
Chapter 4

Transaction Scheduling considering
Availability

Maximization of availability for task scheduling in on-demand computing based

transaction processing system is an emerging problem. The existing approaches to find

the exact solutions for this problem are limited. This chapter proposes a task scheduling

algorithm using ant colony optimization (ACO) to solve the mentioned problem. In this

method, first, availability of the system is computed, and then the transactions are

scheduled using foraging behavior of ants to find the optimal solutions. We also modify

two known meta-heuristic algorithms such as Genetic Algorithm (GA) and Extremal

Optimization (EO) to obtain transaction scheduling algorithms for the purpose of

comparison with our proposed algorithm. The compared results show that the proposed

algorithm performs better than others.

4.1 Problem Formulation

On-demand computing based transaction processing system consists of a set of various

heterogeneous and homogeneous resources which are geographically distributed. To

maintain the quality of service (QoS) for the transaction processing in such environment

is a challenge. Because, the on-demand computing is a parallel and distributed system

and thus there are many issues regarding computing of this system, for example, data

59



Chapter 4. Transaction Scheduling considering Availability 60

locality and availability, scalability, implementation, autonomy, maintenance, fault

tolerance, privacy, security are needed to be addressed well before the commercialization

of such system. In this chapter, we discuss one of these issues, resource availability.

Transaction scheduling and transaction allocation in on-demand computing system are

important strategies which enhances the efficiency of resource management in the

system. Transaction scheduling is the method which assigns the transactions to the

suitable resources with the purpose to execute them within their prescribed deadline

along with optimizing some scheduling parameters. Transaction scheduling in the

on-demand computing environment becomes an NP-hard problem as it offers a large

search space of possible solutions.

In [1], authors have tried to formulate this problem successfully. But the problem focuses

on the resource availability and makespan for task scheduling in grid computing system.

Our problem formulation centers on the resource availability and the makespan for

transaction scheduling in on-demand computing system. Each transaction must be

executed with the consideration of negligible deadline-miss chance. But we start the

problem formulation with same sequence as it was given in [1].

Resource availability which is an important issue in maintaining the QoS of any

computing system has two key parameters such as failure rate and repair rate. The failure

rate is the number of failure per unit time while repair rate is the number of repairs per

unit time. Since the on-demand computing system is also a repairable type of system,

MTTF and MTTR are used to compute the resource availability of the system.

In this chapter, our addressed problems are the maximization of resource availability and

minimization of makespan in the on-demand computing based transaction processing

system.

Definition 4.1.1. The availability of the on-demand computing system nodes (resources)

is expressed as the probability that the nodes are available for a given time interval.

Mean Time To Failure (MTTF) and Mean Time To Repair (MTTR) are the two parameters

which are used to compute the availability of the on-demand computing based transaction

processing system.



Chapter 4. Transaction Scheduling considering Availability 61

Definition 4.1.2. MTTF is defined as the expected time between two consecutive failures

of a node.

Definition 4.1.3. MTTR is defined as the expected time between two consecutive repairs

of a node.

Definition 4.1.4. Mean time between failure (MTBF) is defined as the average time

between two consecutive failures.

MTBF can be expressed as

MT BF = MT T F +MT T R (1)

Based on the MTTF, MTTR, and MTBF, the availability, At , of jth node for time t, is

computed as

A j(t) =
MT T Fj

MT T Fj +MT T R j
, ∀ j = 1, ...,n (2)

The availability can be expressed in two ways; (1) in series arrangement of nodes, and (2)

in parallel arrangement of nodes.

In series arrangement of nodes, the availability is computed as

As(t) =
n

∏
j=1

A j(t) (3)

where the availability depends on the failure of at least one node, As(t) denotes the

availability of the entire grid system, and n denotes the total number of nodes in the

on-demand computing environment.

In parallel arrangement of nodes, the availability is computed as

Ap(t) =
(

1−
n

∏
j=1

(1−A j(t))
)

(4)



Chapter 4. Transaction Scheduling considering Availability 62

where Ap(t) denotes the availability of the grid system when n number of nodes are

arranged in parallel.

The basic formulas in Eq. (3) and Eq. (4) for the availability computation of series and

parallel systems can be used in combination to compute the availability of the system

having both series and parallel parts (series-parallel arrangement). Assuming all nodes

are independent, system availability Asp can be computed from the formula:

Asp =
n

∏
j=1

[1− (1−A j(t))] (5)

4.1.1 Makespan

In task scheduling problem, makespan is the important parameter for the evaluation of the

method.

Definition 4.1.5. Makespan is defined as the time required in completing the job.

Makespan can be computed using the queuing theory. Let M/M/c be the queuing model.

Assume λ j be the task arrival rate at the jth node and µ j be the service rate of the jth node.

Using M/M/c, the waiting time Wj(t) at the jth node can be computed as

Wj(t) =
λ j

(µ j−λ j)
(6)

Let m is the total number of tasks in the on-demand computing system, and L j is the total

number of tasks allocated on the jth machine, xa j is the assignment function of ath task

to the jth node or machine and NITa is the number of instruction in the ath task. The

assignment function xi j is defined as

xa j =

1, if ath task is allocated on the jth node

0, otherwise
(7)

Then, total time for execution of allocated transactions at the jth node is computed as



Chapter 4. Transaction Scheduling considering Availability 63

Tj =
L j

∑
i=1

[(
λ j

(µ j−λ j)
+

(
1
µ j

)
∗ xa j

)
∗NITa

]
(8)

where L j is the load on the jth node.

In order to calculate the total time for execution of allocated transactions at the jth node,

all loops in the algorithm must be computable [110]. Because loops are fundamental for

the implementation of almost every algorithm. It should be guaranteed that every loop

terminates within a specified amount of time. These types of loops are called bounded

loops. There are two kinds of bounded loops [111] such as:

• Loops with specified limit for the number of iterations

• Loops which are bounded by a time limit that must not be overrun at run time.

Limits for both the maximal number of iterations and for time have to be known to make

the computation of maximum execution time possible. Here we assign the limits as 1000

for the maximum number of iterations and 1000s for deadline time.

Let g ∈ j, then time taken by the on-demand computing system will be equal to the

maximum time taken by any node in the system. Then this time can be computed as

Tg = max
1≤ j≤n

[
L j

∑
i=1

[
Tj

]]
(9)

The best solution can be obtained from many generated solutions as the minimum of all

the solutions. Let popsize is the total number of solutions generated in the population.

The best solution is obtained by our first objective function which is computed as follows:

popsize
min

[
max

1≤ j≤n

[
Tg

]]
(10)



Chapter 4. Transaction Scheduling considering Availability 64

4.1.2 Availability as Fitness Function

If the nodes are in series-parallel arrangemnt, the system will not be unavailable unless

all the nodes fail. Since, the maximization of availability is our second objective whose

function is given as follows:

popsize
max [Asp(t)] (11)

where Ap(t) is defined in Eq. (4).

4.2 The Proposed Model

We propose an algorithm which maximizes the availability of nodes and minimizes the

makespan by using scheduling strategy in the on-demand computing environments. The

algorithm uses meta-heuristic based task scheduling to solve the problem.

4.2.1 ACO approach

The ACO was inspired by the foraging behavior of real ants. In search of food, initially,

the ants explore randomly in the surrounding area of their nest. When a food source

is found by an ant, the ant immediately carries some of the food after it evaluates the

quality and quantity of the food. The quantity of the deposited pheromone is the guide

to other ants what the quality and quantity of the food is. With the help of pheromone

trails, the ants can find the shortest paths between their nests and food sources. They

apply a probabilistic approach in selecting the path with the highest pheromone trails on

the paths. The pheromone trails gradually start to evaporate. The attractive strength gets

on reducing. The more time an ant takes to travel down the path and back again, the

more time the pheromones have to evaporate. The pheromone evaporation also avoids the

convergence to a locally optimal solution. If the pheromone does not evaporate, the paths

chosen by first ants would be excessively attractive to the following ones. The idea of the

ant colony algorithm to mimic the behavior of ants with simulated ants. Informally, an

ACO algorithm can be imagined as the interplay of three procedures [69]:



Chapter 4. Transaction Scheduling considering Availability 65

• ConstructAntsSolutions: This procedure manages a colony of those ants, which

concurrently and asynchronously visit adjacent states of the problem. They apply a

stochastic local decision policy while moving with the use of pheromone trails and

heuristic information. In this way, solutions to the optimization problem are built

incrementally.

• UpdatePheromones: This procedure modifies the pheromone trails. The trails’

value either increases, as ants deposit pheromone on the components or the

connections they use, or decreases, due to pheromone evaporation.

• DaemonActions: This procedure is implemented as centralized actions. The

activation of a local optimization procedure, or the global information collection is

the example of this procedure that decides whether additional pheromone is useful

or not.

The objective for using the ACO algorithm is to parallelize search dynamically over

constructive computational threads by incorporating information from previously

obtained results. For scheduling problem several algorithms based on ACO have been

proposed in the literature. They all focus on the pheromone update. Due to the reason of

search speed and solution efficiency, premature convergence occurs. We propose an

improved ACO algorithm named MATS ACO in this chapter.

4.2.2 Proposed Algorithm: MATS ACO

We propose the MATS ACO algorithm (Algorithm 2) for the objective of maximizing the

resource availability for task scheduling in the on-demand computing based transaction

processing system.

This algorithm is a stochastic search procedure of nodes or resources having less

probability of failure and highest probability of repair (if the failure occurs). The central

component of the algorithm is the pheromone model [54] which is used to sample the

search space probabilistically. The process is a Combinatorial Optimization problem.

Definition 4.2.1. If τ j be the pheromone trail deposited on the jth node, iter is the

iteration number, and ρ be the given evaporation rate of the pheromone on the node,

then τ j can be updated as



Chapter 4. Transaction Scheduling considering Availability 66

τ j(iter+1)← (1−ρ).τ j(iter) + ρ

iter .
K−1
∑

iter=1
τ j, ∀iter ∈ K.

The parameter ρ ∈ (0,1] is the evaporation rate. It has the function of uniformly

decreasing all the pheromone values. From a practical point of view, pheromone

evaporation is needed to avoid a too rapid convergence of the algorithm toward a

sub-optimal region [54]. The value of ρ is given in TABLE 4.8. We assume that the

initial value of pheromone is d
log(iter+1) , where d is constant. The value of d is given in

TABLE 4.8 and K is the maximum number of iteration.

Definition 4.2.2. If ρ be the given evaporation rate of the pheromone of an ant active on

the node selected, the quality of the selected node is η(N j), where

η(N j) = ρ.τ j,∀N j ∈ N.

To calculate the quality of the node, first we need to calculate the pheromone. According

to Definition 4.2.1, we get the initial value of the pheromone as d
log(iter+1) . The pheromone

τ j deposited by the ant on the node N j is calculated as 0.25
log(1+1) = 0.830482024 where the

value of d is taken as 0.25 given in TABLE 4.8. The evaporation rate (ρ) of the pheromone

is 0.2, then the quality of the node (η(N j)) is computed as ρ.τ j which is equal to 0.2 ×
0.830482024 = 0.166096405.

Definition 4.2.3. If α be the relative importance of the pheromone of the jth node, τ j, and

β determines the relative importance of heuristic information value or the quality of the

node (η(N j)), then the probabilities for choosing the next feasible solution component is

given by

p(N j|Ap) =
[τ j]

α .[η(N j)]
β

∑Ny∈N(Ap)[τy]α .[η(Ny)]β
,∀N j ∈N(Ap).

Here p(N j|Ap) which is the probabilities for choosing the next solution component, is

also called the transition probabilities. The value of α and β are given in TABLE 4.8.

The choice of a solution component N j ∈ N(Ap) is, at each construction step, done

probabilistically on the pheromone model. The probability for the N j is proportional

[τ j]
α .[η(N j)]

β .

In detail, the MATS ACO algorithm works as follows: When a transaction arrives at a

node in the on-demand computing system, an ant is initialized, and it starts working.



Chapter 4. Transaction Scheduling considering Availability 67

Next step is to find the optimal nodes, the set of the feasible solution. At each iteration,

exploiting a given transaction, solutions to the problem under consideration are

constructed probabilistically. Finally, before the next iteration starts, the transaction

update is performed by using some of the solutions.

In detail, the MATS ACO works as follows: When a transaction arrives at a node in the

on-demand computing system, an ant is initialized, and it starts working. Next step is to

find the optimal nodes, the set of the feasible solution. At each iteration, exploiting a given

transaction, solutions to the problem under consideration are constructed probabilistically.

Finally, before the next iteration starts, the transaction update is performed by using some

of the solutions.

Suppose the algorithm starts operation at all node N j. Line 2 calculates availability and

makespan of all the node N j. Time is initialized as t = 0 in line 3. Line 4 initialize the

iteration number as k = 1. Line 5 calculates the pheromone released by the ant at each

node as τ j = eA j . Line 6 initializes the maximum number of nodes to be traversed by the

ant i. Line 7 initialize the parameter p0 = 0 which is used to attain quick convergence of

the algorithm.

ConstructAntsSolutions: Construction of optimal solution is the ingredient module of

the algorithm. The module assembles the solutions from the finite set of solution

component N. The current solution Ak is extended at each construction step by adding a

feasible solution component to the set of feasible solutions. When the problem

constraints are met, the set is determined at each construction step by this solution

construction method. This module of the algorithm works as follows: The while loop of

lines 8− 47 repeatedly selecting the random nodes to search the optimal node for the

requested transaction.

UpdatePheromones: Line 42 calculates the pheromone value on the node N j deposited

by the ants as depicted in Definition 4.2.1.

FIGURE 4.1 shows the working example of the MATS ACO.



Chapter 4. Transaction Scheduling considering Availability 68

Algorithm 2 MATS ACO
INPUT: Number of nodes (n), number of ants (m), Range of load (λ ), range of processing speed (µ) of nodes, range of task

size, MTTF and MTTR for each node in the on-demand computing system, population size, task deadline (d), and number of
generation.

1: Randomly distribute ants on the nodes . Initialize the population
2: Calculate

• the availability for each node using Eq. (2)

• the fitness value of each individual using Eq. (11)

• the makespan using Eq. (10)

3: t = 0 . time counter
4: iter = 1 . number of iterations
5: τ j = eA j . τ j is the initial pheromone trail on each node N j ∀ j = 1, ...,n
6: N i = 0 . N i represents the list of nodes traversed by ant i, ∀i = 1, ...,m
7: p0 = 0
8: while (iter ≤ K) do
9: for i ∈ [1,m] do
10: for j ∈ [1,n] do
11: if (N i ≤N i

n ) then . N i
n gives the maximum number of nodes to be visited by ant i

12: Generate random number p (0≤ p≤ 1)
13: if (p≥ p0) then
14: Generate random number q (q ∈ Si)
15: select = q
16: Choose the node select as the next node to move to
17: Add select to N i, Delete it from Gi and Si
18: else
19: Compare the probabilities of possible outgoing nodes using Definition 4.2.3
20: Choose the node having the highest probability pi

j

21: Generate random number q̄ (0≤ q̄≤ 1)
22: if (q̄≥ pi

j) then
23: Generate a random number q (q ∈ Si)
24: select = q
25: Choose the node select as the next node to move to
26: Add select to N i, Delete it from Gi and Si
27: else
28: Choose the node with the highest pi

j value
29: end if
30: end if
31: else
32: j = j+1
33: end if
34: end for
35: end for
36: Find A+

k . A+
k is the optimal availability for the iteration k

37: if (A+
k > Abs) then

38: Abs = A+
k . Abs is the best availability

39: else
40: Do not update Abs
41: end if
42: Update τ j(t)
43: Empty all tabu list (i.e., N i)
44: t = t +1
45: iter = iter+1
46: pk =

log k
log K

47: end while
48: Schedule the tasks
49: Calculate availability using Eq. (11) and makespan using Eq. (10).
OUTPUT: Availability and makespan.



Chapter 4. Transaction Scheduling considering Availability 69

4.2.2.1 Prevention of Premature Convergence of the Algorithm

We incorporate the parameter Pk in the algorithm to achieve the prevention of premature

convergence in the MATS ACO algorithm as:

Pk =
log(k)
log(K)

(12)

where k is the counter for the number of iterations and K is the maximum number of

iterations. Here Pk represents the probability of avoiding newer solutions where 0≤ Pk ≤
1. Each time Pk is compared to a randomly generated quantity Pevent .

When k value increases, the probability of the event Pevent > Pk decreases (suppose Pevent

is a randomly generated number which lies in the range [0,1]) i.e., at the lower value of

k, the probability of searching new nodes by the ants is higher and at higher values of

k, the probability of new search decreases. Thus, the algorithm can prevent a very quick

convergence to locally optimized solution.

4.2.2.2 Stagnation Avoidance

Another undesirable situation, i.e., stagnation [108] may arise when all ants construct the

same solution over and over again. This situation prevents the generation of new search.

It happens when the parameters (α,β ,ρ) of the MATS ACO algorithm are not well tuned

for taking the problem. If the value of ρ is too high, the stagnation situation may take

place. Therefore, we have set the values of the parameters as α = 0.5, β = 0.5, and

ρ = 0.2 as given in TABLE 4.8.

4.2.2.3 Convergence Test

The convergence of the MATS ACO algorithm is the first theoretical problem which

means if the proposed algorithm can find the optimal solution when given enough

resources. As the proposed algorithm is a stochastic search procedure, the pheromone

update may prevent it to even reach an optimum. Typically, there are at least two types of



Chapter 4. Transaction Scheduling considering Availability 70

convergence of the proposed algorithm which can be considered [54]: convergence in
value and convergence in solution.

Convergence in value also known as Asymptotic convergence evaluates the probability

that the algorithm generates an optimal solution at least once. Convergence in solution
known as Reachability convergence evaluates the probability that the algorithm reaches

a state which keeps on generating the same optimal solution.

Proposition 4. Given Algorithm 2 that using the pheromone update rule from Definition

4.2.2 for any pheromone value, the following holds

lim
t→∞

τ j(iter)≤
τ j.K

ρ
(13)

where τ j(iter) denotes the pheromone value τ j at iteration iter while K is the maximum

iteration.

Proof. At any iteration, the maximum possible increase of pheromone value τ j is η(N j)

if all solution are equal to N j with a new choice of solution. Therefore, due to evaporation,

the pheromone τ j at iteration iter is bounded by

τ j←− (1−ρ)iter.
d

log(iter+1)
+K.

K

∑
iter=1

(1−ρ)K−iter.τ j (14)

where d
log(iter+1) with d being constant is the initial value of all the pheromone trail

parameters. Asymptotically, because 0 < ρ ≤ 1, this sum converges to τ j.K
ρ

.

From this proposition, we can say that the pheromone value upper bound in the pheromone

update rule is τ j.K
ρ

.

Theorem 5. Let Ps(k) is the probability that an algorithm generates an optimal solution

in the kth iteration, then the algorithm has asymptotic convergence and reachability

convergence if limk→∞ Ps(k) = 1.

Proof. From Proposition 1, we get that minimum value of pheromone is greater than 0,

because it is anyway bounded by maximum pheromone value. Since minimum

pheromone > 0, at each iteration, any generic solution can be generated with a



Chapter 4. Transaction Scheduling considering Availability 71

probability greater than 0. Therefore, the probability of generating an optimal solution

tends to 1 even at a sufficiently large number of iterations. Therefore, we state that the

algorithm is guaranteed to find an optimal solution with a probability that can be made

arbitrarily close to 1 if given enough time (convergence in value).

4.2.3 Applying the MATS ACO Algorithm: Case Study (using
NFSNet)

The MATS ACO conducts to explore the power set of the set of nodes. In our study model,

transaction processing in the on-demand computing is represented by NFSNet [112]. It

consists of 14 nodes. FIGURE 4.1 gives an illustrative example how the MATS ACO

works. Suppose there are m number of the transactions (T1,T2, . . . ,Tm) which arrive at the

system with available nodes (Here N = 14).

FIGURE 4.1: NFSNet

ConstructAntsSolutions: The MATS ACO constructs a set of the feasible solution so

that the scheduler gets the optimal nodes for scheduling the transactions. Construction of

the solution starts from the initial node N j. As FIGURE 4.1 illustrates, the MATS ACO

works by checking the availability of the node N j. The value of MTTF, MTTR, and

availability of each node is given in TABLE 4.1.

Suppose, MT T R j = 10s at each node of the graph. At each iteration ants will traverse the

nodes and finds out the feasible node which has the highest availability. In this period the



Chapter 4. Transaction Scheduling considering Availability 72

TABLE 4.1: The values of MT T Fj, MT T R j, and A j denote the values of mean
time to failure, mean time to repair, and availability of the jth node in NFSNet

shown in FIGURE 4.1 in case study II where N = 14.

N j MT T Fj MT T R j A j

N0 900
10 0.989010989
50 0.947368421
100 0.9

N1 950
10 0.989583333
50 0.95
100 0.904761905

N2 1000
10 0.99009901
50 0.952380952
100 0.909090909

N3 1150
10 0.99137931
50 0.958333333
100 0.92

N4 1100
10 0.990990991
50 0.956521739
100 0.916666667

N5 1200
10 0.991735537
50 0.96
100 0.923076923

N6 1050
10 0.990566038
50 0.954545455
100 0.913043478

N7 1300
10 0.992366412
50 0.962962963
100 0.928571429

N8 1250
10 0.992063492
50 0.961538462
100 0.925925926

N9 1075
10 0.99078341
50 0.955555556
100 0.914893617

N10 1175
10 0.991561181
50 0.959183673
100 0.921568627

N11 1275
10 0.992217899
50 0.962264151
100 0.927272727

N12 975
10 0.989847716
50 0.951219512
100 0.906976744

N13 1250
10 0.992063492
50 0.961538462
100 0.925925926



Chapter 4. Transaction Scheduling considering Availability 73

ants will release pheromone at each traversed node. In the first iteration, the node N7 is

selected as the optimal solution. In the next iteration, node N11 is selected. Similarly, all

the nodes are selected based on the availability of the node.

Finally, the scheduling of tasks is conducted using the output of the algorithm. The tasks

(transactions) are scheduled based on the list of optimal solutions. The optimal solutions

are found as shown in TABLE 4.2.

TABLE 4.2: Task scheduling.

Nodes N7 N11 N8 N13 N5 N10 N3 N4 N9 N6 N2 N12 N1 N0
Transaction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

UpdatePheromones: After selection of the best-so-far solution, the quality of the

selected node is calculated, and the ant trails the pheromone on the selected node. In

FIGURE 4.1, when node N7 is selected the first time, then pheromone value which is

dependent on the initial pheromone and the number of iteration value, i.e., d
log(iter+1) (as

depicted in Definition 4.2.2) is calculated as 0.25
log(1+1) = 0.830482024. The quality of the

node η(N7) (as depicted in Definition 4.2.3) is calculated as ρ ∗ τ7 where ρ is 0.2 and

τ7 = 0.830482024. Therefore, η(N7) is calculated as 0.166096405. Now the pheromone

τ7 of N7 is updated as (1 − 0.2) ∗ 0.830482024 + 0.2
2 ∗ 0.830482024 which is

0.747433822. This value is deposited at iteration iter = 2. As the iteration will keep on

increasing; the pheromone will keep on decreasing with evaporation rate ρ = 0.2.

DaemonActions: This module of the MATS ACO updates the set of feasible solution

globally by generating a scheduling queue as shown in TABLE 4.2.

The meta-heuristic algorithms like ACO suffer from premature convergence [108] when

applied for scheduling problem, we deal this problem by using following approaches in

our algorithm.

4.2.4 Time Complexity of MATS ACO

The time complexity of the proposed algorithm MATS ACO is calculated as O(K.m.n)

where K is the maximum number of iteration, m is the number of transactions, and n is

the total number of nodes in the computing system.



Chapter 4. Transaction Scheduling considering Availability 74

TABLE 4.3: Input parameters for ACO

Parameter Input

Number of nodes Minimum 8
Maximum 1000

Number of tasks Minimum 50
Maximum 1,000,000

Range of load (λ ) 1−100 MIPS
Range of processing speed (µ) 101−200 MIPS
MTTF 900−1000s
MTTR 10−110s
Population size 50
α 0.5
β 0.5
ρ 0.2
d 0.25

4.3 Experimental Evaluations

In this section, we carried out the a number of experiments by evaluating the proposed

algorithms with other two existing alorithms EO and GA. Our work is completely

inspired by [1]. The instances parameters used in this chapter is almost similar to [1]

which is our base research paper to our work on. Because, we try to implement our

proposed algorithm with already given instances and compare our algorithms with the

existing algorithms. The proposed scheduling algorithm, MATS ACO, is evaluated

through simulations with Colored Petri Nets (CPNs or CP-nets). The transaction traces

used in the simulations specify a set of parameters such as the transaction identifier,

associated transaction user priority, the set of properties to be met in the target resource

and arrival time to the scheduler.

The short introduction about each of the mentioned algorithms is presented below.

• Extremal Optimization: Extremal Optimization (EO) [2] is a nature-inspired

optimization technique. This technique has moderate computational complexity

and small memory requirements. It is a meta-heuristic approach.

• Genetic Algorithm: In GA [1], the candidate solutions (called individuals) and their

abstract representations (named chromosomes), are improved in each iteration to

finally get the optimum solution. It uses selection operation to find the survival for

each individual. Thus, the fitness of the whole population is determined. Based on



Chapter 4. Transaction Scheduling considering Availability 75

TABLE 4.4: Normality Shapiro-Wilk tests for the best results of availability

Data Shapiro-Wik W p-value
MATS ACO 0.889405172 0.0022
EO 0.889830107 0.0024
GA 0.88694925832 0.00258

TABLE 4.5: Wilcoxon statistical tests for the best results (availability) found
for ACO, EO and GA algorithms. Assume null hypothesis µ0 = 0 and null

hypothesis: two-sided, µ̂ < µ

.
Observation Wilcoxon p-value 95% Confidence Interval µ̂

MATS ACO vs. EO 720 0.351641 −∞ 19.1000 -1.09331184504
MATS ACO vs. GA 730 0.24793775 −∞ 17.5000 -1.15169113147

TABLE 4.6: Normality Shapiro-Wilk tests for the best results of makespan

Data Shapiro-Wik W p-value
MATS ACO 0.8668013739216988 < 0.001
EO 0.8642371443799678 < 0.001
GA 0.8558035724664631 < 0.001

the fitness value, the individuals are selected randomly from the population. The

individuals that have high fitness value are inherited in the next generation with a

higher probability while the individuals with low fitness are inherited in the next

generation with a smaller probability.

We addressed the parameters optimization analysis together with the convergence

behavior in section 4.2.2.1, section 4.2.2.2 and section 4.2.2.3. We also conduct

statistical tests to further analyze the validity of results. For the best final result, the

normality of data with Shapiro-Wilks test is studied. TABLE 4.4 shows the confidence

value (p-value). As the p-value ≤ 0.5, the null hypothesis that the samples came from

normal distribution must be rejected. Similarly, for the another objective function, i.e.,

makespan, TABLE 4.6 shows that the null hypothesis of the samples being in normal

distribution must be rejected.

We also conduct nonparametric tests (see TABLE 4.5) to check the difference among

the methods using Wilcoxon or Mann-Whitney test [109]. The observations shown in

TABLE 4.5 shows that p-value≤ 0.5. Therefore, it can be concluded that the MATS ACO

outperforms all other algorithms.



Chapter 4. Transaction Scheduling considering Availability 76

TABLE 4.7: Wilcoxon statistical tests for the best results (makespan) found
for ACO, EO and GA algorithms. Assume null hypothesis µ0 = 0 and null

hypothesis: two-sided, µ̂ < µ

.

Observation Wilcoxon p-value 95% Confidence Interval µ̂

MATS ACO vs. EO 720 0.351641 −∞ 19.1000 -1.09331184504
MATS ACO vs. GA 730 0.24793775 −∞ 17.5000 -1.15169113147

4.3.1 Experiment with Varying Mean Time To Failure

The first experiment depicts the effect of MTTF on resource availability in the on-demand

computing environment. The input parameters used in the experiment are taken from

TABLE 4.8 which is for ACO and TABLE 4.9 and 4.10 show the input parameters for GA

used in [1] and EO used in [2] algorithms respectively.

TABLE 4.8: Input parameters for ACO

Parameter Input

Number of nodes Minimum 8
Maximum 1000

Number of tasks Minimum 50
Maximum 1,000,000

Range of load (λ ) 1−100 MIPS
Range of processing speed (µ) 101−200 MIPS
MTTF 900−1000s
MTTR 10−110s
Population size 50
α 0.5
β 0.5
ρ 0.2
d 0.25

In TABLE 4.8, the values of α , β , and ρ and d has been taken in the experiments. The

reason for selecting these fixed values are as follows:

• α is the parameter which is related to the pheromone of the ants released by the ants

in the ACO approach. We fixed its value to 0.5, because we tested its values ranging

from 0.25 to 10 on the CPU time. We found that when the values of α is increased,

the CPU time for the executing the algorithm also increases. But at α = 0.5, the

algorithm gives optimal result.



Chapter 4. Transaction Scheduling considering Availability 77

• β is the parameter which is related to the quality of the node such as η(N j). We

tested that when β is increased, the CPU time for executing the algorithm also

increases. The ideal value in this case is β = 0.5 where we find the optimal

solutions.

• The selection of ρ is related to the evaporation rate of the pheromone released by the

ants. Here also we tested that when ρ is greater than 0.2, the CPU time increases to

find the optimal solution at the maximum iteration 1000. Because, the pheromone

trail evaporates too quickly to search the all possible nodes.

• The value of d is related to the initial pheromone released by each ant. It should be

initialized in such a manner that it can not affect the speed of selection procedure.

If it is higher than 0.25, the CPU time is increased to find the optimal solution. The

ideal value for this parameter is fixed as 0.25 in our algorithm.

TABLE 4.9: Input parameters for GA [1]

Parameter Input
Population size 50
Probability of applying crossover 0.7
Probability of applying mutation 0.05
Probability of applying inversion 0.01

TABLE 4.10: Input parameters for EO [2]

Parameter Input
Population size 50
Total number of iterations (K) 1000
Probabilistic selection parameter (τ) 0.05
Rank χ (0,1)
γ (0,1)
β (0,1)

When we have the availability observation with different MTTF. It is evident that when

MTTF increases, resource availability also increases.

We have the resource availability observation with different MTTF using GA as shown

in FIGURE 4.2. When MTTF is between 900−1000s then mean availability is 0.768289

and its median is 0.7785, when MTTF is between 1000−1100 then mean availability is



Chapter 4. Transaction Scheduling considering Availability 78

calculated as 0.8126 and its median as 0.8255, when MTTF is between 1100−1200 then

mean availability changes to 0.833 and its median changes to 0.8455, and when MTTF is

between 1200−1300, then mean availability is 0.87186 and its median is 0.8779.

TABLE 4.11: The mean and median value of resource availability. FIGURE
4.2 shows the results for GA method while FIGURE 4.3 and FIGURE 4.4

shows the results for EO and MATS ACO methods respectively.

Strategy MTTF mean median

GA

900−1000s 0.768289 0.768289
1000−1100 0.8126 0.8255
1100−1200 0.833 0.8455
1100−1200 0.87186 0.8779

EO

900−1000s 0.7858 0.7995
1000−1100 0.8135 0.8185
1100−1200 0.8488 0.845
1100−1200 0.89057 0.8998

MATS ACO

900−1000s 0.84435 0.8693
1000−1100 0.8901 0.92
1100−1200 0.93335 0.9758
1100−1200 0.94607 0.9875

Similarly, we have the resource availability observation with different MTTF using EO

shown in FIGURE 4.3. Similarly, FIGURE 4.4 shows the resource availability observation

with different MTTF using ACO. All the three methods have different mean and median

of resource availability and among them MATS ACO performs better. The analysis can

be seen in TABLE 4.11.

4.3.2 Experiment with Varying Mean Time To Repair

The next experiment depicts the effect of MTTR on resource availability when MTTR

varies.

We have the resource availability with different MTTR using GA as shown in FIGURE

4.5. The mean and median of the resource availability are calculated as seen in TABLE

4.12.

We have the resource availability when we use EO algorithm as shown in FIGURE 4.6.

FIGURE 4.7 shows the resource availability when we use EO algorithm. From the results,



Chapter 4. Transaction Scheduling considering Availability 79

Availability Observation with different MTTF using GA
A

va
ila

bi
lit

y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1200-1300 seconds
1100-1200 seconds
1000-1100 seconds
900-1000 seconds

FIGURE 4.2: Availability
observation with mean time

to failure (MTTF) using GA

Availability observation with different MTTF using EO

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1200-1300 seconds
1100-1200 seconds
1000-1100 seconds
900-1000 seconds

FIGURE 4.3: Availability
observation with mean time

to failure (MTTF) using EO

Availability Observation with different MTTF using MATS_ACO

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation
20 40 60 80 100 120 140 160 180 200 220 240 260

20 40 60 80 100 120 140 160 180 200 220 240 260

1200-1300 seconds
1100-1200 seconds
1000-1100 seconds
900-1000 seconds

FIGURE 4.4: Availability observation with mean time to failure (MTTF)
using MATS ACO

it is clear that when MTTR increases, resource availability decreases as it takes more time

to make the node available.

4.3.3 Experiment with Varying Task Size

In this experiment, we study the effect of task size on resource availability. Tasks are

submitted with varying sizes. We consider MTTF for this experiment in the range of

1300−1400s and task size in million instruction (MI). Other input values are taken from



Chapter 4. Transaction Scheduling considering Availability 80

TABLE 4.12: The mean and median value of resource availability. FIGURE
4.5 shows the results for GA method while FIGURE 4.6 and FIGURE 4.7

shows the results for EO and MATS ACO methods respectively.

Strategy MTTR mean median

GA

10−110s 0.60865 0.7673
110−210s 0.65865 0.7138
210−310s 0.70865 0.6638
310−410s 0.76055 0.6138

EO

10−110s 0.66495 0.785
110−210s 0.704 0.7398
210−310s 0.73515 0.7283
310−410s 0.78695 0.6575

MATS ACO

10−110s 0.6823 0.85
110−210s 0.7308 0.8
210−310s 0.78685 0.7388
310−410s 0.83721 0.6875

Availability Observation with different MTTR using GA

A
va

ila
bi

lit
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
20 40 60 80 100 120 140 160 180 200 220 240 260

20 40 60 80 100 120 140 160 180 200 220 240 260

10-110 seconds
110-210 seconds
210-310 seconds
310-410 seconds

FIGURE 4.5: Availability
observation with mean time

to repair (MTTR) using GA

Availability observation with different MTTR using EO

A
va

ila
bi

lit
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

10-110 seconds
110-220 seconds
210-310 seconds
310-410 seconds

FIGURE 4.6: Availability
observation with mean time

to repair (MTTR) using EO

TABLE 4.8. We observe that when task size increases, resource availability decreases. We

also have figures showing the results with different strategies such as FIGURE 4.8 with

GA method, FIGURE 4.9 with EO method and FIGURE 4.10 with MATS ACO method.



Chapter 4. Transaction Scheduling considering Availability 81

Availability Observation with different MTTR using MATS_ACO

A
va

ila
bi

lit
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation
20 40 60 80 100 120 140 160 180 200 220 240 260

20 40 60 80 100 120 140 160 180 200 220 240 260

10-110 seconds
110-210 seconds
210-310 seconds
310-410 seconds

FIGURE 4.7: Availability observation with mean time to repair (MTTR)
using MATS ACO

Availability observation with different task size using GA

A
va

ila
bi

lit
y

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
va

ila
bi

lit
y

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

2000-5000 MI
2200-5200 MI
2400-5400 MI
2600-5600 MI

FIGURE 4.8: Availability
observation with different task

size using GA

Availability observation with different number of tasks using EO

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

50 Tasks
100 Tasks
150 Tasks
200 Tasks

FIGURE 4.9: Availability
observation with different task

size using EO

4.3.4 Experiment with Varying Number of Tasks

In this experiment, we observe the resource availability by varying the number of tasks

in the on-demand computing environment. The input values are taken from TABLE 4.8.

It is evident that when the number of tasks increases, the resource availability decreases

sharply. Here also we have comparative study of the mentioned algorithms. It is clear that

our algorithm works better than others. For result analysis we calculated the mean and

median of the output of these algorithms (which is shown in TABLE 4.14).



Chapter 4. Transaction Scheduling considering Availability 82

TABLE 4.13: The mean and median value of resource availability. FIGURE
4.8 shows the results for GA method while FIGURE 4.9 and FIGURE 4.10

shows the results for EO and MATS ACO methods respectively.

Strategy Task size mean median

GA

2000−5000 MI 0.60865 0.6138
2200−5200 MI 0.65865 0.6638
2400−5400 MI 0.70865 0.7138
2600−5600 MI 0.76055 0.7673

EO

2000−5000 MI 0.66495 0.6575
2200−5200 MI 0.704 0.7283
2400−5400 MI 0.73515 0.7398
2600−5600 MI 0.78695 0.785

MATS ACO

2000−5000 MI 0.6823 0.6875
2200−5200 MI 0.7308 0.7388
2400−5400 MI 0.78685 0.8
2600−5600 MI 0.83721 0.85

TABLE 4.14: The mean and median value of resource availability. FIGURE
4.11 shows the results for GA method while FIGURE 4.12 and FIGURE 4.13

shows the results for EO and MATS ACO methods respectively.

Strategy Number of Tasks mean median

GA

50 0.86875 0.877
100 0.7615 0.7645
150 0.66195 0.6638
200 0.6088 0.6148

EO

50 0.85685 0.8625
100 0.78125 0.78
150 0.6834 0.685
200 0.6495 0.645

MATS ACO

50 0.8773 0.884
100 0.79375 0.8013
150 0.7125 0.715
200 0.664 0.6638



Chapter 4. Transaction Scheduling considering Availability 83

Availability observation with different task size using MATS_ACO

A
va

ila
bi

lit
y

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
va

ila
bi

lit
y

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

2000-5000 MI
2200-5200 MI
2400-5400 MI
2600-5600 MI

FIGURE 4.10: Availability observation with different task size using
MATS ACO

Availability observation with different number of tasks using GA

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

50 Tasks
100 Tasks
150 Tasks
200 Tasks

FIGURE 4.11: Availability
observation with a different

number of tasks using GA

Availability observation with different number of tasks using EO

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

50 Tasks
100 Tasks
150 Tasks
200 Tasks

FIGURE 4.12: Availability
observation with a different

number of tasks using EO

4.3.5 Experiment with Varying Number of Nodes

We also study the effect of varying number of nodes on resource availability in the

on-demand computing environment. For this experiment, we consider 8, 16, 24, and 32

nodes.

When the number of nodes increases, resource availability increases. It also shows that

the MATS ACO algorithm performs better than GA and EO algorithms. The mean and

median values of resource availability are calculated as shown in TABLE 4.15.



Chapter 4. Transaction Scheduling considering Availability 84

Availability with different number of tasks using MATS_ACO

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

A
va

ila
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

50 Tasks
100 Tasks 
150 Tasks
200 Tasks

FIGURE 4.13: Availability observation with a different number of tasks
using MATS ACO

TABLE 4.15: The mean and median value of resource availability. FIGURE
4.14 shows the results for GA method while FIGURE 4.15 and FIGURE 4.16

shows the results for EO and MATS ACO methods respectively.

Strategy Number of nodes mean median

GA

8 0.70955 0.7175
16 0.75965 0.762
24 0.84214 0.8525
32 0.9044 0.91

EO

8 0.73405 0.7803
16 0.77127 0.7803
24 0.8577 0.8675
32 0.91405 0.9198

MATS ACO

8 0.74345 0.7513
16 0.8123 0.8125
24 0.86345 0.8768
32 0.92475 0.9328

4.3.6 Experiment with Varying Processing Speed of Nodes

In this experiment, we study the effect of speed of processing nodes on resource

availability in the on-demand computing environment. We consider the number of nodes

as 16. All the inpute are from TABLE 4.8.

When speed of the processing node increases, resource availability increases. Here also,

our proposed algorithm outperforms GA and EO algorithms. The mean and median values



Chapter 4. Transaction Scheduling considering Availability 85

Availability observation with different number of nodes using GA

A
va

ila
bi

lit
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
va

ila
bi

lit
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

32 Nodes
24 Nodes
16 Nodes
8 Nodes

FIGURE 4.14: Availability
observation with a different

number of nodes using GA

Availability observation with different number of nodes using EO

A
va

ila
bi

lit
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
va

ila
bi

lit
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

32 Nodes
24 Nodes 
16 Nodes
8 Nodes

FIGURE 4.15: Availability
observation with a different

number of nodes using EO

Availability with different number of nodes using MATS_ACO

A
va

ila
bi

lit
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
va

ila
bi

lit
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

32 Nodes
24 Nodes
16 Nodes
8 Nodes

FIGURE 4.16: Availability observation with a different number of nodes
using MATS ACO

of resource availability are calculated as depicted in TABLE 4.16.

4.3.7 Experiment with Varying Load on Nodes

In this experiment, we study the effect of the load while calculating resource availability.

For this experiment, we consider 16 nodes in the on-demand computing environment.



Chapter 4. Transaction Scheduling considering Availability 86

Availability observation with different processing speed using GA

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

130-230 MIPS
120-220 MIPS
110-210 MIPS
101-200 MIPS

FIGURE 4.17: Availability
observation with varying
processing speed of nodes using

GA

Availability observation with different processing speed using EO

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

130-230 MIPS
120-220 MIPS
110-210 MIPS
101-200 MIPS

FIGURE 4.18: Availability
observation with varying
processing speed of nodes using

EO

Availability with different processing speed using MATS_ACO

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
A

va
ila

bi
lit

y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

130-230 MIPS
120-220 MIPS
110-210 MIPS
101-200 MIPS 

FIGURE 4.19: Availability observation with varying processing speed of
nodes using MATS ACO

When load on the node increases, resource availability decreases. We also see that our

proposed algorithm works better than GA and EO algorithms. We also calculated the

mean and median of resource availability results (as shown in TABLE 4.17).



Chapter 4. Transaction Scheduling considering Availability 87

TABLE 4.16: The mean and median value of resource availability. FIGURE
4.17 shows the results for GA method while FIGURE 4.18 and FIGURE 4.19

shows the results for EO and MATS ACO methods respectively.

Strategy Processing speed mean median

GA

101−200 MIPS 0.76419 0.7758
110−210 MIPS 0.81192 0.816
120−220 MIPS 0.8471 0.854
130−230 MIPS 0.87775 0.883

EO

101−200 MIPS 0.8145 0.83
110−210 MIPS 0.8377 0.8513
120−220 MIPS 0.86285 0.8705
130−230 MIPS 0.9072 0.9185

MATS ACO

101−200 MIPS 0.8335 0.8585
110−210 MIPS 0.85595 0.8773
120−220 MIPS 0.8715 0.8793
130−230 MIPS 0.916375 0.927

Availability observation with load using GA

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1-70 MIPS
1-80 MIPS
1-90 MIPS
1-100 MIPS

FIGURE 4.20: Availability
observation with different loads

in nodes using GA

Availability observation with load using EO

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1-70 MIPS
1-80 MIPS
1-90 MIPS
1-100 MIPS

FIGURE 4.21: Availability
observation with different loads

in nodes using EO

4.3.8 Makespan Analysis

In this experiment, the makespan of the mentioned algorithms are evaluated and are

compared. Since there may be several transactions in the environment of the on-demand

computing, the simulations are done on the size and the number of the transactions.

TABLE 3.9 shows the makespan along several iterations, i.e., 100,200, and 300 in 40

simulations. It presents the mean result achieved by the populations with the associated



Chapter 4. Transaction Scheduling considering Availability 88

Availability observation with load using MATS_ACO

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
va

ila
bi

lit
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1-70 MIPS
1-80 MIPS
1-90 MIPS
1-100 MIPS

FIGURE 4.22: Availability observation with different loads in nodes using
MATS ACO

TABLE 4.17: The mean and median value of resource availability. FIGURE
4.20 shows the results for GA method while FIGURE 4.21 and FIGURE 4.22

shows the results for EO and MATS ACO methods respectively.

Strategy Load mean median

GA

1−70 MIPS 0.8354 0.8425
1−80 MIPS 0.8094 0.8175
1−90 MIPS 0.78629 0.792

1−100 MIPS 0.76455 0.772

EO

1−70 MIPS 0.8621 0.878
1−80 MIPS 0.83975 0.8498
1−90 MIPS 0.8121 0.823

1−100 MIPS 0.7896 0.787

MATS ACO

1−70 MIPS 0.877 0.8925
1−80 MIPS 0.8529 0.87
1−90 MIPS 0.8261 0.8363

1−100 MIPS 0.80234 0.806

standard deviation and 95% confidence interval and the best result (Max). In TABLE

4.21, we choose from 100 to 1000 transactions and compare their makespan as illustrated

in TABLE 4.21. The table shows that the makespan taken for all three algorithms grows

up as the number of the transactions or tasks increases.

We have the makespan analysis with varying number of tasks as shown in FIGURE 4.23,

4.24, 4.25 and 4.26. We see that our algorithm performs better than GA and EO. The mean

and median of the makespan from the results depicted are calculated in TABLE 4.18.



Chapter 4. Transaction Scheduling considering Availability 89

Makespan observation with 50 tasks 
M

ak
es

pa
n

80

85

90

95

100

105

110

115

M
ak

es
pa

n

80

85

90

95

100

105

110

115

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

EO
MATS_ACO
GA

FIGURE 4.23: Makespan
observation with different tasks

with 50 tasks

Makespan observation with 100 tasks 

M
ak

es
pa

n

90

100

110

120

130

140

150

M
ak

es
pa

n

90

100

110

120

130

140

150

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

EO
MATS_ACO
GA

FIGURE 4.24: Makespan
observation with different tasks

with 100 tasks

Makespan observation with 150 tasks

M
ak

es
pa

n

170

180

190

200

210

220

M
ak

es
pa

n

170

180

190

200

210

220

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

EO
MATS_ACO
GA

FIGURE 4.25: Makespan
observation with different tasks:

with 150 tasks

Makespan observation with 200 tasks

M
ak

es
pa

n

200

220

240

260

280

300

320

M
ak

es
pa

n

200

220

240

260

280

300

320

Generation
0 20 40 60 80 100 120 140 160 180 200 220 240 260

0 20 40 60 80 100 120 140 160 180 200 220 240 260

EO
MATS_ACO
GA

FIGURE 4.26: Makespan
observation with different tasks:

with 200 tasks

4.3.9 Comparative Study of Proposed Algorithm

We have the comparative analysis of proposed algorithm for availability analysis as

shown in FIGURE 4.27 while in FIGURE 4.28 we see the comparative analysis of

proposed algorithm for makespan analysis. We also calculated the availability based on

time as shown in TABLE 4.20 while TABLE 4.19 shows the availability along with

several iterations, i.e., 100,200, and 300 in 40 simulations. In TABLE 4.19, we

calculated average makespan with standard deviation and confidence interval (%95). In



Chapter 4. Transaction Scheduling considering Availability 90

TABLE 4.18: The mean and median value of makespan calculated from
results in FIGURE 4.23, 4.24, 4.25 and 4.26

Number of Tasks Strategy mean median

50
GA 93.24 91.2
EO 92.1375 90.1875

ACO 89.7 88.5

100
GA 116.335 111.375
EO 110.345 107.125

ACO 104.35 102

150
GA 187.6 187.6
EO 179.75 178.5

ACO 172.75 171.5

200
GA 256.79 249
EO 227.8 222.5

ACO 221.7 217.5

TABLE 4.19: Availability with 40 simulations

Strategy Iteration Average Standard deviation Confidence Interval (95%) Max

MATS ACO
300 0.9968 24.075389405 0.996 0.9979 0.9979
200 0.9958 21.9933938945 0.9954 0.9958 0.996
100 0.99999 23.7106384351 0.9999 0.99999 0.99999

EO
300 0.9932 26.4430243 0.993 0.994 0.994
200 0.99 26.3075946 0.989 0.991 0.991
100 0.9977 25.505675 0.997 0.998 0.998

GA
300 0.9882 27.545430987 0.9981 0.99825 0.99825
200 0.989 26.935657525 0.989 0.9892 0.9892
100 0.989 26.0567654 0.988 0.9899 0.9899

TABLE 4.20: Availability comparison of our proposed algorithm with EO
and GA with respect to time

Time (time unit) MATS ACO EO GA
100 0.99999 0.9977 0.989
200 0.9958 0.99 0.9890
300 0.9968 0.9932 0.9882
400 0.9939 0.9928 0.9906
500 0.9911 0.9881 0.98
600 0.9911 0.9896 0.9885
700 0.9931 0.9905 0.9839
800 0.99 0.9887 0.9855
900 0.9894 0.9890 0.9842
1000 0.9895 0.9879 0.9879

TABLE 4.21 we see the makespan analysis based on number of tasks. In this table, we

calculated makespan when number of tasks vary. We selected the minimum number of



Chapter 4. Transaction Scheduling considering Availability 91

TABLE 4.21: Makespan comparison of our proposed algorithm with EO and
GA with respect to number of tasks

Number of Tasks MATS ACO EO GA
100 310 313 320
200 375 419 420
300 424 425 430
400 530 535 540
500 570 575 580
600 575 585 600
700 635 640 664
800 700 705 725
900 720 715 700

1000 720 725 735

Availability Analysis

A
va

ila
bi

lit
y

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

A
va

ila
bi

lit
y

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Time
0 100 200 300 400 500 600 700 800 900 1,000 1,100

0 100 200 300 400 500 600 700 800 900 1,000 1,100

GA
EO
MATS_ACO

FIGURE 4.27: Availability
Analysis

Makespan Analysis

M
ak

es
pa

n

100

200

300

400

500

600

700

800

M
ak

es
pa

n

100

200

300

400

500

600

700

800

Time
0 100 200 300 400 500 600 700 800 900 1,000 1,100

0 100 200 300 400 500 600 700 800 900 1,000 1,100

GA
EO
MATS_ACO

FIGURE 4.28: Makespan
Analysis

TABLE 4.22: Makespan with 40 simulations

Strategy Iteration Average Standard deviation Confidence Interval (95%) Max

MATS ACO
300 115.225 24.075389405 60.5 160 160
200 96.875 21.9933938945 50.5 143 143
100 71.425 23.7106384351 25.25 130 130

EO
300 122.454 26.4430243 61.5 180 180
200 120.5 26.3075946 60.5 175 175
100 119.5 25.505675 60 175 175

GA
300 130.75656 27.545430987 73.5 205 205
200 128.575 26.935657525 73.0 195 195
100 128.3567 26.0567654 73.0 195 195



Chapter 4. Transaction Scheduling considering Availability 92

Pareto Front

A
va

ila
b

ili
ty

0.98

0.981

0.982

0.983

0.984

0.985

0.986

0.987

0.988

0.989

0.99

 M
ak

es
p

an

710

715

720

725

730

735

740

Algorithms

GA EO MATS_ACO

Algorithms

GA EO MATS_ACO

Availability
Makespan

FIGURE 4.29: Analysis of the Pareto Front of the bi-objective optimization
problem

tasks as 100 and maximum as 1000.

We have the pareto front analysis of the bi-objective problem in this chapter as shown in

FIGURE 4.29. Here the algorithms are compared with both of availability and makespan

in the same graph. In the figure, it is evident that availability increases and makespan

decreases when we use MATS ACO compared to GA and EO on an average value of time

(we have chosen the time as 1000s).

4.4 Summary

The maximization of the resource availability becomes one of the prime factors for

transaction scheduling in on-demand computing system. The other objective is to

minimize the makespan. In this chapter, we formulated the problem with multi-objective

functions; maximizing availability and minimizing makespan. we have used ACO based

transaction scheduling algorithm. We compared our proposed algorithm with two

meta-heuristic scheduling algorithms based on EO and GA. The experimental results

show that our proposed algorithm performs better than other two algorithms. We also

carried out Wilcoxon statistical test for the validation of the results. The normality tests



Chapter 4. Transaction Scheduling considering Availability 93

have been carried out using Shapiro-Wilk tests. For the network simulation we followed

NFSNet scenario.

In this research we assumed independent transactions. For dependent transaction, the

future research can further consider deadline constrained workflow scheduling approach.


	4 Transaction Scheduling considering Availability
	4.1 Problem Formulation
	4.1.1 Makespan
	4.1.2 Availability as Fitness Function

	4.2 The Proposed Model
	4.2.1 ACO approach
	4.2.2 Proposed Algorithm: MATS_ACO
	4.2.2.1 Prevention of Premature Convergence of the Algorithm
	4.2.2.2 Stagnation Avoidance
	4.2.2.3 Convergence Test

	4.2.3 Applying the MATS_ACO Algorithm: Case Study (using NFSNet)
	4.2.4 Time Complexity of MATS_ACO

	4.3 Experimental Evaluations
	4.3.1 Experiment with Varying Mean Time To Failure
	4.3.2 Experiment with Varying Mean Time To Repair
	4.3.3 Experiment with Varying Task Size
	4.3.4 Experiment with Varying Number of Tasks
	4.3.5 Experiment with Varying Number of Nodes
	4.3.6 Experiment with Varying Processing Speed of Nodes
	4.3.7 Experiment with Varying Load on Nodes
	4.3.8 Makespan Analysis
	4.3.9 Comparative Study of Proposed Algorithm

	4.4 Summary


