
Chapter 5

Load Balanced Scheduling considering
Performability

This chapter presents a Honey Bee Optimization (HBO) based method [106] to solve the

problem of scheduling of load balanced transactions. In this method, first, the load of the

system is balanced and then the transactions are scheduled using foraging behavior of

honey bees to find the optimal solutions. We also modify four known scheduling

algorithms such as Ant Colony Optimization (ACO), Hierarchical Load Balanced

Algorithm (HLBA), Dynamic and Decentralized Load Balancing (DLB), and

Randomized to obtain transaction scheduling algorithms for the purpose of comparison

with our proposed algorithm. The compared results show that the proposed algorithm

performs better than the modified existing algorithms.

5.1 Load Balanced Transaction Scheduling Model

The load balanced transaction scheduling model in on-demand computing environment

is depicted in FIGURE 5.1. The model consists of six modules. The model first generates

a set of transaction requests T with their deadline di (i = 1,2, . . . ,m). Each transaction Ti

executes within its assigned deadline, otherwise, it will be rolled back or is aborted. The

load balanced transaction scheduling is applied to find the appropriate node on a set of N

nodes N j (j = 1,2, . . . ,N). When transactions is executed within their prescribed

95

Chapter 5. Load Balanced Scheduling considering Performability 96

deadline, the number of successful transactions are increased. These successful

transactions are sent ‘committed’ and unsuccessful ones are sent ‘rolled back’. If a

transaction faces rollback and deadline have not expired, the transaction is again sent

back to the new optimal processing node. Lastly, the availability and performance of the

system are measured. This is measured by Performability Analyzer in FIGURE 5.1. How

each module of this model works is given below:

Transaction

Generator

Resource

Manager

Transaction

Scheduler

Status

Monitor

Transaction

Allocator

Start

Rolled back

Transaction

Committed

Transaction

Acknowledgement of

Aborted Transaction

Performability

Analyzer

Committed

Transaction

Committed

Transaction

FIGURE 5.1: Performability-Aware Load Balanced Transaction Scheduling
Model

• Transaction Generator: In this module, the transaction requests are generated.

Transactions arrive in Poisson fashion to the system with the rate λ . The resource

manager, then, finds out suitable resources for these transactions. After completion

of the whole process of the transaction, it receives either the status of committed

transactions or the acknowledgment of aborted transactions.

• Resource Manager: This module manages the pool of resources available to the

Grid, i.e., the scheduling of the nodes, network bandwidth, and disk storage. It

manages the resources for rolled back transactions also.

• Transaction Scheduler: The transaction scheduling which is the important part of

the system is accomplished in this module. It maps of transactions to their suitable

resources available in the system. But, when the system workload grows heavily,

the number of transactions waiting in the queue increases. In this situation, the

Chapter 5. Load Balanced Scheduling considering Performability 97

scheduler needs to perform load balancing also, over these transactions from a

holistic perspective.

• Transaction Allocator: This module selects the load balanced optimal nodes based

on the scheduling information. These transactions can access those nodes after the

lock is granted. Then transactions get allocated to the scheduled nodes.

• Transaction Monitor: As the name signifies, the module checks or monitors

whether transactions have executed within their deadline. If they have, they are

allowed to commit or rollback. Otherwise, they are aborted. Thus, the transactions

commit, rollback or abort, is decided by Transaction Monitoring phase by using

their respective deadlines.

• Performability Analyzer: The module analyses the performability of on-demand

computing based transaction processing system. Performability here is the

combined analysis of availability and performance which first analyze the

availability of the resources and then computes the performance.

The objective of the model is to find an optimal schedule of transactions from the set T to

the balanced nodes of the set N with optimized the performance criteria.

5.2 Problem Formulation

In load balanced transaction scheduling problem, m number of transactions and N

number of nodes are considered here. Each transaction needs to be completed within

their given deadline on one of the nodes. So, the aim of this problem is to find the

maximum number of successful transactions that meet their given deadline. Consider the

set T of m transactions Ti(i = 1,2, . . . ,m) to be processed within their given deadline,

each of them on one node, on the set of N nodes N j(j = 1,2, . . . ,N). All the transactions

can be processed on any of the N nodes. We assume that the completion times of each

transaction, tTi , are independent of the node processing it. The formulations of some

important parameters of the problem are given as follow:

Load is the mean number of transactions waiting to be processed in on-demand computing

environment. It is estimated as the sum of the mean number of transactions waiting for

Chapter 5. Load Balanced Scheduling considering Performability 98

each of on-demand computing resources in the infinite execution of the system. Each

of on-demand computing resources can be modeled as an M/M/1 queuing system. The

steady-state analysis of the M/M/1 queuing systems may result in the mean length of the

underlying waiting queues [113]. The average waiting time [114] at each node is given

by

Wj =
1

µ j−λ j
− 1

µ j
(1)

Thus by Little’s theorem [114], the mean number of transactions waiting in the queue of

the node N j can be obtained as

LN j = λ jWj =
λ j

2

µ j(µ j−λ j)
,∀ j;1≤ j ≤ N,0≤ λ j ≤ µ j (2)

where λ j is the arrival rate of a transaction and µ j is the processing rate of transaction at

jth node respectively.

Therefore, the sum of the mean number of tasks waiting to be processed in on-demand

computing environment can be obtained as

L =
N

∑
j=1

λ j
2

µ j(µ j−λ j)
(3)

Then the processing time of each node can be calculated as

PTj =
LN j

µ j
(4)

Therefore, the processing time of the system can be calculated as

PT =
N

∑
j=1

L
µ j

(5)

Thus, the standard deviation of load [82] can be calculated as

σ =

√√√√ 1
N

N

∑
j=1

(PTj−PT)2 (6)

Chapter 5. Load Balanced Scheduling considering Performability 99

Availability in on-demand computing based transaction processing system is defined in

[18] as the probability that at any time a required minimum fraction of transactions are

finished within a given deadline. Thus, the system is said to be available at time t, if

the expected fraction of arriving transactions in the small interval (t,∆t) which miss their

deadlines is less than a given quality of service requirement φ . The following availability

formulation uses the concept of [18].

If D(t), a random variable, denotes the response time by a transaction at time t, the system

is said to be available at time t if

Pr[D(t)≤ d]≤ φ (7)

Then probability, wd(t), that the system is available at time t is given by

wd(t) = Pr[D(t)≤ d] (8)

Then availability at time t can be expressed as

A(t) = Pr[wd(t)≤ φ] (9)

If the system is in state Si, the probability that the response time of a transaction is less

than d at the time of arrival of the transaction is given by wd|i(t). Let ri(t) is the function

which denotes the correctness characteristics of the system in the state Si at time t. Then,

ri(t) =

1, if wd|i(t)≤ φ

0, otherwise
(10)

Since the transactions arrive in Poisson fashion with rate λ and µ be the transaction

processing rate. It is assumed that the failure, repair and processing times of transactions

are exponentially distributed. The definition accounts for failure caused not only due to

failures of the servers, but also the temporary degradation of performance due to

transient overloading of the system. Let γ be the failure rate, and η be the repair rate of

the servers. If system is in state Si, where Si = i is the number of transactions in the

system, and N be the number of servers available at time t and k ∈ N, then wd|k(t) is

Chapter 5. Load Balanced Scheduling considering Performability 100

given as

wd|k(t) =

wexp(d), ∀k < N

(werl
⊗

wexp)(d), ∀k ≥ N
(11)

where wexp(d) = 1− e−µd if k < N and werl(d) = 1−
N−k
∑

k=0

(Nµd)k

k! e−Nµd if k ≥ N. Here
⊗

represents the convolution operator.

If the system be modeled as M/M/N [114], the steady-state probabilities for the model

are given by

Π0 =

[
N−1

∑
k=0

(Nρ)k

k!
+

(Nρ)N

N!(1−ρ)

]−1

(12)

Πk =
(Nρ)k

k!
Π0, 1≤ k ≤ N−1 (13)

Πk =
NNρk

N!
Π0, k ≥ N (14)

where ρ = λ

Nµ
.

Suppose M is the threshold after which all ri’s with i≥M will be 0. Then, the conditional

steady-state availability1 is given by

Ak,λ =
M

∑
i=0

riΠi (15)

Now, suppose Qk be the probability that there are exactly k out of N servers available. If

q = η

γ+η
be the availability of a single server, then

Qk =
N!

k!(N− k)!
qk(1−q)N−k (16)

Then availability of the system under certain load λ is given by

Aλ =
N

∑
k=1

Ak,λ Qk (17)

1Steady-state availability of a system at time t is the probability that the system is functioning correctly
when time tends to infinity. Then steady state availability is computed as A(∞) = lim

Time→∞

1
Time

∫ Time
0 A(t)dt.

Chapter 5. Load Balanced Scheduling considering Performability 101

where ∀k = 1, ...,N. Therefore, under a transaction scheduling X = {xik}16i6m,16k6n,

Aλ (X) =
N

∑
k=1

M

∑
i=0

riΠi.
N!

k!(N− k)!
qk(1−q)N−k (18)

The probability that a transaction successfully completes by the specified deadline is

defined as the performability of the transaction. If P(T) be the performability [115] of

on-demand computing based transaction processing system, then

P(T) =
m

∏
i=1

Pd(Ti) (19)

where Pd(Ti) is the probability that the transaction Ti completes within d(Ti) that may

also permit retries if necessary using slack time. Now, if Pd(Ti) is the probability that

the transaction Ti completes within the estimated execution time d(Ti), then probability

Pd(Ti)retry
that the transaction Ti will meet the deadline, based on retries is given by

Pd(Ti)retry
=

k−1

∑
j=0

(1−Pd(Ti))
j ∗Pd(Ti) (20)

where k ∗ d(Ti) ≤ d(Ti)retry, and (1−Pd(Ti)) be the probability that transaction Ti fails to

complete within execution time d(Ti). Then the performability in Eq. (19) will change to

P(T) =
m

∏
i=0

Pd(Ti)retry (21)

Miss Ratio [7] is used to measure the performance of the algorithm used for transaction

execution. It is calculated as

Miss Ratio =
Tmiss

Ttotal
∗100% (22)

where Tmiss is the number of transactions missing the deadlines and Ttotal is the total

number of handled transactions.

We propose the load balanced scheduling in this chapter so that the waiting time on each

node can be minimized and it can

Chapter 5. Load Balanced Scheduling considering Performability 102

1. maximize the resource availability,

2. maximize the performability of the transaction (P(T)), and

3. minimize the miss ratio.

5.3 Proposed Algorithm

The section proposes LBTS HBO (see Algorithm 3). This optimization algorithm is

based on a foraging behavior of honey bees to find the optimal solution of the problem.

Here a transaction represents a honey bee. The set of transactions is the honey bee colony.

• Load balanced scheduling decision: The algorithm makes decisions for sending

the arriving transactions by load balancing technique. Suppose the system has some

threshold limit for load. For this, two possible situations may arise. In the first

situation, if the load is less than the threshold value, then the system is balanced.

Otherwise, the system is overloaded in the second situation.

• Transaction scheduling: After checking the load of the system, the scheduling

algorithm selects the appropriate node based on the load value of the node. The

node having the lesser value of load is selected.

• Update of fitness value: After selecting the appropriate node, the algorithm updates

the load value of the selected node and subsequently the overall load of the system

is also changed.

The section proposes the LBTS HBO algorithm. How the LBTS HBO works is described

below.

Suppose Ti of a set of transactions T is the transaction which is arriving in scheduling

queue. The scheduler then finds the suitable node N j from a set of nodes N to assign the

transaction Ti. Therefore Ti is the input to this algorithm.

First of all, line 1 initializes node population N. Until the scheduling queue is not empty,

lines 2− 23 run while loop repeatedly selecting the random nodes to search the optimal

Chapter 5. Load Balanced Scheduling considering Performability 103

Algorithm 3 LBTS HBO
INPUT: Transaction Ti
1: Initialization node population . Initialization
2: while Scheduling queue is not empty do
3: for each Transaction Ti in T do
4: for each node N j in N do
5: if

(
σ ≤ σthres

)
then

6: if
(
LN j ≤ b

N
2 c
)

then
7: Assign Ti to N j . Assignment of Transaction Ti to node N j
8: Increment the load of N j by one . Incrementation of load on node N j after assignment of transaction
9: else
10: Select two random nodes Nr1 and Nr2
11: Compare their loads
12: Select least loaded node out of these two
13: Assign Ti to least loaded node
14: Increment the load of least loaded node by one
15: end if
16: else
17: Abort transaction Ti
18: end if
19: end for
20: Update the fitness value to all nodes . Updation of fitness value
21: Find σ of the system
22: end for
23: end while
OUTPUT: Scheduling status

node for the requested transaction. In each iteration of the while loop, the algorithm

performs the following operations. Lines 3−22 run the for loop for each Ti. Lines 4−19

again run a for loop, but this time for each node N j from the population N. Line 5 checks

σ . Two conditions arise in this respect.

1. σ ≤ σthres: If this situation arises, then the system is balanced. Here σthres lies in

[0,1].

2. σ > σthres: If this situation arises, it means the system is already overloaded and no

node is ready to accept more load. Therefore, transactions are aborted instead of

assigning to the overloaded nodes.

If the condition is true, then the system is balanced and the load balanced scheduling

is triggered. For load balanced scheduling lines 6 to 15 work as follows: Line 6 checks

whether LN j ≤bN
2 c. If it is, then Ti is assigned to N j in line 7 and load on N j is incremented

by one in line 8. Otherwise, two random nodes are selected randomly from the set of

nodes N (line 10). Their loads are compared (line 11). In line 12, least loaded node

between two is selected for the assignment of Ti. Line 14 then increments the load of the

selected node by one. Whereas, the false condition of line 5 starts in line 17 which says

that if σ > σthres then system is said to be overloaded and load balanced scheduling is not

Chapter 5. Load Balanced Scheduling considering Performability 104

possible. Therefore, it is better to abort the transaction. Then line 20 updates the fitness

value to all nodes. Here fitness value means the status of load and capacity of each node.

Line 21 finds out the value of σ of the system. We repeat the iterations of the while until

all the transactions are not scheduled.

5.4 Applying LBTS HBO Algorithm

The characteristics of balanced scheduling in on-demand computing based transaction

processing systems are different from other scheduling in the aspect that the solution

is an unordered subset of balanced nodes. In our study model, on-demand computing

based transactions are represented by a complete undirected graph. Let G = (N,E) denote

the complete undirected graph representing transactions, where N is the set of nodes;

E =N×N is the set of edges between the nodes. FIGURE 5.2 gives an illustrative example

how LBTS HBO algorithm works. Suppose there are m number of transactions (T1, T2,

. . . , Tm) which arrive at the system with available nodes (suppose N = 8).

Load balanced scheduling decision: Before going to scheduling decision, the

LBTS HBO constructs a set of the feasible solution so that the scheduler gets the optimal

nodes for scheduling incoming transactions. Construction of the solution starts from the

initial node N1. The scheduling decisions are taken as follows:

Suppose, each node has the processing capacity i.e., µ j = 8. Then total processing

capacity of the system is 64. If LN j = {4,7,6,3,5,7,8,5} as shown in FIGURE 5.1(a).
Then σ will be calculated using Eq. (6) as 0.456892. Here σ is calculated using Eqs. (1)
to (6). If we assume σthres = 1. Here σ < σthres. As subfigure (a) in FIGURE 5.2
illustrates, the LBTS HBO works by checking the load of the node N1. Since L1 6 bN

2 c
(since N = 8), the condition becomes true. Thus, N1 is selected as the best-so-far

solution. The load value is incremented by 1, and it becomes 5. Then the bee in the

algorithm comes out of the while loop. The last position of the bee is still at the node N1.

Therefore, again line 5 of the algorithm checks the condition. This time, the condition

fails, so two random nodes N2 and N6 are selected as shown in subfigure (b) in FIGURE

5.2. Their loads are 7 and 7 respectively. Load on both of the nodes are same, then any of

them can be selected. Suppose N2 is selected. The load value of N2 is incremented by 1

Chapter 5. Load Balanced Scheduling considering Performability 105

(a)

L1 = 4
L2 = 7

L3 = 6
L8 = 5

L4 = 3L7 = 8

L5 = 5L6 = 7

Node 1

8

7

6

4

3

21

5

(b)

Node 1 2

7

1 2

8 3

4

6 5

L1 = 5
L2 = 7

L3 = 6

L4 = 3

L5 = 5L6 = 7

L7 = 8

L8 = 5

(c)

Node 1 2 8

7

1 2

8 3

4

6 5

L1 = 5
L2 = 8

L3 = 6

L4 = 3

L5 = 5L6 = 7

L7 = 8

L8 = 5

(d)

Node 1 2 8 4

7

1 2

8 3

4

6 5

L1 = 5
L2 = 8

L3 = 6

L4 = 3

L5 = 5L6 = 7

L7 = 8

L8 = 6

(e)

Node 1 2 8 4 5

7

1 2

8 3

4

6 5

L1 = 4 L2 = 8

L3 = 6

L4 = 4

L5 = 5L6 = 7

L7 = 8

L8 = 6

(f)

Node 1 2 8 4 5 4

7

1 2

8 3

4

6 5

L1 = 5 L2 = 8

L3 = 6

L4 = 4

L5 = 6L6 = 7

L7 = 8

L8 = 6

FIGURE 5.2: Working example of the LBTS HBO when N=8

Chapter 5. Load Balanced Scheduling considering Performability 106

and it becomes 8. In subfigure (c), the bee is at N2. Line 6 checks the condition. Since it

is false, two random nodes N3 and N8 with their respective load 6 and 5 are selected. The

N8 is least loaded between N3 and N8. Here N8 is selected as the solution. The same

procedure continues in subfigure (c) to (f) in FIGURE 5.2. The solution is kept in the

scheduling queue. At every step from FIGURE 5.1(a) to FIGURE 5.1(f), we found that

the σ ≤ 1.

Transaction scheduling: After the scheduling decision is done, the algorithm prepares

the scheduling list of transactions. According to this list the transactions are dispatched to

their assigned nodes.

Update of fitness value: After each iteration of the while loop in the algorithm, the

fitness value of all the nodes are changed. Because, at every iteration the load value of

selected node is changed which is used in finding out the fitness value of a node. Then the

algorithms finds the σ of the system.

5.5 Simulation and Result Analysis

We have chosen Colored Petri Nets (CPNs or CP-nets) for the simulation of our work. The

transactions are generated randomly using exponential distribution. For modeling failures

in the system, we use the Poisson process. In our simulations, the system scenario is based

on Czech National Grid Infrastructure Metacentrum project.

As depicted in FIGURE 5.1, created by transaction generator, transactions first enter the

transaction queue and then get scheduled in a transaction allocator before arriving at the

appropriate node. The peformability of the system is checked every time.

We modify four known scheduling algorithms to obtain transaction scheduling

algorithms for the purpose of comparison with our proposed algorithm. We compare the

performances of the proposed algorithm with the four scheduling algorithms; ACO [36],

Hierarchical Load Balanced Algorithm (HLBA) [116], Dynamic and Decentralized Load

Balancing (DLB) algorithm [35], and Randomized algorithm with random selection

method [36]. For the purpose of comparison, we simulated all the scheduling algorithms

also on non-transaction processing system. We thus ran each algorithm 10 times at each

Chapter 5. Load Balanced Scheduling considering Performability 107

time unit value for every problem instances to get the result. We used term TM for

transaction management and WTM for without transaction management in result graphs.

5.5.1 Comparison of Time Complexity of LBTS HBO Algorithm
with Other Algorithms

In each iteration the algorithm LBTS HBO iterates through all vertices of the graph (see

FIGURE 5.2). Let us suppose the scheduling queue is of fixed size. The time to be

elapsed for completing whole queue is c1. Line 3 of the algorithm runs for loop for

each transactions. The number of transactions is assumed as m. Line 4 runs another for
loop for each node. The number of nodes is assumed as n. Then assignment process

starts. Let us suppose, the assignment process takes c2 time. Then time complexity of

the algorithm is O(c1.mn.c2) i.e., O(mn). Therefore, time complexity of our algorithm

LBTS HBO is O(mn) where m is the number of transactions and n is the number of

nodes in on-demand computing system. We can see the comparison of time complexity

with other four algorithms in TABLE 5.1.

Along with the time complexity we also have the characteristics of the existing and our

proposed algorithm as shown in TABLE 5.2.

TABLE 5.1: Comparison of time complexity of our algorithm with other
algorithms

Algorithms Time Complexity

LBTS HBO O(mn)
ACO O(mn)
HLBA O(m.n logn)
DLB O(mn2)
Randomized O(mn2)

Chapter 5. Load Balanced Scheduling considering Performability 108

TABLE 5.2: Comparison of the characteristics of the existing algorithms
with our proposed algorithm LBTS HBO

Algorithms Load
balancing

Scheduling Heuristic Meta-heuristic Dynamic Real-time Transaction
Processing

ELISA [13]
√ √ √ √

HLBA [34]
√ √ √ √

MFTF [60, 61]
√ √ √ √

DLB [35]
√ √ √ √

ECLB [10]
√ √ √ √

GA [1]
√ √ √ √

Hybrid
real-coded
GA [62]

√ √ √ √

Extremal
Optimization
[2]

√ √ √

HBB-LB [82]
√ √ √

BCO [83]
√ √ √

MBO [85]
√ √ √

BLA [86]
√ √ √

ACO [36]
√ √ √ √

Randomized
Algorithm
[36]

√ √ √ √

LBTS HBO
√ √ √ √ √ √ √

5.5.2 Availability Analysis of Resources in the System

Resource availability is the important attribute of the system dependability. In this

section, we analyze the comparative results of resource availability using the mentioned

algorithms as shown in TABLE 5.3. The results show that the proposed algorithm works

better in on-demand computing based transaction processing system as compared to the

computational grid. Minimization of load on each node enhances the resource

availability for a deadline-constrained transaction. More and more transactions can be

executed successfully when they get completed within their deadlines. But in the case of

the computational grid, the jobs may not be time-bound (deadline). Therefore, the

proposed algorithm is not so much suitable in the computational grid.

We see in FIGURE 5.4 which shows the comparative analysis of resource availability

when all the algorithms are run in on-demand computing based transaction processing

system. The comparison of results shows that both ACO and the proposed algorithm

work better than other algorithms. It means the meta-heuristic approaches are suitable in

Chapter 5. Load Balanced Scheduling considering Performability 109

this condition for the defined problem. However, our algorithm works better than ACO at

many instances of time.

We see in FIGURE 5.5 which illustrates the comparison of resource availability when all

algorithms are run in on-demand computing environment without transaction processing.

The results show that both the ACO and our proposed algorithms work better than

others. However, the proposed algorithm works comparatively better than ACO when the

deadline time is less than 400 and greater than 900 time unit.

TABLE 5.3: Resource Availability

Time
LBTS HBO ACO HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM

100 0.9977 0.9977 0.99999 0.9911 0.989 0.9879 0.9879 0.9861 0.9877 0.9857
200 0.9965 0.9977 0.9958 0.9922 0.9890 0.9863 0.9884 0.9857 0.9863 0.9830
300 0.9968 0.9955 0.9932 0.9936 0.9882 0.9872 0.9886 0.9868 0.9881 0.9863
400 0.9939 0.9912 0.9928 0.9933 0.9906 0.9836 0.9910 0.9829 0.9903 0.9822
500 0.9881 0.9903 0.9911 0.9929 0.9887 0.9858 0.9886 0.9857 0.9879 0.9836
600 0.9896 0.9882 0.9911 0.9915 0.9885 0.9872 0.9888 0.9867 0.9881 0.9845
700 0.9931 0.9884 0.9905 0.9887 0.9839 0.9843 0.9841 0.9839 0.9836 0.9836
800 0.9887 0.9873 0.99 0.9886 0.9855 0.9849 0.9859 0.9846 0.9856 0.9842
900 0.9890 0.9890 0.9894 0.9884 0.9842 0.9863 0.9840 0.9860 0.9839 0.9857
1000 0.9895 0.9895 0.9879 0.9890 0.9879 0.9868 0.9876 0.9863 0.9871 0.9854

Resource Availability in LBTS_HBO with and without TM

Re
so

ur
ce

 A
va

ila
bi

lit
y

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Re
so

ur
ce

 A
va

ila
bi

lit
y

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

LBTS_HBO without TM
LBTS_HBO with TM

FIGURE 5.3: Resource Availability in LBTS HBO with and without
transaction management (TM)

Chapter 5. Load Balanced Scheduling considering Performability 110

Resource Availability with TM

Re
so

ur
ce

 A
va

ila
bi

lit
y

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Re
so

ur
ce

 A
va

ila
bi

lit
y

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Randomized
DLB
HLBA
ACO
LBTS_HBO

FIGURE 5.4: Resource
Availability when transaction

management (TM) is used

Resource Availability without TM

Re
so

ur
ce

 A
va

ila
bi

lit
y

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Re
so

ur
ce

 A
va

ila
bi

lit
y

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Randomized
DLB
HLBA
ACO
LBTS_HBO

FIGURE 5.5: Resource
Availability when no transaction

management (TM) is used

5.5.3 Performability Analysis of the System

This section presents the performability analysis of on-demand based transaction

processing system. Performability is a composite measure of a system’s performance and

its dependability. This measure becomes the vital evaluation method for on-demand

computing systems which are highly dependable systems, because the systems undergo a

graceful degradation of performance in the presence of faults (malfunctions) allowing

continued “normal” operation.

We have the comparative results of performability using the mentioned algorithms as

shown in TABLE 5.4. The results show that the LBTS HBO performs better than the

others. We see in FIGURE 5.6 which shows how our proposed algorithm works in

on-demand computing based transaction processing system as well as in on-demand

computing system without transaction processing. It is evident that the algorithm works

better in on-demand computing based transaction processing compared to the

computational grid. The reason behind this is that the algorithm is designed for

deadline-constrained transactions. The deadline condition, if applied in the

computational system which requires a long time to execute the larger jobs, the output of

successful jobs will see the decline with the limited time-bound as a deadline. For the

computational grid, the algorithm works well only for those jobs which require shorter

execution time (less than 400 time unit). The results prove that the algorithm is suitable

Chapter 5. Load Balanced Scheduling considering Performability 111

for on-demand computing based transaction processing system. Instead of this we also

compare other existing algorithms.

The comparative analysis of performability is shown in FIGURE 5.7 when all the

algorithms are run in on-demand computing based transaction processing system

environment. We compare our algorithm with existing four algorithms. It is evident from

the results that the proposed algorithm outperforms the other algorithms. We have the

comparative analysis of performability when transaction processing is missing in

on-demand computing system as shown in FIGURE 5.8. Here we see that the HLBA

performs approximately same as our algorithm. Because our algorithm does not perform

better than HLBA when executing the larger computational jobs as compared to

transactions having their respective deadlines.

TABLE 5.4: Performability

Time
LBTS HBO ACO HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM

100 0.667 0.667 0.999 0.2 0.6436 0.6153 0 0 0 0
200 0.865 0.926 0.77 0.562 0.923 0.913 0 0 0 0
300 0.953 0.93 0.775 0.823 0.9426 0.9456 0.864 0.816 0.833 0.778
400 0.949 0.893 0.895 0.874 0.9651 0.9551 0.9105 0.8641 0.889 0.833
500 0.977 0.94 0.915 0.900 0.975 0.9691 0.9228 0.9097 0.92 0.886
600 0.95 0.942 0.927 0.932 0.9796 0.9782 0.955 0.9507 0.9432 0.938
700 0.97 0.943 0.935 0.93 0.9781 0.9818 0.9605 0.9648 0.9503 0.9557
800 0.96 0.954 0.94 0.937 0.9854 0.9831 0.955 0.9697 0.9482 0.962
900 0.969 0.964 0.95 0.94 0.9838 0.9872 0.9704 0.9746 0.9625 0.9678
1000 0.973 0.964 0.955 0.954 0.9892 0.9875 0.9765 0.9784 0.9702 0.9727

5.5.4 Miss Ratio of Transactions in the System

This section illustrates the comparative analysis of miss ratio of transactions when the

mentioned algorithms are applied in on-demand computing based transaction processing

as well as in the computational grid.

We have TABLE 5.5 which depicts the comparative results of the simulation. The results

show that miss ratio is minimized when the proposed algorithm is applied. The

minimization of miss ratio indicates that the number of successful transactions are

increased which is one of our objectives.

Chapter 5. Load Balanced Scheduling considering Performability 112

Performability of LBTS_HBO with and without TM

Pe
rf

or
m

ab
ili

ty

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pe
rf

or
m

ab
ili

ty

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (time unit)
0 200 400 600 800 1,000 1,200

0 200 400 600 800 1,000 1,200

LBTS_HBO without TM
LBTS_HBO with TM

FIGURE 5.6: Performability in LBTS HBO with transaction management
(TM) and without transaction management

Performability with TM

Pe
rf

or
m

ab
ili

ty

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Pe
rf

or
m

ab
ili

ty

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Randomized
DLB
HLBA
ACO
LBTS_HBO

FIGURE 5.7: Performability
when transaction management is

used

Performability without TM

Pe
rf

or
m

ab
ili

ty

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Pe
rf

or
m

ab
ili

ty
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Randomized
DLB
HLBA
ACO
LBTS_HBO

FIGURE 5.8: Performability
when no transaction management

is used

We see in FIGURE 5.9 which illustrates the miss ratio comparison when the proposed

algorithms run separately, first in on-demand computing based transaction processing

system and later in the computational grid. The result shows that our algorithm works

better in transaction processing environment as compared to the computational

environment.

We see in FIGURE 5.10 which depicts the comparative analysis of miss ratio among all

the mentioned algorithms. The results show that our algorithm is much better than others

at all instances of time. Even in the case of the computational environment (as shown in

Chapter 5. Load Balanced Scheduling considering Performability 113

FIGURE 5.11), the proposed algorithm performs better than others. The improvement in

results is caused owing to the balanced scheduling approach of the algorithm. When all

the nodes are balanced, the chances of transaction commit is increased, because waiting

time at each node is minimized.

TABLE 5.5: Miss Ratio (%)

Time
LBTS HBO ACO HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM

100 33.33 33.33 34 35 35.6 33.3 38 40 50 50
200 13.51 7.407 23.07 43.75 30.4 35.6 35 38 39 39
300 4.65 7.05 22.454 17.645 22.8 23.6 53 60 65 68
400 5.140 10.738 10.484 12.631 13.2 17.6 36.2 54 44.4 64
500 6.323 5.99 8.475 9.937 13.6 11.6 25.36 36.8 32 45.6
600 4.987 5.76 7.317 6.785 9.98 11.6 20 20.4 22.4 24.4
700 3.00 5.66 6.472 6.963 8.4 11.5 15.76 14.4 19.6 17.6
800 4.104 4.64 6.00 6.340 8.30 9.50 16.44 12.12 22.4 15.2
900 3.05 3.632 4.914 6.149 6.4 7.4 11.84 11.6 22.4 12.8
1000 2.65 3.728 4.414 4.608 5.4 7.6 9.2 8.6 11.6 10.8

Miss Ratio in LBTS_HBO with and without TM

M
is

s
Ra

ti
o

(%
)

0

5

10

15

20

25

30

35
M

is
s

Ra
ti

o
(%

)

0

5

10

15

20

25

30

35

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

LBTS_HBO without TM
LBTS-HBO with TM

FIGURE 5.9: Miss Ratio in LBTS HBO with and without transaction
management (TM)

5.6 Observations

In this chapter we formulated performability as well as miss ratio of transaction

processing in on-demand computing system. Load balanced scheduling of transactions

Chapter 5. Load Balanced Scheduling considering Performability 114

Miss Ratio with TM

M
is

s
Ra

ti
o

(%
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

M
is

s
Ra

ti
o

(%
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Randomized
DLB
HLBA
ACO
LBTS_HBO

FIGURE 5.10: Miss Ratio when
transaction management is used

Miss Ratio without TM

M
is

s
Ra

ti
o

(%
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

M
is

s
Ra

ti
o

(%
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Time (time unit)
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Randomized
DLB
HLBA
ACO
LBTS_HBO

FIGURE 5.11: Miss Ratio when
no transaction management is

used

in this system to maximize performability is very complex task. In order to solve this

problem, we proposed LBTS HBO algorithm. We compared the performance of our

algorithm with ACO, HLBA, DLB, Randomized algorithms. The experimental results

show that LBTS HBO outperforms other algorithms.

5.7 Summary

In this chapter, we proposed a load balanced scheduling technique for on-demand

computing based transaction processing systems based on the behavior of honey bee

foraging strategy. The algorithm balances the load before scheduling the transactions to

appropriate nodes in on-demand computing environment. The transactions are treated as

honey bees. This chapter formulates the resource availability and performability

considering load. We modified four scheduling algorithms and obtained transaction

scheduling algorithms for the purpose of comparison with our proposed algorithm. The

result section in this chapter shows that the algorithm enhances the resource availability

by decreasing the load. It also increases performability and reduces the miss ratio. This

load balanced scheduling algorithm works well for on-demand computing based

transaction processing systems. In future, we plan to extend this work to analyze the

dependability of the system.

	5 Load Balanced Scheduling considering Performability
	5.1 Load Balanced Transaction Scheduling Model
	5.2 Problem Formulation
	5.3 Proposed Algorithm
	5.4 Applying LBTS_HBO Algorithm
	5.5 Simulation and Result Analysis
	5.5.1 Comparison of Time Complexity of LBTS_HBO Algorithm with Other Algorithms
	5.5.2 Availability Analysis of Resources in the System
	5.5.3 Performability Analysis of the System
	5.5.4 Miss Ratio of Transactions in the System

	5.6 Observations
	5.7 Summary

