
CHAPTER 1 

INTRODUCTION 

 

1.1 REMOTE SENSING AN OVERVIEW 

Remote sensing is the science/ technology for the acquisition of information about 

an object or phenomenon without making physical contact with the object. The remote 

sensors may be mounted on aircraft or satellite to collect data by detecting the energy 

reflected/ scattered from the target of interest. The electromagnetic spectrums such as 

microwaves, infrared and visible are used in the remote sensing to acquire information 

about any distant object. However, microwave has advantage over the visible and 

infrared rays. Microwave remote sensing has own source of energy, transmits an 

electromagnetic wave which can penetrate easily clouds and up to some extent rain 

(Lillesand and Kiefer, 2002; Schowengerdt, 2006). 

The term remote sensing was introduced first time in 1960s. Before the 1960s, the 

term used for remote sensing was generally known as aerial photography. During 1960s 

to 1970s, the primary platforms used for carrying remotely sensed instruments were 

shifted from airplanes to the satellites. Satellites can cover much more land space than 

the airplanes and can monitor especially remote areas on a regular basis. In the 1960s, 

NASA (National Aeronautics and Space Administration) sponsored several schemes for 

the application of color infrared and multispectral photography. Color-infrared imagery 

uses a portion of the electromagnetic spectrum known as near- infrared (NIR). It ranges 

from 0.70 μm to 1.0 μm, just beyond the red color of the wavelength. The NIR 

photography is particularly useful for haze penetration. As a result, the Landsat satellite 

was launched in the 1970s for the acquisition of multispectral imagery (Lillesand and 

Kiefer, 1999; Jensen, 2005; Elachi and Van Zyl, 2006). 



The efforts were made for the development of Synthetic Aperture Radars (SARs) 

since 1950s using coherent signals to achieve high-resolution capability from the high-

flying aircraft. These systems became available to the scientific community in the mid 

of 1960s. Since then, work is continued to develop the capability of radar sensors for 

wide application globally. The imageries from the active microwave sensors look very 

similar to regular photography, except image brightness due to scattering properties of 

the different surfaces in the microwave region. Passive microwave sensors were 

developed to provide images of the microwave emission from the natural objects. The 

capability of remote sensing satellites has been dramatically increased over the past two 

decades (Jensen, 2005; Elachi and Van Zyl, 2006; Ulaby et al., 2014). Remote sensing 

can be classified in to two ways as passive and active. 

1.1.1  Passive remote sensing 

In the passive remote sensing, sensors record natural radiation that is reflected or 

emitted from the earth's surface. The energy of the sun is reflected at the visible 

wavelengths or absorbed and then re-emitted at thermal infrared (TIR) wavelengths.  

 

 

Figure 1.1 Data acquisition by the passive remote sensing process 

(Source: Orerinpu.ws.gy/lexon/uncertainty-in-remote-sensing-and-gis-279.php) 



The reflected energy can be observed only when the sun is illuminating the earth. 

The TIR energy naturally emitted can be detected in the day or night time. The film 

photography, infrared (IR), charge coupled devices and radiometers are the different 

types of passive sensors (Hord, 1982; Lillesand and Kiefer, 2002; Elachi and Van Zyl, 

2006). Data acquisition by the passive remote sensing process is shown in Figure 1.1. 

 

1.1.2  Active remote sensing 

 Active sensors provide their own source of energy for the illumination of the 

target of interest (e.g. SAR and Light Detection and Ranging (LiDAR)). The radiation 

reflected or backscattered from the target is detected and measured by the sensors. 

Active sensors are capable to acquire information anytime, regardless of the time of day 

or season. Nevertheless, it needs a large amount of energy to illuminate targets 

adequately (Lillesand and Kiefer, 2002; Jensen, 2005; Ulaby et al., 2014). Data 

acquisition by the active remote sensing is shown in Figure 1.2. 

 

Figure 1.2 Data acquisition by the active remote sensing process 

(Source: Lwin, 2008) 



1.2 ELECTROMAGNETIC WAVES USED IN THE REMOTE SENSING 

The wide range of frequency encountered in our physical world, ranging from the 

low frequency of the radio waves to the very high frequency of the gamma rays. This 

wide frequency range of electromagnetic waves constitutes the electromagnetic 

spectrum as shown in Figure 1.3. The most widely used electromagnetic waves in the 

remote sensing are the visible, infrared and microwaves. The visible light extends from 

about 400-430 nm (violet), 430-450 nm (indigo), 450-500 nm (blue), 500-570 nm 

(green), 570-590 nm (yellow), 590-610 nm (orange) to about 610-700 nm (red). Infrared 

lies between near infrared (NIR: 0.7-1.5 µm), short wave infrared (SWIR: 1.5-3 µm), 

mid wave infrared (MWIR: 3-8 µm), long wave infrared (LWIR: 8-15 µm) and far 

infrared (FIR: ˃15 µm). 

 

Figure 1.3 Electromagnetic waves used in the remote sensing 

(Source: Lwin, 2008) 

 

Microwave is divided into different bands such as P-band (0.3-1 GHz), L-band (1-

2 GHz), S-band (2-4 GHz), C-band (4-8 GHz), X-band (8-12.5 GHz), Ku-band (12.5-18 



GHz), K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) (Richards, 1999; Lillesand 

and Kiefer, 2002; Jensen, 2005). 

1.3 SPECTRAL REFLECTANCE AND EARTH SURFACE INTERACTION 

The typical spectral reflectance curves for three basic types of earth features like 

vegetation, soil and water are shown in Figure 1.4. These curves indicate how much 

incident energy would be reflected from the surface, and consequently recorded by the 

remote sensing instrument. The object would appear brighter in an image due to higher 

reflectance at a given wavelength. The vegetation reflects much more energy in the NIR 

(0.8 to 1.4 µm) in comparison to visible light (0.4 to 0.7 µm). 

 

Figure 1.4 Spectral reflectance curves for soil, vegetation and water 

(Source: Swain and Davis, 1978) 

 

The energy reflected from the vegetation is related to the internal structure of the 

plant and the amount of moisture in the plant. Vegetation has generally three reflectance 

valleys. The red (0.61-.70 µm) spectral wavelength region is caused by high 

absorptance of energy by chlorophyll present in the leaves. The other two wavelengths 

regions at 1.45-1.55 µm and 2.10-2.20 µm are caused due to high absorptance of energy 



by the water present in the leaves. The spectral reflectance due to clear water is < 10% 

at visible light, thus it appears dark in the infrared images due to high absorption at 

NIR. Dry soil has relatively a flat reflectance curve. When it is wet, its spectral 

reflectance drops due to water absorption (Swain and Davis, 1978; Lillesand and Kiefer, 

1999; Jensen, 2005). 

1.4  RESOLUTIONS IN THE REMOTE SENSING 

The quality of remote sensing data depends on its different resolutions such as 

spatial, spectral, radiometric and temporal resolutions (Hord, 1982; Lillesand and 

Kiefer, 2002; Schowengerdt, 2006).  

1.4.1 Spatial resolution 

Spatial resolution is a measure of the area or size of the smallest dimension on the 

earth’s surface over which an independent measurement can be made by the sensor. 

Spatial resolutions of some of the satellites like IKONOS, Linear Imaging Self-scanner 

(LISS-IV), Sentinel-1A, Radar Imaging Satellite–1 (RISAT-1) and Landsat-8 OLI 

(Operational Land Imager) are 1 m, 5.8 m, 20 m, 25 m, and 30 m, respectively. 

1.4.2 Spectral resolution  

Spectral resolution is the ability of a sensor to resolve the energy received in a 

spectral bandwidth to characterize different constituents of the earth surface. If the 

resolution is too low, spectral information will be lost and may affect correct 

identification and characterisation of any object. Objects on the ground can be identified 

by the different wavelengths reflected. Finer the spectral resolution, the narrower the 

wavelength range for a particular band or channel. Several remote sensing systems are 

multi-spectral that record energy over separate wavelength ranges at various spectral 

resolutions. For example, LISS-IV sensor uses 3 spectral bands: 0.52-0.59 (green), 0.62-

0.68 (red) and 0.77-0.86 (NIR). 



1.4.3 Radiometric resolution 

Radiometric resolution of an imaging system describes about its ability to 

discriminate very slight differences in the energy levels. Finer the radiometric resolution 

of the sensor corresponds to high sensitivity to detect small differences in the reflected 

or emitted energy. Normally the ranges of the radiometric resolutions are from 8 to 16 

bits, corresponding to 256 levels of the gray scale to 65536 representing intensities or 

shades of colour, in each band. The radiometric resolutions of LISS-IV, Landsat-8 OLI, 

RISAT-1, and Sentinel-1A are 10 bits, 12 bits, 16 bits and 16 bits, respectively. 

1.4.4 Temporal resolution  

Temporal resolution is defined as the amount of time needed in days to revisit and 

acquire image of the same area at a same viewing angle. The temporal resolution is high 

when the revisiting delay is low and vice-versa. The actual temporal resolution of a 

sensor depends on a variety of factors including the satellite/ sensor capabilities, the 

swath overlap, and latitude. Temporal resolutions of the Sentinel-1A, Landsat-8 OLI, 

LISS-IV and RISAT-1 satellites are 12 days, 16 days, 24 days and 25 days. 

1.5 ATMOSPHERIC EFFECT AND ITS CORRECTION 

The constituents of the atmosphere affect the radiation coming from the sun as 

well as the reflected/ emitted radiation from the soil/ vegetation in the optical region 

(Kaufman, 1989). Atmospheric gases, clouds and aerosols absorb some of the incoming 

and scattered radiation coming from the sun. It affects the contrast of the imagery and 

leads to loss of information. However, microwave radiation is not sensitive to the 

atmospheric aerosols and is weakly affected by the atmospheric constituents like water 

vapour. The microwave signals may be affected by the clouds and precipitation, depending 

on the frequency and precipitation rate (Gonzalez-Sanpedro, 2008). An atmospheric 

correction is necessary for the classification and inversion of the vegetation parameters from the 



vegetation surface reflectance. This correction may put an impact in the accuracy of the crop 

classification and retrieval of crop parameters (Fung, 1994; Ulaby et al., 2014).  

1.6  NEED OF CROP GROWTH MONITORING  

Agriculture has an economic and social importance worldwide due to rapid 

population increase and for the economic development of the country. In Indian 

economy, agriculture plays a vital role because 70 percent of the rural families depend 

on agriculture for their livelihood (Dadhwal et al., 2002). Agriculture prevents our 

environment to become polluted, as pollution is one of the main harmful aspects of the 

human life due to heavy industrialization. Pest infections and droughts can also damage 

the crops and soil fertility resulting to decrease in the crop production. The increase in 

concentration of atmospheric CO
2 

and temperature could affect the plant biological 

processes such as photosynthesis and crop growth etc. (Booker et al., 2005). Due to 

these concerns, it is the need of the time to develop procedures and techniques to 

monitor the conditions of the crops for the better production. The genetically modified 

crops and use of fertilizers has been extended worldwide for a sustainable crop 

production increase (Qaim and Zilberman, 2003). 

1.7  CROP GROWTH MONITORING 

1.7.1  Crop classification and mapping 

The crops are primary and necessary requirements for human and livestock of any 

country of the world. Timely identification, inventory and cartography of crops are 

essential to get acquainted about the crop types. Types of crop and areas on which they 

are grown should be monitored to predict timely and accurate production of crops. The 

crop classification and mapping is needed for the land change studies, climate change 

for the efficient management of water resources and hydrological studies (Simonneaux 

et al., 2008). One major component of the agriculture monitoring systems is crop 



classification and mapping through satellite imagery (Blaes et al., 2005). The 

availability of different satellite images and image processing techniques enabled the 

researches to find the crop type, area, crop condition and growth of different crops in 

agriculture (Akbari et al., 2006).  

1.7.2 Crop growth parameters estimation 

The crop growth parameters play a significant role in the monitoring of 

agricultural crops regularly. These crop growth parameters such as leaf area index 

(LAI), biomass, vegetation water content (VWC) and plant height (PH) etc. are the 

indicators of the plant condition with the actual plant phenological stage. The regular 

and well-timed monitoring of agricultural crops at different growth stages is important 

for any country to estimate the accurate agricultural production. This information is 

significant to make a strategy that may reduce the production risk and increases 

efficiency in crop management and production. Phenological development of the crop is 

often simulated in terms of measurement of the LAI, PH, biomass, VWC and 

chlorophyll content etc. LAI is defined as the total one sided area of the leaf per unit 

ground surface area (Watson, 1947; Duchemin et al., 2006; Herrmann et al., 2011). It is 

an important parameter to exchange most of the energy fluxes between the canopy and 

atmospheric interface (Chen and Black, 1991; Wu et al., 2004). The VWC is calculated 

from the difference between fresh and dry weight of the crop. It increases rapidly at the 

early wheat crop growth stages while found decreasing after heading stage. A multi-

frequency ground-based scatterometer was used over an entire wheat growth cycle at X-

, C- and L-bands. Results indicate that the L-band was highly correlated with VWC and 

fresh weight using linear regression analysis (Kim et al., 2014). 

 

  



1.8  THE ROLE OF REMOTE SENSING IN CROP GROWTH MONITORING 

1.8.1 Role of optical remote sensing  

Optical remote sensing technology has become popular and reliable for the 

classification, mapping and monitoring of crop growth from the last several years on 

regular basis. Thematic mapping through image classification algorithms is extensively 

used in remote sensing applications (Foody, 2004). This type of mapping describes the 

pattern of crops and the spatial distribution of other land cover features. Accurate crop 

classification maps derived from remotely sensed data are a prerequisite for analysing 

many socio-ecological concerns. Thematic mapping is not the easiest task because of so 

many factors, such as the complexity of the landscape, selection of remote-sensing data, 

image processing, and classification algorithms, which may affect the classification 

accuracy (Lu and Weng, 2007).  

Nowadays, the imagery from high spatial resolution satellite sensors such as 

LISS-IV, IKONOS, QuickBird, Landsat-8 OLI and Sentinel-2 are offering new 

opportunities to the remote sensing community for the crop classification, crop growth 

monitoring and yield estimation. The potential of the LISS-IV sensor has been revealed 

to capture intrafield variability in crop fields for precise farming (Sesha Sai and 

Narasimha Rao, 2008). Landsat-8 with Sentinel-1 time series images have been used 

and showed a significant improvement in the classification accuracy for the land cover 

mapping (Inglada et al., 2016). However, there are so many limitations using optical 

satellite data because of cloud cover and heavy rain for the crop classification and 

monitoring. 

1.8.2 Role of microwave remote sensing  

Microwave remote sensing has an advantage over optical remote sensing because 

it is operational in all weather conditions, both day and night. It offers great potential 



especially during the rainy season due to capability of radar systems to acquire data 

under almost all weather conditions (Haldar et al., 2014). Thus, microwave remote 

sensing shows a high potential for crop classification and monitoring. RISAT-1 is the 

Indigenous microwave satellite launched especially for the agriculture monitoring to 

overcome the problems of data acquisition during rain and cloudy weather. Several 

authors have reported the utility of RISAT-1 data-sets for achieving significant 

classification accuracies for crops and other land use classes (Iyyappan et al., 2014; 

Mishra et al., 2014; Ramana et al., 2014). Recently Sentinel-1A satellite has been 

launched to provide microwave data for the mapping and monitoring of different crops 

(Kussul et al., 2016; Navarro et al., 2016). 

1.9  NEED OF SOIL MOISTURE RETRIEVAL 

Soil moisture is an essential climate variable which affects vegetation growth and 

contributes to the interaction between land surface and atmosphere. Its measurements in 

the agricultural sites provide important information about early drought warning. The 

upper surface of the soils is classified as the root zone soil moisture and is important for 

describing the water that is available to the plants. When drought occurs, there is a 

deficit amount of moisture in the root zone and consequently crop productivity 

diminishes. The soil moisture serves as a solvent and carrier of food nutrients for crop 

growth and also to complete photosynthesis process. Regular soil moisture 

measurements will lead to improve crop yield forecasting and irrigation planning. Soil 

moisture is indeed an important variable in climatology, hydrology and agricultural 

applications (Srivastava et al., 2006; Legates et al., 2010). Soil moisture regulates the 

soil temperature and helps in chemical and biological activities of the soil. Although, 

soil moisture is a small component of the hydrologic cycle, it plays a major role in 



understanding and predicting climatic patterns. Because of its importance, it is 

necessary to retrieve soil moisture accurately. 

1.10  SOIL MOISTURE RETRIEVAL 

Moisture content has an important role for the ground water recharge, agriculture 

and soil chemistry. Accurate models are basically important to support water resource 

and crop management, policy decisions, marketing strategies, disaster forecasting, 

drought early warning and to monitor climate changes. However, large-scale 

measurements of the soil moisture are very challenging, because it requires repeated 

sampling process to analyse the periodical changes in the soil moisture. The theoretical 

models need certain parameters or more number of observations to retrieve the soil 

moisture (Njoku and Li, 1999). The extensive in situ measurements such as leaf size, 

leaf diameter, stem diameter, crown diameter, orientation, surface roughness, 

correlation length, and autocorrelation length etc. are needed for the appropriate 

findings by the theoretical model (Ulaby et al., 1982). However, theoretical model like 

integral equations model (IEM) could perform satisfactorily for soil moisture retrieval 

(Bindlish and Baros, 2000). 

1.11  THE ROLE OF REMOTE SENSING IN SOIL MOISTURE RETRIEVAL 

Remote sensing is a useful tool for the retrieval of soil moisture over larger areas 

in a short period of time (Wang and Qu, 2009; Lakshmi, 2013). Despite of numerous 

studies, the accurate retrieval of soil moisture through remote sensing remains a 

challenge. The remote sensing observations are sensitive to the soil moisture, surface 

roughness, surface temperature and vegetation canopy. However, microwave remote 

sensing provides complementary information, because they respond differently to the 

soil and vegetation parameters. It has developed enough scientific interest due to advent 



of various advancements in the radar technology and processing of the data for 

monitoring the soil moisture of remote areas.  

The relationships between microwave scattering coefficients and soil moisture 

were investigated in the beginning of nineteen seventies (Schmugge et al., 1974; Ulaby, 

1974; Eagleman and Lin, 1976; Attema and Ulaby, 1978). Since then, several 

theoretical and experimental studies on active and passive microwave have improved 

the understanding of the sensitivity of microwave satellite observations to the bare and 

crop covered soil moisture (Shutko, 1982; Schmugge, 1983; Ulaby et al., 1986; 

Ferrazzoli et al., 1992; Srivastava et al., 2006). Different studies used empirical and 

semi-empirical models based on regression analysis that establish the direct relationship 

between satellite observations and soil moisture measurements (Gill et al., 2006; Ahmad 

et al., 2010; Pasolli et al., 2011b; Gupta et al., 2017). These models are widely used; 

however the adopted approximations and simplifications are often the cause of 

inaccuracies.   

1.12  LITERATURE REVIEW 

Land is utmost important natural resource endowment on which all the human 

activities are based (Srivastava et al., 2010; 2012). Therefore, the knowledge of 

different type of land use as well as its spatial distribution in the form of map and 

statistical data is important for the spatial planning, management of land and its optimal 

use (Upasana et al., 2014). Land use shows the manner in which human beings employ 

the land and its resources. The availability of land resource is limited and hence 

immense pressure arises on land usability. A better understanding of these aspects is 

crucially important for the study of global environmental changes (Mehta et al., 2012).  

Satellite image classification is the suitable process to carry out classification 

study of particular area as it gives an idea of the land use on the Earth’s surface (Mehta 



et al., 2014). Local and regional case studies require high spatial and temporal 

resolution for accurate identification due to having significant variation in spectral 

response of land cover classes (Amin et al., 2012). Mapping is not very easy due to 

many factors, such as the complexity of the landscape, selection of remote-sensing data-

set, image processing, and classification algorithms. These factors may affect the 

classification accuracy results (Lu and Weng, 2007). Recently launched high spatial 

resolution satellites, such as LISS-IV, Sentinel-1, Sentinel-2, IKONOS, RISAT-1 and 

QuickBird, are offering new opportunities to the remote sensing community in the area 

of agriculture such as crop classification, mapping, crop growth monitoring and in crop 

yield estimation. The major limitations for crops identification with satellite imagery are 

field to field plant reflectance variability of the same crop as well as similarity in the 

plant reflectance of available various crops (Sesha Sai and Narasimha Rao, 2008). SAR 

data has shown favourable results in crop and other land use classification with 

reasonably higher accuracy. Potential of RISAT-1 satellite data-sets have been shown in 

Varanasi, India for agriculture and other land use/cover classification (Mishra et al., 

2014).  

Several appropriate algorithms have been developed for the classification of 

remote sensing imagery: a review is given by Lu and Weng (2007). Mapping techniques 

through remote sensing are superior to conventional methods for the classification of 

various crops. Because the conventional methods have some restrictions, related to 

distributional assumptions and to the limitations on the input data types (Kavzoglu and 

Mather, 2003). Supervised algorithms such as support vector machine (SVM), 

backpropagation artificial neural network (ANN) and random forest (RF) have been 

found more robust than the conventional statistical algorithms and create no 

assumptions nearby the statistical nature of the data.  



SVM and ANN algorithms have been widely used in the past two decades for 

image classification (Pal et al., 2013). SVM classification algorithm is found to be 

superior to other classification algorithms such as ANN, maximum likelihood (ML) and 

decision tree (DT) algorithms for classifying land cover from Landsat Thematic Mapper 

(TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data-sets (Huang 

et al., 2002). The SVM algorithm is popular due to its potential for better classification 

accuracy than ANN algorithm (Huang et al., 2002; Foody and Mathur, 2004; Pal et al., 

2013). The algorithm is found to be sensitive on the size of training data-set and 

dimensionality of the data-set used (Pal and Foody, 2010). However; SVM can work 

smoothly with the less number of training samples (Foody and Mathur, 2004; Pal and 

Mather, 2005). Generally; SVM classification algorithm determines an optimal 

hyperplane between the classes of interest. This algorithm is not based on any 

assumption regarding the probability distribution of the training data sets; instead, it 

finds a decision directly from the training data in a suitable space described by a kernel 

function. The high potential of SVM classification has attracted a great deal of research 

effort. However, some major concerns are also found in the design of SVM 

classification algorithm. Choice of suitable kernels, parameters and strategies can affect 

the classification accuracy (Pal, 2009; Mountrakis et al., 2011). In few previous studies, 

the third-order polynomial function kernel with gamma parameter 1 for the change 

detection was used which yielded the most accurate results in comparison to linear, 

radial basis and sigmoid function kernels (Schwert et al., 2013).   

Although different types of neural network algorithms have been developed, the 

widely used is the backpropagation ANN algorithm. The back propagation algorithm 

has extensively been used for different applications by the remote-sensing community 

(Mass and Flores, 2008). This algorithm has the ability to produce classifications with 



higher accuracies from fewer or less training samples (Atkinson and Tatnall, 1997; 

Paola and Schowengerdt, 1995b). The ANN classifier, a more sophisticated and robust 

classifier of image classification, has been employed in the classification applications 

(Benediktsson et al., 1990; Bruzzone et al., 1997; Kavzoglu and Mather, 2003; Paola 

and Schowengerdt 1995a; Srivastava et al, 2012). Enhanced crop identification and 

classification have been done for achieving higher accuracy by ANN using QuickBird, 

Landsat TM/ETM+, and Advanced Very High Resolution Radiometer (AVHRR) 

multispectral satellite data (Cruz-Ramírez et al., 2012; Atzberger and Rembold, 2013). 

However, so many studies have reported some problems during use of back propagation 

ANN for crop classification and other land cover features (Foody and Arora, 1997; 

Kavzoglu and Mather, 2003). The classification accuracy depends on several factors 

and may be affected in the variation of dimensionality of remotely sensed data as well 

as on the training and testing data sets (Foody and Arora, 1997).  

RF classification algorithm is a robust and an ensemble learning algorithm which 

can be trained rapidly. This algorithm is very effective for the classification through 

complex and non-linear patterns of the landscape. Furthermore, the RF algorithm runs 

efficiently on large data-sets and does not require normally distributed model training 

data (Rodriguez-Galiano et al., 2012). SVM needs a several user-defined parameters 

whereas RF algorithm requires only two parameters to be set. Classification results by 

RF were found equally well to SVM (Pal, 2005). ML classification algorithm 

quantitatively evaluates the variance and covariance of the category spectral response 

patterns when classifying an unknown pixel (Lillesand and Kiefer, 2002). Huang et al. 

(2002) compared the accuracy yielded by SVM, ANN, ML and DT algorithms for 

classifying land cover from Landsat TM and MODIS data-sets with satisfactory results 

for SVM with polynomial and radial basis function kernels. 



The crop growth can be monitored by estimating biophysical parameters like LAI, 

VWC, biomass, and PH etc. The radar backscattering and crop growth parameters have 

complex and non-linear relationships. This is because of the dynamics of the crop 

growth parameters which are influenced by the soil texture, surface roughness, crop 

type and density of the crop, etc. Microwave remote sensing is better for the crop 

growth analysis because it has deeper penetration capability. LAI can be estimated from 

the remotely sensed data by statistical and physical approaches. It is an important 

biophysical parameter in the most terrestrial ecosystem models and in global models of 

ecology and climate (Myneni et al., 1997; Sellers et al., 1997). The inversion of 

physically based radiative transfer models (RTM) delivers the potential to retrieve LAI 

and other biophysical vegetation parameters (Jacquemoud et al., 1995, 1996; Weiss et 

al., 2000; Fang et al., 2003; Vohland and Jarmer, 2008). RTM describe the interaction 

of the sun's electromagnetic radiation with the atmosphere and the Earth's surface 

accounting for both the scattering and absorption of the radiation. This process is highly 

nonlinear and numerical simulations are required to understand these complex 

interactions (Jin and Liu, 1997). 

Thus, it is important to develop inversion models in order to use microwave 

satellite data for estimating crop parameters such as LAI, leaf water area index (LWAI), 

PH, biomass and VWC. Several modelling approaches can be grouped together, such as 

a theoretical approach and a semi-empirical one, to estimate crop parameters by 

inverting the various models. However, theoretical models usually involve complex sets 

of equations. They consider the statistical properties of the dielectric of the canopy 

volume, and these are difficult to relate to the vegetation variables such as biomass and 

LAI. Because of the involvement of large numbers of parameters, their inversion is 

difficult. To overcome these problems, Attema and Ulaby (1978) developed an 



approach to model the backscattering coefficients (𝜎0) of vegetation canopy through the 

water cloud model (WCM), which was modified and extended by several authors 

(Ulaby et al., 1984, Paris, 1986, Prevot et al., 1993). These models are not theoretically 

complex, and they can be inverted easily and applied to a number of vegetation types 

with reasonable results. The reliability of estimated crop variables is dependent on the 

quality of the radar measurements as well as the accuracy of the WCM. However, the 

WCM neglects multiple scattering and plant geometry. 

 Higher quality radar measurements are needed to determine the WCM parameters 

for better reliability of the estimation of crop parameters. The data-sets with poor radar 

measurements of a specific crop that are used in fitting the WCM may lead to an 

inaccurate WCM (Graham and Harris, 2002). LAI and LWAI of kidney beans were 

estimated by numerical inversion of the WCM, the non-linear least squares optimization 

model and the polarization-based model at the X-band (Ulaby et al., 1984; Prevot et al., 

1993; Prasad, 2011). The effect of various crop/soil variables on the observed 

backscattering is better characterized by models. The WCM (Attema and Ulaby 1978) 

with modifications by Inoue et al. (2002) has proved its usefulness for a range of crop 

types and conditions (Prevot et al. 1993, Moran et al. 1998, Champion et al. 2000, 

Prasad 2009; 2011).  

The capability of support vector regression (SVR) model has been shown for the 

retrieval of LAI (Durbha et al., 2007). In an SVM, all the available indicators can be 

used as the inputs, but irrelevant or correlated features could adversely impact the 

generalization performance due to the curse of the dimensionality problem. Thus, it is 

critical to perform feature selection or feature extraction in SVM (Tay and Cao, 2001; 

Guyon et al., 2002; Durbha and King, 2005). SVR was found effective for the 

estimation of forest stem diameters and tree biomass using Lidar data (Dalponte et al., 



2008). Biomass is the total dry matter of the crop/vegetation. Karimi et al. (2008), Tuia 

et al. (2011), and Siegmann et al. (2013) have shown the potential of SVR regression 

model for the estimation of crop parameters. Previous studies have shown that the ANN 

and look up table (LUT) approaches generally performed best. However, the lack of 

good generalization capacity is one of the disadvantages of the ANN and LUT 

approaches (Fang et al., 2003; Kimes et al., 2000). SVR has theoretical advantages over 

ANN, such as absence of local minima in the model optimization phase (Cortez and 

Morais, 2007). 

RF model has its ability to predict crop yield production with the changing 

climate and biophysical parameters of wheat, corn and potato crops in comparison with 

multiple linear regressions at global and regional scales (Jeong et al., 2016). To date, 

only few studies have demonstrated the potential of random forest regression (RFR) 

model to derive plant parameters using remote-sensing data (Powell et al., 2010; Vuolo 

et al., 2013). For the assessment of LAI, each RFR model was made up of 500 

individual trees. Each tree was built with two-thirds of the training data (bootstrap 

samples), while the remaining one third testing data (out-of-bag samples) were used for 

a model internal validation (Siegmann and Jarmer, 2015). 

Different types of artificial neural network regression (ANNR) models have been 

developed for the estimation of biophysical parameters (De Martino et al., 2002; 

Dzwonkowski and Yan, 2005). However, the ANNR models offer a poor performance 

when working with few labelled data points. SVR is a promising alternative to ANNR 

which yields good results for the estimation of some biophysical models (Smola and 

Schölkopf, 2004; Camps-Valls et al., 2006). Backpropagation ANNRs are generally 

reported as successful in retrieving parameters such as LAI, biomass, VWC, PH and 

chlorophyll etc.. Two neural network models were trained by a physical vegetation 



model and used to retrieve soil moisture and crop variables of wheat canopies during 

the whole crop cycle (Del Frate et al., 2003). The high correlation coefficients were 

found between measured and estimated rice crop biomass using ground based 

scatterometer and RADARSAT-2 data by the ANN model (Jia et al., 2013). 

The microwave 𝜎0 depends on the surface roughness, soil texture and soil 

moisture of the bare soil surface (Ulaby et al., 1978). The better correlation was found 

between 𝜎0 and bare soil moisture using linear regression models (Ulaby et al., 1981). 

They also established the relations between 𝜎0 and soil moisture for vegetation-covered 

soil (Ulaby et al., 1979). However, the presence of vegetation cover reduces the 

sensitivity between 𝜎0 and soil moisture. The vegetation cover is one of the most 

important factors which may affect an accurate soil moisture measurement using 

microwave remote sensing (Dobson et al., 1985; Ulaby et al., 1986). Vegetation is semi-

transparent at longer microwave wavelengths. However influence of the vegetation on 

the data is also depend on the vegetation type, amount of vegetation and on the 

characteristics of sensor. 

Several researchers have reported that the simulated SAR backscatter from IEM 

could deviate by several decibels and in general the errors increase when incidence 

angle increases (Oh et al., 1992; Boisvert et al., 1997).  To overcome these problems the 

empirical models were developed using data acquired by several measurements of 𝜎0 

from different general conditions that can be applied to obtain reasonably accurate soil-

moisture retrieval (Walker et al., 2004). The empirical models were established using 

different sensor configurations such as frequency, incidence angle and polarization for 

the retrieval of soil moisture (Dubois et al., 1995; Oh et al., 2002; Zribi and Dechambre, 

2003). Some semi-empirical models were also developed for the retrieval of vegetation 

covered soil moisture. The semi-empirical models find an agreement between 



theoretical models and empirical models having common rules derived from both the 

models. 

In case of crop-covered soil moisture retrieval, the crop cover introduces the two 

way attenuation in the SAR backscatter. In general, backscatter from the crop covered 

soil depends on the sensor parameters like the radar frequency, polarization, incidence 

angle and target parameters like dielectric properties of crop and geometry of the crop. 

Efforts have been made by the researchers to compute the radar 𝜎0 and its essential 

components from the crop covered soil using radar scattering models. Although, the 

simulated SAR backscatter from crop covered soil derived from these models show 

good agreement with the observed SAR backscatter values extracted from SAR images 

(Dobson et al., 1983). However, these models are highly complex and very difficult to 

use for practical purposes over larger agricultural areas. Hence, it is needed to develop a 

simple and convenient method by which effect of crop cover in soil moisture mapping 

can be incorporated. 

Several theoretical, semi-empirical and empirical models have been developed for 

the better understanding of the interaction of microwave signals with crops/soil surface 

parameters (Karam et al., 1992; Le Toan et al., 1997; Macelloni et al., 2001; Liu et al., 

2002). External parameter orthogonalization coupled with SVM, RF, ANN and partial 

least squares regression models were applied on a wider set of soil properties and 

provided satisfactory results (Wijewardane et al., 2016). SVR model enhanced the 

retrieved soil moisture because the vegetation effect from the radar signal is well 

separated at HV polarization using RADARSAT-2 data (Pasolli et al., 2011b). ANN 

models and statistical methods were used for the retrieval of soil moisture from 

remotely sensed data (Notarnicola et al., 2008). The Sentinel-1A satellite data was used 



for retrieval of soil moisture covered by the winter wheat, barley and corn crops in this 

study. 

1.13 MOTIVATION 

Agriculture plays a vital role in the Indian economy. Over 70 % of the rural 

households depend on the agriculture as their principal means of livelihood (Dadhwal et 

al., 2002). Classification of different crops is essential to get acquainted with the types 

of crops and the total area covered by the crops in that region. The regular monitoring of 

the agricultural growth at its different growth stages is important for any country to 

estimate the agricultural production. This information is important to make a strategy 

which may reduce the production risk and increases efficiency in crop management and 

production. The sufficient agricultural production may be useful to establish the balance 

between food consumption and food production for the peoples of any country. For the 

fulfilment of above objectives, the extensive literature was made and came to draw 

following observations that   

(i) Very few researchers have classified more than ten different crop and non-crop 

classes using multi spectral satellite data (LISS-IV and Lansat-8 OLI). It’s a 

challenging task to classify more than ten different classes using these satellite 

images. Selection of robust algorithms is equally important to classify sixteen 

crop and non-classes using the multi spectral satellite images accurately. 

(ii) Very limited studies have been carried out using Indigenous LISS-IV and RISAT-

1 satellite data for the crop classification and monitoring (Sesa Sai and Rao, 2008, 

Mishra et al., 2017). 

(iii) Almost all the ongoing satellite missions have poor temporal resolutions. 

Recently, Sentinel-1A satellite launched by European Space Agency (ESA) has 



higher temporal resolution for the better crop growth monitoring and soil moisture 

retrieval. 

(iv) Retrieval of crop growth variables using Sentinel-1A satellite data by different 

models. 

(v) Regression models for the retrieval of soil moisture under different vegetated 

crops using Sentinel-1A SAR data. 

The above observations motivated us to do the research work described in the 

organization of thesis.  

1.14 ORGANIZATION OF THE THESIS 

The present thesis work is organised in the following ways: 

Chapter 1 describes about the introduction and literature review related to the work 

presented in the thesis. 

In Chapter 2, the different crops such as barley, wheat, lentil, mustard, pigeon pea, 

linseed, corn, pea, sugarcane, other crops and non-crop were classified using kernel 

based SVMs, ML and normalized difference vegetation index (NDVI) classification 

algorithms. The statistical significance in the classification accuracy was also analysed 

using Z-test and χ
2
-test. Before performing classification, the M-test and J-M distance 

methods were used to check the separation between the classes of crops and non-crop.  

In Chapter 3, an attempt was made to analyse the performance of supervised 

classification algorithms such as kernel based SVMs, ANN and RF for the land features 

classification. Different selected measures such as marginal rates, F-measure, Jaccard’s 

Coefficient of Community (JCC) and Classification Success Index (CSI) were analysed 

to measure the accuracy. Separability analysis was done using TD and J-M distance 

methods. 



Chapter 4 was described in the two parts: (a) comparative study of the crop 

classification performed by ANN algorithm at changing learning parameters using 

LISS-IV and Landsat-8 OLI satellite data. (b) crop classification by ANN algorithm 

using RISAT-1 data and separability analysis.  

Chapter 5 described the winter wheat crop growth parameters such as LAI, VWC, FB, 

DB and PH estimation using Sentinel-1A satellite data. RFR, SVR, ANNR and LR 

algorithms were used for the estimation of wheat crop growth parameters and results 

obtained were compared. 

Chapter 6 described about the WCM used for the retrieval of LAI and LWAI of corn 

crop using Sentinel-1A satellite data at VV polarization and results obtained were 

compared. 

Chapter 7 described about the comprehensive evaluation of soil moisture under 

different crop retrieval models. The soil moisture retrieval covered by wheat, barley and 

corn was done using RFR, kernel based SVR and ANNR models.  

In chapter 8, overall conclusions drawn from this research are presented. This chapter 

also summarises the major findings of the research and provides a number of 

recommendations for the future work. 

 

 

 

 

 

 

 


