
Chapter 3

Load Balanced Transaction Scheduling

Load balanced transaction scheduling is an important issue in on-demand computing

environments including grid system. This problem is known to be NP-hard and can be

solved by using heuristic as well as any meta-heuristic method. We ponder over the

problem of the load balanced transaction scheduling in on-demand computing system by

using an Ant Colony Optimization for load balancing. The problem that we consider is

to achieve good execution characteristics for a given set of transactions that has to be

completed within their given deadline. We propose Load Balanced Transaction

Scheduling based on Ant Colony Optimization (LBTS ACO) [26]. We modify two

meta-heuristic along with ACO and three heuristic scheduling algorithms for the purpose

of comparison with our proposed algorithm. The results of the comparison show that the

proposed algorithm provides better results for the load balanced transaction scheduling

in the grid processing system. In this chapter, we model the problem and algorithm

considering grid computing scenario which is also a one of the platforms for on-demand

computing.

The objective is to find an appropriate schedule of the transactions from set T to the load

balanced nodes from set N, that would optimize the performance criteria. Scheduling

problem has several performance metrics. There are several standard performance

metrics which are used in the scheduling. They include node utilization, system

throughput, makespan [36, 34], mean response time [13], root-mean-square difference in

queue lengths [13], mean system time, response time [35], mean waiting time in queue,

mean idle time of the processor [13], task execution time [61], miss ratio [7] etc. In this
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chapter, we use load, load deviation, node utilization, throughput, makespan, load

balancing speedup, miss ratio, and makespan for the performance measurement.

3.1 Problem Formulation

We assume m number of the transactions and n number of grid nodes. Each transaction

needs to be completed within their given deadline on one of the nodes. So, our aim is to

find the maximum number of successful transactions that meet their given deadline.

Consider the set T of m transactions Ti (i = 1,2, ....,m) to be processed within their given

deadline on the set of n nodes N j ( j = 1,2, ....,n). All the transactions can be processed

on any of the n nodes. We assume that the completion time of each transaction, tTi , is

independent of the node processing it. The formulations of some important parameters of

the problem are given below.

The expected queue length Q j at node N j is given by the expression:

Q j =
m

∑
i=1

Ti j.xi j,∀ j = 1, . . . ,n. (1)

where

xi j =

{
1 if Ti is assigned to node j

0 otherwise

Makespan [82] is the maximum needed time to complete the processing of all the

transactions and can be calculated as

makespan(T ) = max{tTi,∀i = 1, . . . ,m}. (2)

Load L j on the jth node is calculated as

L j =
number o f transactions in Q j

service rate o f N j
(3)
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Thus, load on all nodes can be calculated as

L =
n

∑
j=1

L j (4)

We compute the standard deviation of the load as

σ =

√
1
n

n

∑
j=1

(L j− L̄)2 (5)

where σ is the standard deviation of the load with the same unit as load (%), n is the

number of nodes, L j is the load of the jth node computed in Eq. (3), and L̄ is the average

load of all nodes. If the value of σ is small, the load of the entire system is balanced.

The node utilization [47] is calculated as the transaction completion time of each node by

the makespan value.

U j =
completion time

makespan
(6)

Thus, the maximum load balance can be calculated as the sum of all the nodes‘ utilization

divided by the total number of nodes.

U j =

n
∑
j=1

U j

n
(7)

For evaluation of the efficiency of the load distribution, load balancing speedup Θ is

calculated as

speedup(Θ) =
tnon balanced

tbalanced
(8)

where tnon balanced is the completion time without load balancing, and tbalanced is the

completion time after load balancing on the same set of nodes.
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Transaction throughput of the system is calculated as

P =
Number o f success f ul transactions

total completion time
. (9)

Suppose 90 transactions are completed in 60 time unit, and then the transaction throughput

of the system will be 90/60 or 1.5 transactions per unit time.

Miss Ratio is also used to measure the performance of the transaction oriented systems.

It is calculated as

Miss Ratio(T ) =
Number o f aborted transactions

Total number o f transactions
100% (10)

With the Eqs. (1) to (10) taken into account, the transaction processing model for load

balanced transaction scheduling is formulated as follows:

Minimize L

subject to proc j ≤ makespan(T ),∀ j = 1, . . . ,n.
(11)

where the constraint 11 states the processing time (proc j) of all the transactions on node

N j should lie within its makespan.

Minimization of makespan of a set of the transactions will maximize the number of

committed transactions. The maximization of successful transactions will result in

maximizing the throughput of the system (see Eq. (9)). If throughput is increased, it

means the number of committed transactions are said to be increased. Because the

maximum number of the transactions are getting chances to access the nodes

successfully within their deadline. Thus, the minimization of the makespan becomes a

prime concern while enhancing the performance the system.

Minimize makespan(T )

subject to
n

∑
j=1

xi j = 1,∀i = 1, . . . ,m
(12)

where constraint 12 states that each transaction should be assigned to exactly one node.
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Minimization of makespan also minimizes the miss ratio of the transactions which is also

a major concern for the better performance of the grid transaction processing system.

Therefore, we propose the load balanced scheduling algorithm with the objective

functions mentioned in Eq. (11) and Eq. (12).

3.2 The Proposed Ant Colony Optimization for Balanced

Transaction Scheduling

This section presents a transaction processing algorithm LBTS ACO based on Ant Colony

Optimization [35, 36] to solve the load balanced transaction scheduling problem.

3.2.1 The proposed algorithm: LBTS ACO

The LBTS ACO algorithm (Algorithm 1) is used to find the optimal solution such that

the less loaded nodes can be selected for scheduling the transactions. The LBTS ACO

algorithm informally can be imagined as the interplay of three procedures: the first

procedure constructs the solutions. The second procedure updates the pheromone load

value trailed by the ants. While the third procedure updates the global solution. We use

the term pheromone load in this chapter to connect the load concept. We need to select

those nodes which have the minimum load. Therefore, the node with the less value of

pheromone load is highly preferable to be selected. Because our motive is to apply load

balanced scheduling for the transactions.

• ConstructAntsSolutions manages a colony of those transactions, which

concurrently and asynchronously visit adjacent states of the problem. They apply a

stochastic local decision policy while moving with the use of pheromone load

trails and heuristic information. In this way, solutions to the optimization problem

are built incrementally.
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• UpdatePheromones process modifies the pheromone load trails. The trail’s value

either increases, as the transactions deposit pheromone load on the components or

the connections they use, or decreases, due to pheromone load evaporation.

• DaemonActions procedure is implemented as centralized actions. The activation of

a local optimization procedure or the global information collection is the example

of this procedure that decides whether additional pheromone load is useful or not.

The output of the LBTS ACO algorithm forms a scheduling queue.

This algorithm is a stochastic search procedure of nodes carrying the minimum or the

null load. The pheromone load model [54] is the central component of this algorithm

which is used to sample the search space probabilistically. The process is a Combinatorial

Optimization problem.

TABLE 3.1: Parameters of LBTS ACO

Parameters Value
α 0.5
β 0.5
ρ 0.2
d 0.25

Definition 3.2.1. Given load L j on the sender node N j, and two random nodes Nr1 and

Nr2 with loads Lr1 and Lr2 respectively, then

φ(L j,Lr1,Lr2) =


δ jr1r2 if Lr1 < Lr2,

δ jr2r1 if Lr2 < Lr1,

0 otherwise.

where δ jr1r2 = |
Lr1−L j
Lr2−L j

|, δ jr2r1 = |
Lr2−L j
Lr1−L j

|, r1,r2 ∈ N,and ∀ j = 1, . . . ,n. At least one of the

δ jr1r2 and δ jr2r1 should lie in the range [0.0,1.5].

Here we select the value of δ from the range [0,1.5]. Suppose, there are four nodes N1

(as the sender), N2, N3, and N4 as receivers having the load on them as 8, 16, 10, and

5 respectively. If we select two receiver nodes randomly as N2 and N3, we calculate

δ132 =
10−8
16−8 = 0.25. Here we see that δ132 = 0.25 which lies in the range [0,1.5]. This

means this pair of receivers is suitable at the particular iteration. Then we select the node

N2. If neither δ jr1r2 nor δ jr2r1 lie in the defined range [0,1.5], it means the load difference
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between the sender node and the receiver node is very high. So the node is not suitable to

be selected.

Definition 3.2.2. If Lp j be the pheromone load value on the jth node, K is the iteration

number, and ρ be the given evaporation rate of the pheromone load of an ant active

on the node, then Lp j can be updated using the evaporation rate ρ as Lp j(K + 1) ←

(1−ρ).Lp j(K) + ρ

K .
K−1
∑

k=1
Lp j, ∀k ∈ K.

The parameter ρ ∈ (0,1] is the evaporation rate. It has the function of uniformly

decreasing all the pheromone load values. From a practical point of view,

pheromone load evaporation is needed to avoid a too rapid convergence of the algorithm

toward a sub-optimal region [54]. The value of ρ is given in TABLE 3.1. We assume that

the initial value of pheromone load is d
log(k+1) , where d is constant. The value of d is

given in TABLE 3.1 and K is the maximum number of iteration.

Definition 3.2.3. If ρ be the given evaporation rate of the pheromone load of an ant

active on the node selected by δ ( j,r1,r2), the quality of the selected node is η(N j), where

η(N j) = ρ.Lp j,∀N j ∈ N.

To calculate the quality of the node, first we need to calculate the pheromone load.

According to Definition 3.2.2, we get the initial value of the pheromone load as d
log(k+1) .

If we again consider the example of Definition 3.2.1, the pheromone load deposited by

the ant on the node N1 is calculated as 0.25
log(1+1) = 0.830482024 where the value of d is

taken as 0.25 given in TABLE 3.1. The evaporation rate (ρ) of the pheromone load is

0.2, then the quality of the node (η(N j)) is computed as ρ.Lp j which is equal to 0.2 ×
0.830482024 = 0.166096405.

Definition 3.2.4. If α be the relative importance of the pheromone load of the jth node,

Lp j, and β determines the relative importance of heuristic information value or the

quality of the node (η(N j)), then the probabilities for choosing the next feasible solution

component is given by p(N j|Lp) =
[Lp j]

α .[η(N j)]
β

∑Ny∈N(Lp)[Lpy]
α .[η(Ny)]β

,∀N j ∈N(Lp).

Here p(N j|Lp) which is the probabilities for choosing the next solution component, is

also called the transition probabilities. The value of α and β are given in TABLE 3.1.

The choice of a solution component N j ∈ N(Lp) is, at each construction step, done

probabilistically on the pheromone load model. The probability for the N j is

proportional [Lp j]
α .[η(N j)]

β .
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Theorem 1. For a given transaction Ti, with deadline D(Ti), and node N j in a grid

transaction processing system, load balanced transaction scheduling minimizes the load

Li on the node before dispatching the transaction and gives the optimal load, node

utilization, throughput, makespan, miss ratio, and load balancing speedup of the grid

transaction processing system.

Proof. Suppose, T and N be the set of the transactions and nodes respectively, where

N j ∈ N and Ti ∈ T . Every transaction has its deadline to complete. If the load of the

nodes is known (as explained in Eq. (1) and Eq. (2)) and the scheduling of the

transactions is performed using the optimization approach, the waiting time of the

transactions is minimized which enhance the throughput and minimizes the makespan of

the transactions. The optimization procedure uses the Definition 3.2.1, 3.2.2, 3.2.3, and

3.2.4 to find the optimal nodes. In this procedure, every transaction gets balanced node

before scheduling which stops the creation of overhead caused by inter-processor

communication. In general, the inter-processor communication is established when a

transaction comes to know that its waiting time on a node is increasing and subsequently

it searches another node to execute. To avoid the inter-processor communication

overhead, the balanced scheduling using optimization approach is an appropriate

method. Thus, the transaction scheduling optimization problem formulated in Eq. (11)

and Eq. (12) can be solved.

The LBTS ACO is based on ACO (Ant Colony Optimization) approach. In detail, the

LBTS ACO works as follows: When a transaction is submitted to a node in the grid, an

ant is initialized, and it starts working. Next step is to find the optimal nodes, the set

of the feasible solution, N(Lp). At each iteration, exploiting a given transaction load,

solutions to the problem under consideration are constructed probabilistically. Finally,

before the next iteration starts, the transaction load update is performed by using some of

the solutions.

Suppose the algorithm starts operation at node N j. Line 2 finds out the load L j of the node

N j.

ConstructAntsSolutions: Construction of optimal solution N(sp) is the ingredient

module of the algorithm. The module assembles the solutions from the finite set of
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Algorithm 1 LBTS ACO
1: start from node N j . Initial node
2: find L j
3: make N j the best-so-far node Nbs
4: k = 1 . Iteration starts
5: Pk = 0
6: while (Pk ≤ 1) do
7: if L j 6 b n

2 c then
8: Lbs← L j
9: L j ← L j +1

10: Nbs← N j
11: Update the pheromone load of selected node using Definition 3.2.2 . pheromone load update
12: Calculate the quality of the node using Definition 3.2.3 . Finds quality of the node
13: Lp← Lbs
14: k = k+1
15: Pk =

log(k)
log(K)

16: else
17: select random nodes Nr1 and Nr2
18: find Lr1 and Lr2
19: Calculate φ(L j,Lr1,Lr2) Using Definition 3.2.1
20: if (0 6 φ(L j,Lr1,Lr2)6 1.5) then
21: if Lr1 ≤ Lr2 then
22: Lbs← Lr1
23: L j ← Lr1
24: L j ← L j +1
25: else
26: Lbs← Lr2
27: L j ← Lr2
28: L j ← L j +1
29: end if
30: end if
31: Nbs← N j
32: Update the pheromone load of the node using Definition 3.2.2 . pheromone load update
33: Calculate the quality of the node using Definition 3.2.3 . Finds quality of the node
34: Lp← Lbs
35: k = k+1
36: Pk =

log(k)
log(K)

37: end if
38: end while
39: N(Lp)←N(Lp)+Lp . Update in the set of feasible solution

solution component N, which starts with an empty partial solution of Lp. The current

solution Lp is extended at each construction step by adding a feasible solution

component to the set N(Lp). A permutation of load distribution subject to the problem

constraints is termed as a feasible solution. When the problem constraints are met, the

set is determined at each construction step by this solution construction method. This

module of the algorithm works as follows: The while loop of lines 6− 35 repeatedly

selecting the random nodes to search the optimal node for the requested transaction. In

each iteration of this while loop, the algorithm performs the following operations (see

FIGURE 3.1):

Firstly, line 7 checks whether L j 6 bn
2c. If it is, the following actions are done.
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• Line 8 sets L j to Lbs, the best-so-far solution and consequently line 9 increments the

load of L j by 1.

• Line 11 calculates the pheromone load of N j using Definition 3.2.2.

• Line 11 finds the quality of the node using evaporation rate ρ as elaborated in

Definition 3.2.3.

If L j � bn
2c, the else part from line 17 to line 37 searches the nodes until an optimal

solution is not found. Thus the algorithm works as follows:

• Line 17 selects the random nodes.

• Line 18 finds the load on those selected random nodes as we see in Eq. 1 and Eq.

3.

• Line 19 calculates φ(L j,Lr1,Lr2) as depicted in Definition 3.2.1.

• Line 20 checks the value of φ(L j,Lr1,Lr2) whether it is within [0,1.5]. If it is, then

line 21 again checks the load between Nr2 and Nr1 and one that is less loaded is set

to the Lbs. Here the node which has less load is preferred first and is assigned as the

best-so-far node. Otherwise, lines 26-28 select another node Lr2 and do the same

for Lr2 as lines 22-24 do for Lr1.

We repeat the iterations of the while until all the transactions are not scheduled.

UpdatePheromones: Line 32 calculates the pheromone load value on the node N j

deposited by the ants as depicted in Definition 3.2.2. Line 33 calculates the quality of

the best-so-far node Nbs using the value of evaporation rate ρ which is 0.2 as described in

Definition 3.2.3. Then Line 34 sets the best-so-far solution to the Lp.

DaemonActions: Line 39 updates the set of feasible solution N(Lp).

FIGURE 3.1 shows the working example of the LBTS ACO.
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3.2.2 Applying the LBTS ACO Algorithm

The characteristics of balanced scheduling in the grid transaction processing systems are

different from those of the other scheduling problems that have been solved by ACO in the

aspect that the solution to balanced scheduling problem is an unordered subset of balanced

nodes. The LBTS ACO conducts to explore the power set of the set of balanced nodes.

In our study model, the grid transactions are represented by a complete undirected graph.

Let G = (C,E ) denotes the complete undirected graph representing the grid transactions,

where C is the set of nodes; E = C×C is the set of edges between the nodes. FIGURE 3.1
gives an illustrative example how the LBTS ACO works. Suppose there are m number of

the transactions (T1,T2, ...,Tm) which arrive at the system with available nodes (suppose

N = 8).

ConstructAntsSolutions: The LBTS ACO constructs a set of the feasible solution so

that the scheduler gets the optimal nodes for scheduling the incoming transactions.

Construction of the solution starts from the initial node N1. As FIGURE 3.1(a)

illustrates, the LBTS ACO works by checking the load of the node N1. Since L1 6 bn
2c

(since n = 8), the condition becomes true. Thus, the N1 is selected as the best-so-far

solution. The load value is incremented by 1, and it becomes 4. Then the ant in the

algorithm comes out of the while loop. The last position of the ant is still at the node N1.

Therefore, again line 5 checks the condition. This time also, node N1 is selected, and the

load is incremented to 5. Now, the condition becomes false when checked, so two

random nodes N2 and N6 are selected as shown in FIGURE 3.1(b). Their loads are 8 and

6 respectively. Then the algorithm finds the value of δ126 and δ162 as 3.0 and 0.33

respectively. Then φ(L1,L2,L6) is calculated by selecting min(3.0,0.33). Here

φ(L1,L2,L6) 6 1.5, hence the algorithm selects the node N6 which has the minimum

load between them. The load value of N6 is incremented by 1 and it becomes 7. In

subfigure (c), the ant is at N6. Line 5 checks the condition. Since it is false, two random

nodes N3 and N5 with their respective load 5 and 4 are selected. δ635 and δ653 are

calculated as 0.66 and 1.5 and the min(0.66,1.5) value is selected. Here N5 is selected as

the solution. The same procedure continues in FIGURE 3.1(c) to FIGURE 3.1( f ). The

solution is kept in the scheduling queue.

UpdatePheromones: After selection of the best-so-far solution, the quality of the

selected node is calculated, and the ant trails the pheromone load on the selected node.
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In subfigure (a), when node N1 is selected the first time, then pheromone load value

which is dependent on the initial pheromone load and the number of iteration value, i.e.,
d

log(k+1) (as depicted in Definition 3.2.2) is calculated as 0.25
log(1+1) = 0.830482024. The

quality of the node η(N1) (as depicted in Definition 3.2.3) is calculated as ρ ∗Lp1 where

ρ is 0.2 and Lp1 = 0.830482024. Therefore, η(N1) is calculated as 0.166096405. The

ant is still at the node N1 because L1 6 b8
2c. Now the pheromone load L1 of N1 is

updated as (1− 0.2) ∗ 0.830482024 + 0.2
2 ∗ 0.830482024 which is 0.747433822. This

value is deposited at iteration k = 2. As the iteration will keep on increasing; the

pheromone load will keep on decreasing with evaporation rate ρ = 0.2.

At iteration k = 3, in subfigure (b), when L1 becomes 5, the ant at N1 compares loads of

two randomly selected nodes N2 and N6. After selecting N6 as the best-so-far solution,

the pheromone load L6 is calculated by (1.0 − 0.2) ∗ 0.747433822

+(0.2/3)∗ (0.830482024+0.747433822) which gives 0.703141447.

The quality of the selected node η(N6) is calculated as ρ ∗Lp j which is 0.140628289. We

observe that the quality of the node gets decreasing with the load increase on the node.

DaemonActions: This module of the LBTS ACO updates the set of feasible solution

N(Lp) globally by generating a scheduling queue as shown in FIGURE 3.1( f ).

The meta-heuristic algorithms like ACO suffer from premature convergence [108] when

applied for scheduling problem, we deal this problem by using following approaches in

our algorithm.

3.2.3 Prevention of Premature Convergence of the Algorithm

We incorporate the parameter Pk in the algorithm to achieve the prevention of premature

convergence in the LBTS ACO algorithm as:

Pk =
log(k)
log(K)

(13)

where k is the counter for the number of iterations and K is the maximum number of

iterations. Here Pk represents the probability of avoiding newer solutions where 0≤ Pk ≤
1. Each time Pk is compared to a randomly generated quantity Pevent .
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When k value increases, the probability of the event Pevent > Pk decreases (suppose Pevent

is a randomly generated number which lies in the range [0,1]) i.e., at the lower value of

k, the probability of searching new nodes by the ants is higher and at higher values of

k, the probability of new search decreases. Thus, the algorithm can prevent a very quick

convergence to locally optimized solution.

3.2.4 Stagnation Avoidance

Another undesirable situation, i.e., stagnation [108] may arise when all ants construct the

same solution over and over again. This situation prevents the generation of new search.

It happens when the parameters (α,β ,ρ) of the LBTS ACO algorithm are not well tuned

for taking the problem. If the value of ρ is too high, the stagnation situation may take

place. Therefore, we have set the values of the parameters as α = 0.5, β = 0.5, and

ρ = 0.2 as given in TABLE 3.1.

3.2.5 Convergence Test

The convergence of the LBTS ACO algorithm is the first theoretical problem which

means if the proposed algorithm can find the optimal solution when given enough

resources. As the proposed algorithm is a stochastic search procedure, the pheromone

update may prevent it to even reach an optimum. Typically, there are at least two types of

convergence of the proposed algorithm which can be considered [54]: convergence in
value and convergence in solution.

Convergence in value also known as Asymptotic convergence evaluates the probability

that the algorithm generates an optimal solution at least once. Convergence in solution
known as Reachability convergence evaluates the probability that the algorithm reaches

a state which keeps on generating the same optimal solution.

Proposition 2. Given Algorithm 1 that using the pheromone load update rule from

Definition 3.2.3 for any pheromone load value, the following holds

lim
k→∞

Lp j(k)≤
Lp j.K

ρ
(14)
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where Lp j(k) denotes the pheromone value Lp j at iteration k while K is the maximum

iteration.

Proof. At any iteration, the maximum possible increase of pheromone load value Lp j

is η(N j) if all solution are equal to N j with new choice of solution. Therefore, due to

evaporation, the pheromone load Lp j at iteration k is bounded by

Lp j←− (1−ρ)k.
d

log(k+1)
+K.

K

∑
k=1

(1−ρ)K−k.Lp j (15)

where d
log(k+1) with d being constant is the initial value of all the pheromone load trail

parameters. Asymptotically, because 0 < ρ ≤ 1, this sum converges to Lp j.K
ρ

.

From this proposition, we can say that the pheromone value upper bound in the pheromone

update rule is Lp j.K
ρ

.

Theorem 3. Let Ps(k) is the probability that an algorithm generates an optimal solution

in the kth iteration, then the algorithm has asymptotic convergence and reachability

convergence if limk→∞ Ps(k) = 1.

Proof. From Proposition 1, we get that minimum value of pheromone load is greater

than 0, because it is anyway bounded by maximum pheromone load value. Since

minimum pheromone load > 0, at each iteration, any generic solution can be generated

with a probability greater than 0. Therefore, the probability of generating an optimal

solution tends to 1 even at a sufficiently large number of iterations. Therefore, we state

that the algorithm is guaranteed to find an optimal solution with a probability that can be

made arbitrarily close to 1 if given enough time (convergence in value).

3.3 Simulation and Results Analysis

The proposed scheduling algorithm, LBTS ACO, is evaluated through simulations with

Colored Petri Nets (CPNs or CP-nets). The transactions are generated randomly using
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exponential distribution. For modeling failures in the system, we use the Poisson

process. In our simulations, the system scenario is based on Czech National Grid

Infrastructure Metacentrum project. In our simulations, the grid scenario is based on

Czech National Grid Infrastructure Metacentrum project. The transaction traces used in

the simulations specify a set of parameters such as the transaction identifier, associated

transaction user priority, the set of properties to be met in the target resource and arrival

time to the scheduler. Some assumptions are made for the simulation. These are:

• The workload consists of sets of independent transactions on a heterogeneous grid

system.

• A maximum deadline for the transactions is 1000 time units.

We compare the performances of the proposed algorithm with five existing scheduling

algorithms in the literature namely, Extremal Optimization [2, 27, 28], GA [33, 1],

Hierarchical Load Balanced Algorithm (HLBA) [34], Dynamic and Decentralized Load

Balancing (DLB) algorithm [35], and Randomized algorithm with random selection

method [36]. For the purpose of comparison, we simulated all the scheduling algorithms

also on the non-transaction processing system.

The short introduction about each of the mentioned algorithms is presented below.

• Extremal Optimization: Extremal Optimization (EO) is a nature-inspired

optimization technique. This technique has moderate computational complexity

and small memory requirements. It is a meta-heuristic approach.

• Genetic Algorithm: In the GA, the candidate solutions (called individuals) and their

abstract representations (named chromosomes), are improved in each iteration to

finally get the optimum solution. It uses selection operation to find the survival for

each individual. Thus, the fitness of the whole population is determined. Based on

the fitness value, the individuals are selected randomly from the population. The

individuals that have high fitness value are inherited in the next generation with a

higher probability while the individuals with low fitness are inherited in the next

generation with a smaller probability.
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FIGURE 3.1: Working example of the LBTS ACO when N=8
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• HLBA: In this algorithm, the system load is used as a parameter in determining

a balance threshold. And the scheduler adapts the balance threshold dynamically

when the system load changes. The scheduling algorithm balances the system load

with an adaptive threshold, and it minimizes the makespan of jobs. This algorithm

is suitable for a dynamic grid environment, but in the case of the grid transaction

processing the resulting schedule is not optimal.

• DLB: This algorithm is for computationally intensive jobs on a heterogeneous

distributed computing platform. The time spent by a job in the system is

considered as the main issue that needed to be minimized. The algorithm uses site

desirability for processing power and transfer delay to guide load assignment and

redistribution. The communication overhead involved in the information collection

is reduced using mutual information feedback. The algorithm focuses on the

communication overhead involved in capturing load information of sites before

making a dispatching decision. For the data grids like the grid transaction

processing, the algorithm is not able to provide good results.

• Randomized: In this algorithm, the nodes are selected randomly using exponential

distribution. This algorithm uses the first-in-first-out approach.

All the experiments are carried out in two different ways; first in the grid transaction

processing system i.e., using Transaction Management (TM) and second in the traditional

grid processing system without Transaction Management (WTM). The final results are

produced on an average basis.

We addressed the parameters optimization analysis together with the convergence

behavior in section 3.2.3, section 3.2.4 and section 3.2.5. We also conduct statistical tests

to further analyze the validity of results. For the best final result, the normality of data

with Shapiro-Wilks test is studied. TABLE 3.2 shows the confidence value (p-value). As

the p-value ≤ 0.5, the null hypothesis that the samples came from normal distribution

must be rejected. Similarly, for the another objective function, i.e., makespan, TABLE

3.3 shows that the null hypothesis of the samples being in normal distribution must be

rejected.

We have also conducted nonparametric tests (see TABLE 3.4) to check the difference

among the methods using Wilcoxon or Mann-Whitney test [109]. The observations in
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TABLE 3.4 shows that p-value≤ 0.5. Therefore, it can be concluded that the LBTS ACO

outperforms all other algorithms. Therefore, the simulations in TABLE 3.5 show that the

LBTS ACO is faster than EO, GA, HLBA, DLB, and Randomized algorithms.

TABLE 3.2: Normality Shapiro-Wilk tests for the best results of load

Algorithm Shapiro-Wik W p-value
LBTS ACO 0.889405172 0.0022
EO 0.889830107 0.0024
GA 0.88694925832 0.00258
HLBA 0.88827583596 0.00258
DLB 0.89029488641 0.00258
Randomized 0.89111842344 0.00265

TABLE 3.3: Normality Shapiro-Wilk tests for the best results of makespan

Algorithm Shapiro-Wik W p-value
LBTS ACO 0.8668013739216988 < 0.001
EO 0.8642371443799678 < 0.001
GA 0.8558035724664631 < 0.001
HLBA 0.9207793391610051 0.017
DLB 0.7852026082946301 < 0.001
Randomized 0.9328940495822504 0.043

TABLE 3.4: Wilcoxon statistical tests for the best results (load) found for
LBTS ACO, EO, HLBA, GA, DLB, and Randomized algorithms. Assume

null hypothesis µ0 = 0 and null hypothesis: two-sided, µ̂ < µ

.
Observation Wilcoxon p-value 95% Confidence Interval µ̂

LBTS ACO vs. EO 720 0.351641 −∞ 19.1000 -1.09331184504
LBTS ACO vs. GA 730 0.24793775 −∞ 17.5000 -1.15169113147
LBTS ACO vs. HLBA 728 0.245388 −∞ 16.6000 -2.15169113147
LBTS ACO vs. DLB 576 0.015653 −∞ -4.5000 -36.8436479761
LBTS ACO vs. Randomized 480 0.001042 ∞ -29.0000 -70.9136724848

3.3.1 Load on the System

This experiment compares the load of each method independently. TABLE 3.6 illustrates

the result of load measurement. In FIGURE 3.2 we see the load on the grid transaction

processing system for all these algorithms. As expected, our proposed algorithm

outperforms the others. When comparing the results of the algorithms, it can be observed

that the gap between these curves widens as the completion time increases. However,

these curves are almost the same when the completion time is less than 800 time unit.
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TABLE 3.5: Load on the system with 40 simulations

Strategy Iteration Average Standard deviation Confidence Interval (95%) Min

LBTS ACO
300 21.1794871795 5.34392439525 9.5 28 9
200 16.07 5.31753082946 4.5 27 4
100 8.81 5.91868087686 6.25 21 6

EO
300 22.454 6.4430243 11.5 38 11
200 18.05 6.3075946 11.5 35 11
100 9.5 6.05675 11.5 30 11.5

GA
300 23.75656 6.545430987 13.5 45 13
200 21.575 6.35657525 13.0 45 13
100 20.3567 6.0567654 13.0 38 13

HLBA
300 28.575 7.87567834 21.55 55 21
200 27.955 7.35657525 21.55 52 21
100 26.575 7.20567654 21 50 21

DLB
300 35.45 8.457237 25.55 60 25
200 35.05 8.35657525 25.5 58 25
100 34.95 8.0567654 25.05 55 25

Randomized
300 44.89 10.576565 25.78 75 25
200 44.50 10.35657525 25.50 72 25
100 44.257 10.0567654 25.5 70 25

TABLE 3.6: Load on the system

Time (time unit)
LBTS ACO EO GA HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM TM WTM

100 5.8 7.2 6 7.5 6 6.2 6.2 8 8 9 8 5.8
200 15.8 17.8 16.1 18.5 16.5 16.75 16.9 19.5 18 21.5 23.8 24
300 28 30.8 28.5 31.5 29.05 29.55 30.2 35.7 35.3 45.5 44.8 47.4
400 43.5 48.5 44.5 45.5 44.75 48.5 45.78 51.5 58.8 61.5 94.4 70.33
500 60.6 57.6 62.5 58.75 62.5 65 62.7 65.6 100 69.7 137 81.2
600 63.6 51.2 63.75 55 64.5 59.5 65.7 75.7 125.5 79.9 155.2 105.2
700 85 64.4 86.6 65.5 85.0 78.5 85 79.5 150.9 100.5 157.8 122.66
800 125.4 72.4 126.5 75.5 128.5 80.25 129.6 81.3 200.5 125.6 217.6 150.6
900 146.4 77.4 148.25 79.75 150.75 83.75 152.4 85.4 225.6 181.5 259.8 195.8

1000 169 73.2 170.75 79 173.5 85 181 90 251 180 265 201.7

For the long-lived transactions, the system load becomes heavier, and thus the ACO has

more chance to manage the load, thereby making the load balanced scheduling decisions

and bringing in better performance. This shows that the LBTS ACO works well,

especially in higher load scenarios and for the long-lived transactions. On the other hand,

the DLB and the Randomized algorithms underperform in the comparison of the

LBTS ACO, EO, GA and HLBA, because they schedule the transactions to random

nodes. The randomly selected nodes may be either lightly loaded or heavily loaded.

Therefore they waste some processing and switching time when they encounter heavily

loaded nodes.

Comparison of the load on the grid processing system without transaction management

for all the algorithms are shown in FIGURE 3.3. In this case also, the proposed algorithm
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Load on the system when TM is used
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FIGURE 3.3: Load on the system
without Transaction Processing

outperforms the other mentioned algorithms. As the completion time increases, the gap

among all the curves widens. When comparing the results of the LBTS ACO with others,

the widening gap among their curve prove that the LBTS ACO works better than others.

The LBTS ACO performs better than others, not only for the long-lived transactions but

also for the short-lived transactions.

In FIGURE 3.4 we have the comparison of results of the LBTS ACO between the grid

transaction processing system and traditional grid processing system. This shows that the

LBTS ACO is a better approach for balanced scheduling not only for the grid transaction

processing system but also for traditional grid processing system. The gap among the

curves widens hugely as the completion time increases further from 500 time unit. It

is observed that the LBTS ACO manages the load better in traditional grid processing

system than how it manages the load in the grid transaction processing system. The

reason behind the huge gap between the two curves is that a transaction roll back all

its sub-transactions when one of the sub-transactions is rolled back and again transaction

request is resumed if the deadline has not been missed.

In FIGURE 3.5 we see the load deviation comparison from iterations 100 to 300 using

Eq.5. It is observed that the load deviation in LBTS ACO is lesser at the increased

iterations than other algorithms. It means the LBTS ACO performs better than others in

load balancing.
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Load on the system with and without TM using LBTS_ACO
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results

3.3.2 Node Utilization

This experiment compares the proposed algorithm with the mentioned algorithms

regarding the node utilization. The node utilization indicates how well the loads are

balanced across all the nodes involved in a grid processing system. The higher node

utilization will ensure the better performance of load balancing. In TABLE 3.7 we have

the comparison of results among the mentioned algorithms.

TABLE 3.7: Node Utilization

Time (time unit)
LBTS ACO EO GA HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM TM WTM

100 0.924 0.911 0.905 0.9 0.8575 0.825 0.644 0.667 0 0 0 0
200 0.95 0.979 0.925 0.95 0.9125 0.925 0.924 0.911 0 0 0.5 0.5
300 0.949 0.972 0.935 0.952 0.925 0.945 0.943 0.946 0.865 0.8 0.834 0.778
400 0.966 0.977 0.955 0.955 0.945 0.957 0.967 0.956 0.9095 0.8642 0.889 0.834
500 0.9752 0.99 0.9725 0.98 0.9715 0.9798 0.976 0.971 0.9361 0.908 0.92 0.886
600 0.9849 0.987 0.9825 0.9865 0.9825 0.98 0.979 0.9783 0.9549 0.949 0.944 0.939
700 0.9846 0.984 0.9825 0.983 0.981 0.9825 0.979 0.9819 0.9606 0.9649 0.951 0.956
800 0.9883 0.985 0.9875 0.9835 0.9835 0.9855 0.986 0.9832 0.9589 0.9697 0.949 0.962
900 0.9929 0.99 0.9925 0.9898 0.991 0.9875 0.984 0.9876 0.9704 0.9746 0.944 0.968

1000 0.996 0.989 0.995 0.9875 0.993 0.9865 0.9893 0.9876 0.977 0.9784 0.971 0.973

Depicted in FIGURE 3.6, it can be seen that the node utilization in the grid transaction

processing system for the proposed algorithm is higher than other algorithms. The

LBTS ACO, EO, GA and the HLBA are approximately giving better results but the

LBTS ACO outperforms others when the transactions are short-lived (having deadlines

less than 200 time unit). The reason is that the LBTS ACO dominates the load balancing
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process when the system workload is light. The other reason is that the LBTS ACO also

manages the overhead caused by the interprocess communication.

In FIGURE 3.7 we have the comparison of the node utilization in grid processing system

without the transaction management among the mentioned algorithms. Once again the

LBTS ACO outperforms the other algorithms. When comparing the results of the

LBTS ACO, EO, GA, and the HLBA, it is observed that the gap among their curves

remains widened when the completion time is less than 700 time unit.
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with Transaction Processing

Node Utilization without TM
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FIGURE 3.7: Node Utilization
without Transaction Processing

In FIGURE 3.8 we have the comparison of the node utilization of the LBTS ACO between

the grid transaction processing system and grid processing system. It is observed that

for the short-lived jobs in the computational grids and the short-lived transactions in the

data grids (up to 600 time units), the node utilization in the computational grids is much

higher than that in the data grids. This huge difference in node utilization is caused due

to the deadline constraints in the data grids. But in the case of the long-lived jobs in the

computational grids and the long-lived transactions in the data grids, the difference of the

node utilization between them is opposite. Thus, the LBTS ACO algorithm gives better

result not only for the data grids (with TM) but also for the computational grids (WTM).
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Node Utilization in LBTS_ACO with and without TM
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FIGURE 3.8: Node Utilization with and without Transaction Processing

3.3.3 Transaction Throughput

This experiment evaluates the performance among the algorithms concerning

throughput. Here the average throughput of the grid transaction at different processing

levels are presented. TABLE 3.8 illustrates the result of throughput measure. The

transaction throughput which has been defined in Eq. (9) is first measured for the grid

transaction processing system (as depicted in FIGURE 3.9), and then measured in

traditional grid processing system (as depicted in FIGURE 3.10). FIGURE 3.9 and

FIGURE 3.10 show that the LBTS ACO algorithm outperforms the EO, GA,

Randomized, DLB, and HLBA algorithms.

TABLE 3.8: Throughput (Number of the transactions per unit time) after
executing for a particular time unit

Time
LBTS ACO EO GA HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM TM WTM

100 0.01 0.016 0.01 0.015 0.01 0.0156 0.01806 0.02 0 0 0 0
200 0.094 0.135 0.09 0.125 0.098 0.0176 0.12 0.1316 0 0 0 0
300 0.134 0.29 0.124 0.275 0.125 0.27 0.1643 0.203 0.0254 0.02966 0.02 0.02333
400 0.164 0.4905 0.154 0.4565 0.152 0.425 0.2174 0.3193 0.03818 0.0477 0.03 0.0375
500 0.3616 0.6692 0.3565 0.5656 0.3457 0.56 0.39018 0.40464 0.0585 0.0789 0.046 0.062
600 0.5623 0.755 0.5575 0.725 0.545 0.715 0.4817 0.5247 0.176 0.193 0.1383 0.15166
700 0.8748 0.7718 0.87 0.77 0.85 0.77 0.64035 0.77455 0.2781 0.2745 0.2185 0.2157
800 1.05 0.827 1.05 0.815 0.95 0.81 0.84386 0.80387 0.2911 0.31976 0.22875 0.25125
900 1.9193 0.9477 1.9 0.925 0.8585 0.915 0.81027 0.971 0.4002 0.42565 0.3144 0.3344
1000 3.198 1.0106 2.5 0.99 0.99 0.9879 1.01419 0.9517 0.4989 0.54472 0.392 0.428

In FIGURE 3.9 we see that for the short-lived transactions with the completion time less

than 500 time units, the LBTS ACO and the EO, GA, and HLBA perform almost the
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same. But if the completion time is more than 500 time units, the LBTS ACO outperforms

the HLBA algorithm and after 800 time units it outperforms all the algorithms. That

means the chances of deadline miss in the long-lived transactions becomes considerably

much less in the LBTS ACO than others. The reason is that the load balanced scheduling

performed by the proposed algorithm reduces the waiting time on the nodes. Thus, the

chances of getting the resources increases which enhance the throughput of the system.

The other benefit for the long-lived transactions is that they have longer deadlines which

control transaction abort.

While in FIGURE 3.10 we see that in the computational grids (jobs without TM), the

LBTS ACO always performs better than other algorithms. When comparing the

LBTS ACO with others, it is observed that for the short-lived jobs (less than 700 time

units), the gap among their curves widens. The widened curves show that the

LBTS ACO works much better than others. For the long-lived jobs, the LBTS ACO and

others perform almost similar. The reason is that the load balancing process in the

LBTS ACO is dominated in the comparison of other algorithms and thus it has more

chance to make balanced scheduling decisions. The number of successful tasks’

execution increases and thus the throughput of the grid processing system increases.

Throughput when TM is used
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The results also show that the throughput of the LBTS ACO in the grid transaction

processing system (with TM) is better than its throughput in grid processing system

(WTM). FIGURE 3.11 shows that for the short-lived transactions and jobs, the

LBTS ACO gives better throughput result for the computational grid than the data grid.
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But for long-lived transactions and jobs, the LBTS ACO gives better throughput result

for the data grid than the computational grid. There is a huge gap between the two curves

after 700 time unit. The reason is that in the grid transaction processing system the

transactions always have deadlines within which they are forced to run completely. For

the long-lived transactions, if the load is light, the waiting time will be less, thereby

executing more number of transactions within their deadlines.

Throughput of LBTS_ACO with TM and without TM
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FIGURE 3.11: Comparison of the LBTS ACO Throughput

3.3.4 Makespan Analysis

In this experiment, the makespan of the mentioned algorithms are evaluated and are

compared. Since there may be several transactions in the grid, the simulations are done

on the size and the number of the transactions. In such dynamic situation, how these

algorithms respond is discussed here. TABLE 3.9 shows the makespan along several

iterations, i.e., 100,200, and 300 in 40 simulations. It presents the mean result achieved

by the populations with the associated standard deviation and 95% confidence interval

and the best result (Max). In TABLE 4.21, we choose from 100 to 1000 transactions and

compare their makespan as illustrated in TABLE 4.21. The table shows that the

makespan taken for all algorithms grows up as the number of the transactions or tasks

increases.
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TABLE 3.9: Makespan with 40 simulations

Strategy Iteration Average Standard deviation Confidence Interval (95%) Max

LBTS ACO
300 115.225 24.075389405 60.5 160 160
200 96.875 21.9933938945 50.5 143 143
100 71.425 23.7106384351 25.25 130 130

EO
300 122.454 26.4430243 61.5 180 180
200 120.5 26.3075946 60.5 175 175
100 119.5 25.505675 60 175 175

GA
300 130.75656 27.545430987 73.5 205 205
200 128.575 26.935657525 73.0 195 195
100 128.3567 26.0567654 73.0 195 195

HLBA
300 135.75 27.87567834 81.55 215 205
200 135.5 27.35657525 81.55 210 210
100 134.575 27.20567654 80.5 200 200

DLB
300 180.75 28.457237 150 350 350
200 180.05 28.35657525 150 348 348
100 178.75 28.0567654 150 345 345

Randomized
300 230.89 35.567894 190 380 380
200 230.50 35.35657525 190 375 375
100 230.25 35.0567654 190 370 370

TABLE 3.10: Makespan

Transactions
LBTS ACO EO GA HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM TM WTM

100 310 315 313 320 325 320 328.6 351.85 530.35 505.84 675 643.8
200 375 353 419 354 420 354 421.6 387.5 627.78 607.51 799 773.2
300 424 412 425 415 430 417 531.65 461.125 695.357 677.91 885 862.8
400 530 538 535 541 540 541 542.5 542.5 792 745.171 1,008 948.4
500 570 560 575 565 580 570 581.25 577.375 853.285 829.321 1,086 1,055.5
600 575 572 585 583 600 588 608.375 589 908.757 901.214 1,156.6 1,147
700 635 640 640 650 664 665 674.25 675.8 922.428 985.914 1,174 1,254.8
800 700 705 705 735 725 740 730.05 744.375 982.142 1,039.65 1,250 1,323.2
900 720 735 715 755 700 765 763.375 767.25 1,012.157 1,075.8 1,288.2 1,369.2

1000 720 735 725 775 735 805 799.8 819.125 1,131.428 1,397.94 1,440 1,779.2

We observed from FIGURE 3.12 that the makespan of the LBTS ACO, EO, GA and

HLBA are very close and are much better than the Randomized and the DLB algorithms.

The remarkable point in this experiment is that the LBTS ACO gives reduced makespan

for the batch of a large number of the transactions. This becomes possible due to the

balanced scheduling which reduces the waiting time on the nodes resulting more number

of the transaction commit.

When we compare these algorithms by simulating in the computational grid processing

systems (WTM) with respect of makespan, we observed that the LBTS ACO, EO, GA and

the HLBA outperform other two algorithms. In the comparison of the EO, GA, HLBA,

DLB, and Randomized, the LBTS ACO performs better (as shown in FIGURE 3.13).
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Makespan when TM is used
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FIGURE 3.12: Makespan when
TM is used
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FIGURE 3.13: Makespan when
no TM is used

FIGURE 3.14 illustrates the comparison of makespan of the LBTS ACO in the data grid

(with TM) and that in the computational grid (without TM). If the number of tasks in a

batch is less than 600, the LBTS ACO takes less time for the computational grid than

what it takes for the same number of the transactions in the data grid.

Makespan of LBTS_ACO with and without TM
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FIGURE 3.14: Comparison of the LBTS ACO makespan

3.3.5 Miss Ratio

In this experiment, miss ratio is compared among the mentioned algorithms. The

comparison results are shown in TABLE 3.11.
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TABLE 3.11: Miss Ratio (%)

Time (time unit)
LBTS ACO EO GA HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM TM WTM

100 0 0 0 0 0 0 35.6 33.3 0 0 0 0
200 5 2.1 6.5 3.5 6.75 3.65 7.6 8.9 0 0 50 50
300 5.1 2.8 5.5 3.1 5.65 3.5 5.7 5.4 13.5 20 16.6 22.2
400 3.4 2.3 3.5 2.35 3.56 2.45 3.3 4.4 9.05 13.58 11.1 16.6
500 2.4 1.0 2.45 1.5 2.5 1.55 2.4 2.9 6.39 9.20 8.0 11.4
600 1.51 1.3 1.525 1.35 1.67 1.45 2.1 2.17 4.51 5.1 5.6 6.1
700 1.54 1.6 1.6 1.75 1.65 1.8 2.1 1.81 3.94 3.51 4.9 4.4
800 1.17 1.5 1.2 1.575 1.25 1.6 1.4 1.68 4.11 3.03 5.1 3.8
900 0.72 1.0 0.75 1.25 0.85 1.3 1.6 1.24 2.96 2.54 5.6 3.2

1000 0.4 1.1 0.575 1.25 0.75 1.3 1.07 1.24 2.3 2.155 2.9 2.7

We see in FIGURE 3.15 which compares the miss ratio of the proposed algorithm with

that of the mentioned algorithms. It can be seen that the LBTS ACO has the minimum

miss ratio as compared to others. The transaction whose completion time is more than 300

time unit, the miss ratio of the LBTS ACO, EO, GA and HLBA are approximately same.

However, the LBTS ACO performs better than others. The reason is that all transactions

tend to compete for resources and due to the load balanced scheduling they readily get the

chance to obtain their resources, thereby reducing the miss ratio.
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FIGURE 3.15: Miss Ratio with
Transaction Processing

Miss Ratio without TM (%)
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FIGURE 3.16: Miss Ratio
without Transaction Processing

We see in FIGURE 3.17 which compares the miss ratio of the LBTS ACO between the

grid transaction processing system and grid processing system. It is observed that the

LBTS ACO works better when completion time is more than 700 time units. It means the

proposed algorithm works better for the transaction processing in the grid environment.
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MissRatio with and without TM using LBTS_ACO
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FIGURE 3.17: Comparison of the LBTS ACO Miss Ratio

3.3.6 Load Balancing Speedup

This experiment compares the load balancing speedup among the mentioned algorithms.

The increase in the load balancing speedup increases the overall performance of the grid

processing system. TABLE 3.12 shows the comparison results of the load balancing

speedup among the algorithms.

TABLE 3.12: load balancing speedup

Transactions
LBTS ACO EO GA HLBA DLB Randomized
TM WTM TM WTM TM WTM TM WTM TM WTM TM WTM

100 1.701 2.15 1.7 2.1 1.6 1.8 1.68 1.73 1.19 1.2 0.94 0.94
200 1.602 2.25 1.6 2.2 1.59 2.09 1.53 1.84 1.16 1.17 0.91 0.95
300 1.418 2.09 1.4 2.0 1.399 1.99 1.4 1.64 1.121 1.21 0.88 0.88
400 1.458 1.82 1.457 1.75 1.395 1.7 1.456 1.55 1.07 1.133 0.84 0.89
500 1.425 1.78 1.42 1.75 1.399 1.72 1.348 1.52 1.05 1.06 0.82 0.83
600 1.466 1.83 1.455 1.8 1.4 1.799 1.3569 1.58 1.05 1.03 0.82 0.81
700 1.503 1.58 1.5 1.55 1.45 1.5 1.497 1.47 1.09 1.01 0.86 0.79
800 1.565 1.58 1.5 1.5 1.45 1.49 1.451 1.39 1.07 1.00 0.848 0.78
900 1.597 1.51 1.567 1.5 1.55 1.49 1.48 1.43 1.00 1.02 0.877 0.80

1000 1.6 1.47 1.575 1.47 1.57 1.42 1.46 1.41 1.03 0.826 0.812 0.64

In FIGURE 3.18 we see the effects of the load balancing speedup under a varied number

of the transactions. The LBTS ACO performs better than other algorithms. The reason is

that the proposed algorithm manages the load efficiently as compared to other algorithms.

In FIGURE 3.19 we have the load balancing speedup comparison of all the algorithms for

grid processing system (without the transaction processing). The gaps among the curves
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show that the LBTS ACO works much better than other algorithms. The reason is that

the load balancing process of the LBTS ACO in this scenario works well.

Load balancing speedup with TM
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FIGURE 3.18: Load balancing
speedup with Transaction

Processing

Load balancing speedup without TM
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FIGURE 3.19: Load balancing
speedup without Transaction

Processing

When we compare the load speedup (shown in FIGURE 3.20) of the LBTS ACO

between the grid transaction processing system and grid processing system, the load

balancing speedup in the grid processing system for first 800 number of the transactions

is much higher than in the grid transaction processing system. After 800 number of the

transactions, the load balancing speedup of the grid transaction processing system

becomes higher than grid processing system.

Load balancing speedup of LBTS_ACO with and without TM
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FIGURE 3.20: Comparison of the LBTS ACO load balancing speedup
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Fitness values (load) with 40 simulations
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FIGURE 3.21: Load on the
system for 40 simulations

Fitness values (makespan) with 40 simulations
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FIGURE 3.22: Makespan results
for 40 simulations

3.3.7 Convergence Behaviour

In FIGURE 3.21 we see the best absolute values of the objective function (load). We see

at all the iterations, the LBTS ACO has less load than others. While in FIGURE 3.22 we

see the best absolute values for the objective function (makespan).

Simulation results presented in this work distinctly show the improvement in the

performance of the proposed strategy compared to the other five algorithms.

3.4 Summary

The balanced transaction scheduling in grid is an NP-hard problem. To solve such

problems, the meta-heuristic approaches are considerably best options. In this chapter,

an ACO based balanced the grid transaction scheduling algorithm, LBTS ACO, is

presented. The algorithm balances the load of the system before the transactions are

scheduled to the required nodes. It maximizes the node utilization, minimizes the

makespan, increases the throughput, minimizes the miss ratio, and maximizes the load

balancing speedup of the grid transaction processing system. The traditional scheduling

approach in grid transaction processing system can not do well due to the variations in

load and nature of heterogeneity in the grid. To deal with the situations, LBTS ACO is
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the alternative approach which schedules transactions based on the load on the nodes. It

is a dynamic type of scheduling algorithm. The algorithm gives better throughput as well

as makespan for long-lived transactions as compared to other existing scheduling

algorithms used in grid computing systems. We compared the proposed algorithm with

the existing algorithms such as EO, GA, DLB, HLBA, Randomized. We also compared

the performance of the algorithms on transaction processing system with those on non

transaction processing system.

For future work, the next step would be to model and analyze the availability, reliability,

and dependability of the data grid system by meta-heuristic transaction scheduling

algorithms.
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