 0i j i jK    x x x x       (2.6)
 

: ( , ) tan ( )T

i j i jSigmoid K H r x x x x
        

(2.7)
 



where γ, r and d are the gamma term in the kernel function, bias term in the kernel 

function and polynomial degree term, respectively. The values of gamma and penalty 

parameters were taken 0.33 and 100 respectively. The penalty parameter controls the 

trade-off between margin and misclassification error, whereas the gamma parameter 

controls the width of the kernel function (Cortes and Vapnik, 1995).  

A number of SVM algorithms have been designed, each employing a different 

type of kernel. However, a linear, polynomial with degrees 2 to 6, radial basis function 

and sigmoid function kernels were evaluated in this study. Prior to the image 

classification, a kernel is applied to the input feature space to increase the separability 

between the classes. Details were given, regarding the commonly used SVM kernels in 

remote sensing for the classification (Kavzoglu and Colkensen, 2009). A major reason 

for the popularity of SVM to classify remotely sensed data is due to its potential to 

produce a higher classification accuracy than the ANN algorithms (Foody and Mathur, 

2004; Waske and Benediktsson, 2007). 

2.3.4  Maximum likelihood based classification 

 The ML classification is a well-known parametric classification algorithm based 

on statistical theory. It relies on the second-order statistics of a Gaussian probability 

density function model for each class. This algorithm is based on the probability that a 

pixel belongs to a particular class. The basic equation assumes that these probabilities 

are equal for all classes in each band, and the input bands have normal distributions. 

Each pixel is assigned to the class that has the highest probability (Richards, 1999). If 

there is a prior knowledge that the probabilities are not equal for all classes, then the 

weight factors can be specified for particular classes. Unless there is a prior knowledge 

of the probability, it is recommended that the weight factors should not be specified 



(Hord, 1982). In this case, by default, the weight factor is assigned 1.0 in the equation 

2.8. The equation for the ML classifier is given as: 

𝐷 = ln(𝑎𝑐) − [0.5 ln(|𝐶𝑜𝑣𝑐|)]  ̶  [0.5 (𝑋 − 𝑀𝑐)] 𝑇 (𝐶𝑜𝑣𝑐
−1) (𝑋 −  𝑀𝑐)]    (2.8)                                       

where D = weighted distance, c = particular class, X = measurement vector of the 

candidate pixel, Mc = mean vector of the sample of class c, ac = percent probability that 

any candidate pixel is a member of class c, Covc = covariance matrix of the pixels in the 

sample of class c, |𝐶𝑜𝑣𝑐| = determinant of Covc, Covc
-1 

= inverse of Covc, ln = natural 

logarithm function and T = transposition function. 

2.3.5 Normalized difference vegetation index based classification   

The vegetation covered areas have a relatively high NIR reflectance and low 

visible reflectance. Due to this type of property of vegetation, the different 

mathematical quantities of the NIR and red band have been found to be sensitive 

indicators for the condition of green vegetation (Lillesand and Kiefer, 2002). The most 

commonly used mathematical combination is the NDVI classification. The NDVI 

classification is based on the NDVI values generated from Red and NIR bands of LISS-

IV image and is given in the equation 2.9. 

NDVI = 
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
           (2.9) 

The NDVI separates green vegetation from its background soil brightness and 

retains the ability to minimize topographic effects. The range of NDVI values are from -

1 to +1, which are scaled from 0 to 255 for display purposes. Zero NDVI values 

represent no vegetation available on that region. The NDVI values are sensitive to the 

presence of vegetation. Since the presence of green vegetation usually decreases the 

signal in the red band due to chlorophyll absorption and increases the signal in the NIR 

band wavelength due to light scattering by leaves (Tucker et al., 1985). The higher 

NDVI value indicates high green leaf area or higher biomass content of vegetation. 



2.3.6 Classification accuracy 

The accuracy of the different thematic maps produced from the classifiers was 

assessed from the computation of the error matrix statistics (Congalton and Green, 

1999). As a result, the overall accuracy (OA), producer’s accuracy (PA), user’s accuracy 

(UA) and the kappa coefficient (𝜅) are computed by the equations 2.10, 2.11, 2.12 and 

2.13.  
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where nii is the number of pixels correctly classified in a category; N is the total number 

of pixels in the confusion matrix; r is the number of rows; and nicol and nirow are the 

column (reference data) and row (predicted classes) total, respectively. 

The OA can be assessed by dividing the sum of correctly classified pixels to the 

total number of testing pixels used in the classification. The UA, which is a measure of 

commission error and indicative of the probability that a category classified on the map 

actually represents that category on the ground. Similarly, PA is a measure of omission 

error and indicative of the probability that the actual areas being correctly classified 

(Lillesand and Kiefer, 2002). 𝜅 is computed to compare the true agreement between the 

classes actually occurred on the ground vs. classified by the classifiers which occur by 

chance (Cohen, 1960). 𝜅 analysis was also performed to test whether each classification 

was significantly better than a random classification. A 𝜅 value of 0 corresponds to a 

total random classification, while 𝜅 value of 1 represents a perfect agreement between 



the classification and reference data (Congalton and Green, 1999). Validation points 

were generally selected based on randomly distributed inhomogeneous regions and 

away from the locations where the training points had been collected, ensuring non-

overlap of pixels between the training data and validation data. This information was 

obtained from field visits and previous studies which were conducted in the area. 

2.3.7  Statistical significance of classifiers performance 

The statistical significance of differences between two proportions may be 

evaluated using McNemar’s test (Agresti, 1996). 

2.3.7.1 Z-test 

The Z-test is generally performed to test the hypothesis whether two classification 

algorithms provided similar accuracy results. The test is based on the standardized 

normal test given by the equation 2.14. 

Z = 
𝑓12−𝑓21

√𝑓12+𝑓21
                     (2.14) 

where f12 denotes the number of samples that were correctly classified by the first 

classification algorithm but misclassified by the second classification algorithm. 

Similarly, f21 denotes the number of samples that were misclassified by first 

classification algorithm and correctly classified by the second classification algorithm 

(Foody, 2004; Leeuw et al., 2006). A difference in the classification accuracy between 

the confusion matrices is statistically significant (p ≤ 0.05) if the Z value is more than 

1.96 (Congalton et al., 1983). 

2.3.7.2  χ
2
- test 

χ
2
-test is a nonparametric statistical test to determine whether the two or more 

classifications are independent or not. The properly applied test may give us the answer 

by rejecting the null hypothesis or failing to reject it. The value of χ
2
 found less than 

that of the value corresponding to our level of confidence indicates that our null 



hypothesis is probably true. On other hand, if value of χ
2
 lies over the level of 

confidence, then our χ
2
-test rejects the null hypothesis. Therefore, we conclude that the 

two classifications are dependent on each other. For the critical value defined as χ
2

0:05(1) 

= 3.841, the null hypothesis is not rejected if χ
2
 < χ

2
0:05(1). The McNemar’s (1947) test is 

based on the test given by the equation 2.15. 

χ
2
= (f12-f21)

2
/ (f12+f21)         (2.15) 

This test works well when (f12+f21)/2 ˃ 10. For other cases, a binomial test has been 

used as recommended by Agresti (1996). 

The Z-test and χ
2
- test are based on 2×2 dimension confusion matrices. These tests 

were performed to test independency between the two classification algorithms. The 

number of correctly and wrongly classified data pixels for two algorithms was tabulated 

as in Table 2.3.  

Table 2.3 Cross tabulation of number of correctly and wrongly classified pixels for two 

algorithms 

 

2.4  RESULTS AND DISCUSSION 

2.4.1 Assessment of classification accuracies using different algorithms 

Several crops such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, 

pea, sugarcane and other crops grown in Varanasi district were classified. Other non-

crop classes such as water, sand, built up, fallow land, sparse vegetation and dense 

vegetation were also classified. Before the classification, M-statistic and J-M distance 

methods were applied to find the separability between the crop and non-crop classes. 

The combination of band 3 and band 4 provided the overall best separation between the 

classes in all three types of band combinations using M-test. The overall best separation 

Allocation                                                    Classification 2 

Classification 1           Correct Incorrect             Sum 

Correct               f11 f12            f11+ f12 

Incorrect               f21 f22           f21+ f22 

Sum           f11+ f21 f12+ f22  



observed between band 3 vs. band 4 may be due to unique and high spectral reflectance 

values of the crops in these bands. The overall low separation between the classes was 

found using combination of band 2 and 3 due to mix and poor reflectance of the crops in 

the green and red bands. The moderate separation between classes was found using 

combination of band 2 and 4. The values of M > 1 were found for the 95% pair of 

classes which means that the classes were found well separated and the values of M < 1 

were found for remaining pairs means that the classes were poorly separable. The 

separability analysis using J-M method also showed the better separation between 

almost all the classes. The separability analysis using J-M method is given in Table 2.4. 

 Table 2.4 Separability analysis between different crop and non-crop classes using J-M 

distance method 

 

1 – Barley, 2 – Wheat, 3 – lentil, 4 – Mustard, 5 – Pigeon pea, 6 – linseed, 7 – corn, 8 – 

Pea, 9 – Sugarcane, 10 – other crops, 11 – Water, 12 – Sand, 13 – Built up, 14 – Fallow 

land, 15 – Sparse vegetation, and 16 – Dense vegetation 

 

Especially in the case of non-crop classes, the separability was found better than 

the crop classes due to its unique and high spectral reflectance. Visual comparison 

between kernel based SVMs classification maps indicated well separation between the 

crop and non-crop classes and provided the accurate results. The classification maps 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1  1.96 1.14 1.87 2.00 1.94 2.00 2.00 2.00 1.98 2.00 2.00 2.00 2.00 1.90 2.00 

2 1.96  1.91 1.86 2.00 1.94 2.00 2.00 2.00 1.66 2.00 2.00 2.00 2.00 1.94 2.00 

3 1.14 1.91  1.92 2.00 1.86 2.00 2.00 2.00 1.99 2.00 2.00 2.00 2.00 1.93 2.00 

4 1.87 1.86 1.92  2.00 1.11 1.97 1.88 2.00 1.71 2.00 2.00 2.00 2.00 1.49 2.00 

5 2.00 1.99 2.00 2.00  1.95 1.95 1.93 1.10 1.93 2.00 2.00 2.00 2.00 1.99 1.31 

6 1.94 1.94 1.86 1.11 1.95  1.93 1.83 1.98 1.60 2.00 2.00 2.00 1.85 1.35 2.00 

7 2.00 2.00 2.00 1.97 1.95 1.93  1.12 1.95 1.95 2.00 2.00 2.00 2.00 1.79 1.80 

8 2.00 2.00 2.00 1.88 1.93 1.83 1.12  1.97 1.92 2.00 2.00 2.00 2.00 1.16 2.00 

9 2.00 2.00 2.00 2.00 1.10 1.98 1.95 1.97  1.98 2.00 2.00 2.00 2.00 2.00 1.50 

10 1.98 1.66 1.99 1.71 1.93 1.60 1.95 1.92 1.98  2.00 2.00 1.99 2.00 1.76 1.99 

11 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  2.00 1.96 2.00 2.00 2.00 

12 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  1.78 2.00 2.00 2.00 

13 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 1.96 1.78  2.00 2.00 2.00 

14 2.00 2.00 2.00 2.00 2.00 1.85 2.00 2.00 2.00 2.00 2.00 2.00 2.00  1.97 2.00 

15 1.90 1.94 1.93 1.49 2.00 1.35 1.79 1.16 2.00 1.76 2.00 2.00 2.00 1.97  2.00 

16 2.00 2.00 2.00 2.00 1.31 2.00 1.80 1.99 1.50 1.99 2.00 2.00 2.00 2.00 2.00  



produced using SVMs with linear kernel and polynomial of degrees 2 to 6 algorithms 

are shown in Figure 2.2. 

 

 

 

 

 

Figure 2.2 (a) SVMs with linear kernel (b) SVMs with polynomial of degree 2 (c) 

SVMs with polynomial of degree 3 (d) SVMs with polynomial of degree 4 

(e) SVMs with polynomial of degree 5 (f) SVMs with polynomial of 

degree 6 classification maps 

 

The classification maps produced by the SVMs with radial basis function kernel 

and ML classification algorithms were also found visually very good. Good 

visualization of SVMs with sigmoid kernel but fair visualization of NDVI classification 

map was found. The classification maps produced from the SVMs with radial basis, 

sigmoid kernel, ML and NDVI algorithms are shown in Figure 2.3.  

(a) (b) (c) 

(d) (f) (e) 
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Figure 2.3 (a) SVMs with radial basis kernel (b) SVMs with sigmoid kernel (c) ML 

classification (d) NDVI classification maps 

These classification maps were evaluated in terms of their OA, UA, PA and 𝜅. The 

accuracy assessed by SVMs with linear kernel and polynomial kernel of degrees 2 to 6 

is presented in Table 2.5. The accuracy results were also assessed using SVMs with 

radial basis and sigmoid kernels, ML and NDVI classification algorithms and 

compared. The comparative study is given in Table 2.6. On comparing the results 

obtained from the SVMs, ML and NDVI classification, the highest 87.33% OA was 

achieved by the SVMs with polynomial function kernel of degree 6. Similar accuracy 

results were found using SVMs with linear function kernel having OA 85.05%, and 

polynomial with degrees of 2, 3, 4, and 5 having OA 85.69%, 86.47%, 86.54%, and 

87.10%, respectively. 

Barley Wheat Lentil Mustard  Pigeon pea Linseed 

Corn Pea Sugarcane Other crops Water Sand 

Built up Fallow land 

Fallow land 

Sparse vegetation  Dense vegetation 

(a) (b) 

(c) (d) 



Table 2.5 Accuracy measures by SVMs with linear kernel and polynomial kernel of 

degrees 2 to 6 

 

Linear kernel: OA = (2282/2683) = 85.05%, 𝜅 = 0.8394 

Polynomial kernel of degree 2: OA = (2299/2683) = 85.69%, 𝜅 = 0.8462 

Polynomial kernel of degree 3: OA = (2320/2683) = 86.47%, 𝜅 = 0.8551 

Polynomial kernel of degree 4: OA = (2322/2683) = 86.54%, 𝜅 = 0.8554 

Polynomial kernel of degree 5: OA = (2337/2683) = 87.10%, 𝜅 = 0.8614 

Polynomial kernel of degree 6: OA = (2343/2683) = 87.33%, 𝜅 = 0.8638 

 

The data acquired especially at the high chlorophyll stage may provide further 

discrimination and increase in the classification accuracy. The classification accuracies 

using SVMs with radial basis, sigmoid function and ML algorithms were found 86.06%, 

81.92% and 85.13%, respectively. The low OA (74.32%) was achieved by the NDVI 

classification algorithm. Wheat crop was found to be the most dominant crop and corn 

crop was identified as the least dominant crop. This was due to the fact that the corn 

crop is not the seasonal crop and was grown for research purposes in the BHU 

agricultural farm house and a few other places in Varanasi district. Among all the 

algorithms, SVMs and ML provided the good PA and UA for almost all the sixteen 

classes. The PA and UA were found to be excellent for wheat, other crops and corn 

categories in crop classes. Other crop categories also showed very good PA and UA for 

all the classification algorithms except for the linseed crop which provided the fair 

                                  Linear  kernel                                                         Polynomial  kernel                                                                        

                                                                  Degree 2             Degree 3             Degree  4            Degree  5              Degree 6                          

Class name               PA (%) UA (%) PA (%)   UA (%)  PA (%)  UA (%)  PA (%)  UA (%)  PA (%)  UA (%)  PA (%) UA (%)  

Barley 

Wheat 

Lentil 

Mustard 

Pigeon pea 

Linseed 

Corn 

Pea 

Sugarcane 

Other crops 

Water 

Sand 

Built up 

Fallow land 

Sparse vegetation 

Dense vegetation 

74.80 

95.98 

77.78 

79.34

62.50 

52.21 

84.66

73.64 

75.70 

84.27   

100.0 

99.10 

86.93 

99.30 

86.94 

87.76 

75.40 

95.02

74.24 

73.28

71.43 

60.20 

83.13 

79.83 

68.64 

86.36 

100.0 

92.63 

98.52 

98.60 

80.34 

90.72 

74.80 

93.97 

76.98 

79.34 

68.75 

52.21 

84.66 

73.64 

75.70 

87.50 

100.0   

99.10 

86.93 

99.30 

89.18 

88.16 

75.40 

96.89 

74.05 

76.80 

74.04 

63.44 

83.64 

79.17 

72.97 

85.43 

100.0   

91.63 

98.52 

99.30 

80.47 

90.38 

82.13 

97.49 

82.54 

81.74 

79.36 

61.26 

81.53 

81.05 

81.31 

87.50 

100.0 

98.19 

90.20 

98.60 

90.04 

87.53 

81.78 

96.52 

81.23 

77.68 

78.26 

64.97 

86.51 

73.51 

71.90 

87.13 

100.0 

93.53 

98.00 

98.60 

84.31 

91.53 

81.89

94.97 

77.78 

80.17 

67.86 

49.56 

84.05 

73.64 

80.37

89.92 

100.0 

98.64

86.93 

99.30 

91.42 

87.76 

77.04 

97.42 

79.67 

77.60 

78.35 

69.14 

83.03 

78.51 

72.88 

87.11 

100.0 

91.60 

97.79 

99.30 

80.07 

90.72 

79.53

94.47 

82.54

80.99 

71.43 

52.21

84.66 

74.42 

81.31

91.13 

100.0 

99.10

86.93 

99.30 

90.67 

87.76 

80.80 

96.91 

79.39 

77.78 

77.67 

69.41 

84.66 

79.34 

71.31 

87.94 

100.0 

91.63 

98.52 

99.30 

80.46 

93.89 

82.68 

94.47 

80.95 

80.99 

70.54 

52.21 

86.50 

73.64 

82.24 

91.94 

100.0 

99.10 

86.93 

99.30 

90.30 

88.16 

80.15 

96.91 

81.60 

78.40 

79.00 

69.41 

84.43 

81.20 

75.86 

88.03 

100.0 

91.63 

98.52 

99.30 

80.40 

90.76 



results. The OA, PA and UA of linseed crop were found to be less in the comparison to 

the other categories of crop and non-crop because of some spectral mixing or similar 

spectral reflectance of linseed with the other crop classes and some non-crop classes. 

Table 2.6 Accuracy achieved by SVMs with radial basis and sigmoid kernels, ML and 

NDVI classification algorithms 

 

Radial basis kernel: OA = (2309/2683) = 86.06%, 𝜅 = 0.8502 

Sigmoid kernel: OA = (2198/2683) = 81.92%, 𝜅 = 0.8060 

ML classification: OA = (2284/2683) = 85.13%, 𝜅 = 0.8402 

NDVI classification: OA = (1994/2683) = 74.32%, 𝜅 = 0.7252 

 

Almost all the non-crop classes showed excellent PA and UA for all the 

algorithms. The OA of non-crop classes was found to be higher in comparison to almost 

all crop classes due to having unique spectral response of non-crop classes. The highest 

OA achieved was 100% for water by almost all the classification algorithms. The 100% 

OA indicates that there was no mixing or unmixing of the other classes with the water. 

A little bit less accuracy was found for fallow land due to less mixing with linseed. 

Some pixels of sand were misclassified as built up and some pixels of built up were 

misclassified as sand. This type of mixing occurred only due to the similar spectral 

response of built up and sand. In the crop classes, the highest OA obtained for the wheat 

crop indicates that there was very less mixing with the other crops and barley classes. 

              Radial basis                Sigmoid                        ML                          NDVI 

                 kernel                       kernel                   classification             classification                          

Class name          PA (%)   UA (%)     PA (%)     UA (%)     PA (%)     UA (%)     PA (%)   UA (%)  

Barley 76.38 75.78 88.98 63.48 74.80 75.40 81.89 69.80 

Wheat 93.47 97.38 93.97 89.05 95.98 95.50 58.29 62.70 

Lentil 77.78 75.38 50.00 75.00 77.78 74.24 67.46 64.89 

Mustard 79.34 74.42 87.60 65.84 78.51 73.64 85.87 51.43 

Pigeon pea 75.00 75.68 62.50 72.92 62.50 71.43 70.54 71.82 

Linseed 51.33 66.67 42.48 59.26 52.21 59.60 45.13 49.04 

Corn 84.66 82.63 72.39 82.52 84.05 84.57 69.94 77.55 

Pea 73.64 79.17 77.52   66.67 75.97 79.67 78.29 66.01 

Sugarcane 75.70 71.68 75.70 59.56 75.70 68.64 75.70 55.10 

Other crops 87.90 85.49 75.00 81.58 85.08   86.12 63.71 68.10 

Water 100.0 100.0 100.0 100.0 100.0 100.0 96.63 100.0 

Sand 99.10 91.63 99.10 91.25 99.10 91.63 97.03 86.64 

Built up 86.93 98.52 86.27 98.51 86.93 98.52 56.61 98.02 

Fallow land 99.30 99.30 98.60 99.30 99.30 99.30 95.10 95.77 

Sparse vegetation 89.93 80.60 81.72 79.93 86.57 80.28 63.06 94.94 

Dense vegetation 87.76 94.30 84.08 94.93 87.76 90.72 74.69 96.32 



Linseed crop showed lowest UA and PA and presented the maximum confusion with 

sparse vegetation, mustard, other crops and lentil crop classes. The confusion with 

linseed crop was caused mainly due to having similar spectral features of these class 

types. Wheat was found to be the easiest crop to identify within the crop classes, 

whereas linseed was found very difficult to identify. SVMs with polynomial of degree 2 

provided 52.21% PA and 63.44% UA for the linseed crop indicates that 52.21% of the 

linseed areas were correctly identified as linseed, whereas 63.44% of the linseed areas 

were actually linseed. As another example, the PA and UA for sugarcane using SVMs 

with polynomial of degree 6 were found to be 82.24% and 75.86% respectively. These 

values indicate that 82.24% of the sugarcane areas on the ground were correctly 

identified as sugarcane, but only 75.86% of the areas called sugarcane on the 

classification map were actually sugarcane. 

Some small portions of the wheat, mustard, linseed, pigeon pea, corn and sparse 

vegetation were misclassified as other crops class. Similarly, some portions of mustard, 

linseed, corn, pea and other crops classes were misclassified as sparse vegetation. This 

type of misclassification was partially due to spectral similarities among the classes and 

partially due to variability within the field. A very high spectral similarity was found 

among sugarcane, pigeon pea and dense vegetation classes. The high spectral similarity 

observed between barley and lentil also created confusion and showed misclassification 

with each other. A large variation between PA and small variation between UA was 

found in pigeon pea crop, whereas small variation between PA and large variation 

between UA was found in sugarcane within the crop classes by almost all the 

algorithms. This type of large variation was due to spectral similarity and within the 

intrafield variability. A very small variation between PA and UA was found for wheat, 

corn and fallow land classes, whereas a large difference between PA and UA was found 



for linseed and pea crop using almost all the algorithms. The values of 𝜅 using SVMs 

with linear, polynomial with degrees of 2, 3, 4, 5, 6, radial basis and sigmoid function 

kernels were found to be 0.8394, 0.8462, 0.8551, 0.8554, 0.8614, 0.8638, 0.8502 and 

0.8060, respectively. Other 𝜅 values using ML and NDVI classification were found to 

be 0.8402 and 0.7252, respectively. As an example, the value of 𝜅 equals to 0.8502 

indicates that the achieved classification accuracy was 85% better than the random 

assignment of pixels to classes.  

2.4.2 Test for statistical significance in the classification accuracy 

The statistical significance of differences in the accuracy of the classifications was 

assessed using a McNemar’s test for the independent samples. The Z-test and χ
2
-test 

were utilized to test whether the two classification results were significantly different or 

not. Interpretation of the test results was based on the Z-test for example, a value Z > 

|1.96| indicates a statistically significant difference in classification accuracy at the 95% 

confidence level. The classification results were statistically signified that all the 

combinations were given Z values more than 1.96 except SVMs with polynomial of 

degree 6 vs. SVMs with polynomial of degree 5. It means that all the combinations were 

found to be significantly different, but insignificantly different combination was 

observed by SVMs with polynomial of degree 6 vs. SVMs with polynomial of degree 5 

(Z = 1.34, p = 0.1802). The combination using SVMs with polynomial of degree 6 vs. 

SVMs with polynomial of degree 5 was significantly more accurate than the other 

combinations. Critically, SVM with polynomial of degree 6 resulted 0.23% increase in 

the classification accuracy than the SVMs with polynomial of degree 5 which was 

statistically insignificant. The increase in 𝜅 using SVMs with polynomial of degree 6 

with respect to SVMs with polynomial of degree 5 was found not to be statistically 

significant with Z value 1.34 and p-value 0.1802. The Z value was found less than 1.96 



at the 95% confidence level. Notably, significant increases in the classification accuracy 

were obtained for barley, lentil, mustard, pigeon pea, linseed, pea and sugarcane.  

Due to different growing stages of crops and management conditions of the crop 

fields, it was not very clear visually that how well the crops were separated. Most of the 

fields on the classification maps had only one dominant class whereas all fields 

contained small inclusions of some other classes due to the within-field variability and 

the spectral similarities among some of the classes. 𝜅 analysis was done for comparing 

the classifications with a random classification which provided all the Z-test values 

greater than 1.96, except SVMs with polynomial of degree 6 and 5 having critical value 

of 0.05 significant level. Therefore, all the classifications were found significantly better 

than a random classification at the 95% confidence level except SVMs with polynomial 

of degree 6 and 5. Z-test and χ
2
-test values for making pairwise comparisons among the 

classification algorithms are presented in Table 2.7.  

Table 2.7 Statistical significance of differences in classification accuracy between two 

different algorithms 

 

The classification results using SVMs with polynomial of degree 6 and degree 5 

were found significantly better than the other algorithms, but there was no significant 

difference between these two algorithms in the OA (87.33% vs. 87.10%). Other 

classification algorithms showed significant differences with the SVMs with polynomial 

of degree 6 having different p values. The value of χ
2
 was found 1.80 using SVMs with 

Classification1                              Classification 2                                                                                                                                                         Z-test      χ2-test     p value     

SVMs with polynomial  of degree 6 SVMs with linear function   6.06 36.72 ˂0.0001 

SVMs with polynomial  of degree 6 SVMs with polynomial of degree 2 4.78   22.85 ˂0.0001 

SVMs with polynomial  of degree 6 SVMs with polynomial of degree 3 3.48 12.11 =0.0005 

SVMs with polynomial  of degree 6 SVMs with polynomial of degree 4 3.37 11.36 =0.0008 

SVMs with polynomial  of degree 6 SVMs with polynomial of degree 5 1.34 1.80 =0.1802 

SVMs with polynomial  of degree 6 SVMs with radial basis function  4.19 17.56 ˂0.0001 

SVMs with polynomial  of degree 6 SVMs with sigmoid function 8.76 76.74 ˂0.0001 

SVMs with polynomial  of degree 6 ML classification algorithm 5.99 35.88 ˂0.0001 

SVMs with polynomial  of degree 6 NDVI classification  15.06 226.8 ˂ 0.0001 



polynomial of degree 6 vs. 5 which was lower than the critical value of 3.841. It means 

that the χ
2
-test accepted the null hypothesis and indicated that they were not statistically 

different.  In all other combinations, the χ
2
-test rejected the null hypothesis because all 

the χ
2
 values were found more than the critical value. It was concluded that, except the 

combination of SVMs with polynomial of degree 6 vs. 5, the other combinations of 

classification accuracy results found statistically different.  

2.5  CONCLUSION 

The classification of agricultural crops using LISS-IV data was found effective in 

identifying the different crop types. The performance of SVMs with polynomial of 

degree 6 showed better results with respect to other classification algorithms. The 

classification maps provided fairly good crop classification indicated by the good 

separation observed between the classes by the separability analysis performed before 

the classification. The results in terms of OA, 𝜅 and McNemar’s test suggest that the 

SVMs with polynomial function kernel can provide better classification accuracy in 

comparison to other kernel based SVMs, ML and NDVI classification algorithms using 

LISS-IV data.  

 

 

 

 

 

 

 

 

 


