Contents

Ce	ertific	ate	iii
De	eclara	ation by the Candidate	v
Co	pyrią	ght Transfer Certificate	vii
Pr	eface		ix
Ac	knov	vledgements	xiii
Co	onten	ts	xv
Li	st of l	Figures	xix
Li	st of '	Tables	xxiii
Ał	brev	iations	xxviii
Sy	mbol	s	xxxi
1	Intr	oduction	1
	1.1	On-demand Computing	
	1.2	Transaction Processing in On-deamnd Computing	
	1.3	Dependability	
	1.4	The Threats to Dependability: Failures, Errors, Faults	
	1.5	The means to Attain Dependability	
	1.6 1.7	Load Balanced Scheduling	
	1.7	Load Balanced Transaction Processing Model	8
	1.0	Load Dataneed Transaction Processing Model	0

Contents

	1.9	Motivation and Challenges	10
	1.10	Dessertation Overview	12
	1.11	Contribution and Impact	13
	1.12	Organization	15
2	State	e of the Art	17
	2.1		17
	2.2	5 T T T T T T T T T T T T T T T T T T T	18
	2.3	\mathcal{E}	23
•	_		25
3		• • • • • • • • • • • • • • • • • • • •	27
	3.1		28
	3.2	The Proposed Ant Colony Optimization for Balanced Transaction	21
		$oldsymbol{arepsilon}$	31
		1 1	31
			37
		\mathcal{E}	38
		8	39
	2.2	5 · · · · · · · · · · · · · · · · · · ·	39
	3.3		40
			44
			47
		\mathcal{U} 1	49 51
		1 2	51
			53
			55 55
	2.4		57
	3.4	Summary	57
4	Tran	saction Scheduling considering Availability	59
	4.1	Problem Formulation	59
		4.1.1 Makespan	62
		4.1.2 Availability as Fitness Function	64
	4.2	The Proposed Model	64
		4.2.1 ACO approach	64
		4.2.2 Proposed Algorithm: MATS_ACO	65
		4.2.2.1 Prevention of Premature Convergence of the Algorithm	69
		4.2.2.2 Stagnation Avoidance	69
		4.2.2.3 Convergence Test	69
			71
		4.2.4 Time Complexity of MATS_ACO	73
	4.3	Experimental Evaluations	74

Contents

		4.3.1 Experiment with Varying Mean Time To Failure	76
		4.3.2 Experiment with Varying Mean Time To Repair	78
		4.3.3 Experiment with Varying Task Size	79
			81
		4.3.5 Experiment with Varying Number of Nodes	33
		4.3.6 Experiment with Varying Processing Speed of Nodes 8	34
			35
		4.3.8 Makespan Analysis	37
		4.3.9 Comparative Study of Proposed Algorithm	39
	4.4		92
5	Loa	d Balanced Scheduling considering Performability	95
	5.1	Load Balanced Transaction Scheduling Model	95
	5.2	Problem Formulation	97
	5.3	Proposed Algorithm)2
	5.4)4
	5.5	Simulation and Result Analysis)6
		5.5.1 Comparison of Time Complexity of LBTS_HBO Algorithm with	
		Other Algorithms)7
		5.5.2 Availability Analysis of Resources in the System)8
		5.5.3 Performability Analysis of the System	10
		5.5.4 Miss Ratio of Transactions in the System	11
	5.6	Observations	13
	5.7	Summary	14
6	Loa	d Balanced Transaction Allocation considering Reliability 11	15
	6.1	Load Balanced Transaction Allocation Model	16
		6.1.1 Assumptions	16
	6.2	Problem Formulation	17
		6.2.1 Reliability Model	17
	6.3	Proposed Algorithm	22
		6.3.1 Social Spider Optimization	22
		6.3.2 Constraints Description	23
	6.4	Applying the Algorithm	25
	6.5	Simulation and Result Analysis	26
		6.5.1 Result Evaluation	26
		6.5.1.1 Resource availability	28
		6.5.1.2 Reliability	33
		6.5.1.3 Miss Ratio	39
	6.6	Observations	45
	6.7	Summary	15

<u>C</u>	Contents xvii		
7	Con	nclusion and Future Directions	147
	7.1	Concluding Discussion	147
		Future Directions	
A	List	t of Publications	165

List of Figures

1.1	Taxonomy showing relationship between Dependability and Attributes,	
	Threats and Means (after Laprie et al.)	6
1.2	Transaction Processing Model with Load Balanced Scheduling	9
1.3	Overview of the dissertation's contributions	12
3.1	Working example of the LBTS_ACO when N=8	12
3.2	Load on the system with Transaction Processing	46
3.3	Load on the system without Transaction Processing	46
3.4	Load on the system with and without Transaction Processing	17
3.5	Load Deviation results	17
3.6	Node Utilization with Transaction Processing	48
3.7	Node Utilization without Transaction Processing	48
3.8	Node Utilization with and without Transaction Processing	49
3.9	Throughput when TM is used is used	50
3.10	Throughput when no TM is used	50
3.11	Comparison of the LBTS_ACO Throughput	51
3.12	Makespan when TM is used	53
3.13	Makespan when no TM is used	53
3.14	Comparison of the LBTS_ACO makespan	53
3.15	Miss Ratio with Transaction Processing	54
3.16	Miss Ratio without Transaction Processing	54
3.17	Comparison of the LBTS_ACO Miss Ratio	55
3.18	Load balancing speedup with Transaction Processing	56
3.19	Load balancing speedup without Transaction Processing	56
3.20	Comparison of the LBTS_ACO load balancing speedup	56
3.21	Load on the system for 40 simulations	57
3.22	Makespan results for 40 simulations	57
4.1	NFSNet	71
4.2	Availability observation with mean time to failure (MTTF) using GA 7	79
4.3	Availability observation with mean time to failure (MTTF) using EO 7	79
4.4	Availability observation with mean time to failure (MTTF) using	
	MATS_ACO	79

List of Figures xx

4.5	Availability observation with mean time to repair (MTTR) using GA	80
4.6	Availability observation with mean time to repair (MTTR) using EO	80
4.7	Availability observation with mean time to repair (MTTR) using	
	MATS_ACO	81
4.8	Availability observation with different task size using GA	81
4.9	Availability observation with different task size using EO	81
4.10	Availability observation with different task size using MATS_ACO	83
4.11	Availability observation with a different number of tasks using GA	83
4.12	Availability observation with a different number of tasks using EO	83
4.13	Availability observation with a different number of tasks using MATS_ACO	84
4.14	Availability observation with a different number of nodes using GA	85
4.15	Availability observation with a different number of nodes using EO	85
4.16	Availability observation with a different number of nodes using MATS_ACO	85
4.17	Availability observation with varying processing speed of nodes using GA	86
4.18	Availability observation with varying processing speed of nodes using EO	86
4.19	Availability observation with varying processing speed of nodes using	
		86
4.20	\mathcal{S}	87
4.21	· · · · · · · · · · · · · · · · · · ·	87
4.22	Availability observation with different loads in nodes using MATS_ACO .	88
4.23	Makespan observation with different tasks with 50 tasks	89
4.24	Makespan observation with different tasks with 100 tasks	89
4.25	Makespan observation with different tasks: with 150 tasks	89
4.26	Makespan observation with different tasks: with 200 tasks	89
4.27	Availability Analysis	91
4.28	Makespan Analysis	91
4.29	Analysis of the Pareto Front of the bi-objective optimization problem	92
5.1	· · · · · · · · · · · · · · · · · · ·	96
5.2	Working example of the LBTS_HBO when N=8	05
5.3	Resource Availability in LBTS_HBO with and without transaction management (TM)	09
5.4	Resource Availability when transaction management (TM) is used 1	
5.5	Resource Availability when no transaction management (TM) is used	
5.6	Performability in LBTS_HBO with transaction management (TM) and	10
3.0	without transaction management	12
5.7	Performability when transaction management is used	12
5.8	Performability when no transaction management is used	12
5.9	Miss Ratio in LBTS_HBO with and without transaction management (TM) 1	13
5.10	Miss Ratio when transaction management is used	14
5.11	Miss Ratio when no transaction management is used	14

List of Figures xxi

6.1	Working example of the LBTA_SSO when N=8	127
6.2	Resource Availability in LBTA_SSO with and without TM in grid	
	computing based environment	129
6.3	Resource Availability in LBTA_SSO with and without TM in cloud	
	computing based environment	129
6.4	Resource Availability when TM is used in grid computing based	
	environment	133
6.5	Resource Availability when TM is used in cloud computing based environment	133
6.6	Resource Availability when no TM is used in grid computing based	
	environment	133
6.7	Resource Availability when no TM is used in cloud computing based	
	environment	133
6.8	Resource availability comparison between grid and cloud computing	
	system when transaction processing is used	134
6.9	Resource availability comparison between grid and cloud computing	
	system when no transaction processing is used	134
6.10	Reliability in LBTA_SSO with TM and without TM in grid computing	
	based environment	135
6.11	Reliability in LBTA_SSO with TM and without TM in cloud computing	105
	based environment	
	Reliability when TM is used in grid computing based environment	
	Reliability when TM is used in cloud computing based environment	
	Reliability when no TM is used in grid computing based environment	
	Reliability when no TM is used in cloud computing based environment .	139
6.16	Reliability comparison between grid and cloud computing system when	120
- 1 -	transaction processing is used	139
6.17	Reliability comparison between grid and cloud computing system when	120
<i>(</i> 10	no transaction processing is used	139
0.18	Miss Ratio in LBTA_SSO with and without TM in grid computing based environment	1/1
6.10		141
0.19	Miss Ratio in LBTA_SSO with and without TM in cloud computing based environment	1/1
6.20	Miss Ratio when TM is used in grid computing based environment	
	Miss Ratio when TM is used in glid computing based environment	
	Miss Ratio when no TM is used in grid computing based environment	
	Miss Ratio when no TM is used in cloud computing based environment	
	Miss Ratio comparison between grid and cloud computing when	144
0.24	transaction processing is used	145
6.25	Miss Ratio comparison between grid and cloud computing when no	143
0.23	transaction processing is used	145
	r o	

List of Tables

2.1	Characteristics of the algorithms in the literature	22
3.1	Parameters of LBTS_ACO	32
3.2	Normality Shapiro-Wilk tests for the best results of load	44
3.3	Normality Shapiro-Wilk tests for the best results of makespan	44
3.4	Wilcoxon statistical tests for the best results (load) found for LBTS_ACO, EO, HLBA, GA, DLB, and Randomized algorithms. Assume null hypothesis $\mu_0 = 0$ and null hypothesis: two-sided, $\hat{\mu} < \mu$.	44
3.5	Load on the system with 40 simulations	45
3.6	Load on the system	45
3.7	Node Utilization	47
3.8	Throughput (Number of the transactions per unit time) after executing for a particular time unit	49
3.9	Makespan with 40 simulations	52
3.10	Makespan	52
3.11	Miss Ratio (%)	54
3.12	load balancing speedup	55
4.1	The values of $MTTF_j$, $MTTR_j$, and A_j denote the values of mean time to failure, mean time to repair, and availability of the j^{th} node in NFSNet shown in FIGURE 4.1 in case study II where $N = 14$	72
4.2	Task scheduling	73
4.3	Input parameters for ACO	74
4.4	Normality Shapiro-Wilk tests for the best results of availability	75
4.5	Wilcoxon statistical tests for the best results (availability) found for ACO, EO and GA algorithms. Assume null hypothesis $\mu_0 = 0$ and null	
	hypothesis: two-sided, $\hat{\mu} < \mu$	75
4.6	Normality Shapiro-Wilk tests for the best results of makespan	75
4.7	Wilcoxon statistical tests for the best results (makespan) found for ACO,	
	EO and GA algorithms. Assume null hypothesis $\mu_0 = 0$ and null	7.
4.0	hypothesis: two-sided, $\hat{\mu} < \mu$	76
4.8	Input parameters for ACO	76
4.9	Input parameters for GA [1]	77
4.10	Input parameters for EO [2]	77

List of Tables xxiv

4.11	The mean and median value of resource availability. FIGURE 4.2 shows the results for GA method while FIGURE 4.3 and FIGURE 4.4 shows the	
	results for EO and MATS_ACO methods respectively	78
4 12	The mean and median value of resource availability. FIGURE 4.5 shows	, (
7,12	the results for GA method while FIGURE 4.6 and FIGURE 4.7 shows the	
	results for EO and MATS_ACO methods respectively	80
4 13	The mean and median value of resource availability. FIGURE 4.8 shows	
1.13	the results for GA method while FIGURE 4.9 and FIGURE 4.10 shows	
	the results for EO and MATS_ACO methods respectively	82
4.14	The mean and median value of resource availability. FIGURE 4.11 shows	-
	the results for GA method while FIGURE 4.12 and FIGURE 4.13 shows	
	the results for EO and MATS_ACO methods respectively	82
4.15	The mean and median value of resource availability. FIGURE 4.14 shows	
	the results for GA method while FIGURE 4.15 and FIGURE 4.16 shows	
	the results for EO and MATS_ACO methods respectively	84
4.16	The mean and median value of resource availability. FIGURE 4.17 shows	
	the results for GA method while FIGURE 4.18 and FIGURE 4.19 shows	
	the results for EO and MATS_ACO methods respectively	87
4.17	The mean and median value of resource availability. FIGURE 4.20 shows	
	the results for GA method while FIGURE 4.21 and FIGURE 4.22 shows	
	the results for EO and MATS_ACO methods respectively	88
4.18	The mean and median value of makespan calculated from results in	
	FIGURE 4.23, 4.24, 4.25 and 4.26	90
4.19	Availability with 40 simulations	90
4.20	Availability comparison of our proposed algorithm with EO and GA with	
	respect to time	90
4.21	Makespan comparison of our proposed algorithm with EO and GA with	
	respect to number of tasks	91
4.22	Makespan with 40 simulations	91
	Comparison of time complexity of our algorithm with other algorithms	107
5.2	Comparison of the characteristics of the existing algorithms with our	
	proposed algorithm LBTS_HBO	
5.3	Resource Availability	
5.4	Performability	
5.5	Miss Ratio (%)	113
6.1	Definitions	116
6.2	Normality Shapiro-Wilk tests and Wilcoxon statistical tests for best	110
0.2	results found for LBTA_SSO, HBO, ACO, HLBA, DLB, Randomized	
	algorithms in grid computing and cloud computing scenarios	128
6.3	Resource Availability in case of grid computing system for 40 simulations	
6.4	Resource Availability in case of cloud computing system for 40 simulations	

List of Tables	XXV
----------------	-----

6.5	Resource availability in case of grid computing system
6.6	Resource availability in case of cloud computing system
6.7	Reliability when grid computing is used for 40 simulations 136
6.8	Reliability when cloud computing is used for 40 simulations
6.9	Reliability in grid computing
6.10	Reliability in cloud computing
6.11	Miss Ratio in grid computing for 40 simulations
6.12	Miss Ratio in cloud computing system for 40 simulations
6.13	Miss Ratio (%) in grid computing
6.14	Miss Ratio (%) in cloud computing

List of Algorithms

1	LBTS_ACO	35
2	MATS_ACO	68
3	LBTS_HBO	103
4	LBTA_SSO	123

Abbreviations

ACO Ant Colony Optimization

Dynamic and Decentralized Load Balancing Algorithm **DLB**

Extremal Optimization EO

GA Genetic Algorithm

HBO Honey Bee Optimization

HLBA Hierarchical Load Balanced Algorithm

LBTA_SSO Load Balanced Transaction Allocation using SSO

LBTS_ACO Load Balanced Transaction Scheduling using ACO

Load Balanced Transaction Scheduling using HBO LBTS_HBO

Maximization of Availability for Transaction Scheduling using ACO MATS_ACO

Mean Time Between Failures at the j^{th} node $MTTB_i$

Mean Time To Failure at the j^{th} node $MTTF_i$

Mean Time To Repair at the j^{th} node $MTTR_i$

Randomized Randomized Algorithm

SSO Social Spider Optimization

Transaction Management TM

WTM Without Transaction Management

Symbols

A_j	Availability at the j^{th} node
$A_{c, oldsymbol{\lambda}}$	The conditional steady-state availability of servers c with load λ
A_{λ}	Availability of the resources under load λ
A_p	Availability of the grid system when some of nodes are arranged in
	parallel
A_s	Availability of entire grid system
C_{N_k}	The available processing capacity of the k^{th} node
c	number of servers available at time t
$cost_{ig}$	The inter communication cost between T_i and T_g measured in "words"
	(some unit of data quantity)
cost(X)	The cost of task allocation <i>X</i>
DM_i	Deadline-miss of i^{th} transaction
$D(T_i)$	Deadline of i^{th} transaction
E	The set of edges between nodes
e_{ik}	The expected execution time of transaction i running on node k
G	Complete undirected graph
G_i	The set of all nodes still to be visited by ant m
K	Maximum number of iterations
k	Counter for number of iterations
L_{ik}	The load required by all the transaction at k^{th} node $\forall i = 1,,m$
L_{j}	Load on the j^{th} node

Symbols xxxii

l_{kb}	The communication link from k^{th} to b^{th} node
M_k	The available memory size at k^{th} node
m	The number of ants
N	Set of nodes in the on-demand computing system
N_k	k^{th} node $\forall k = 1,,n$
\mathcal{N}^i	List of nodes traveled by ant i
n	node
NIT_a	The number of instructions in the a^{th} task, $\forall a = 1,,m$
p	Randomly generated quantity
p_0	Parameter used to attain quick convergence of the algorithm
popsize	Total number of solutions generated in the population
q	Random number
Q_c	The probability that there are exactly c servers are available
$R_{DM_i}(X)$	The reliability of system when there is no deadline-miss DM_i
$R_{k,kb,DM_i}(X)$	The reliability of system with no deadline-miss DM_i in addition to node
	k and link l_{kb} are operational
$R_k(X)$	The reliability of system when node k is operational
$R_{kb}(X)$	The reliability of system when link l_{kb} is operational
$R_{k,kb}(X)$	The reliability of system when both node k and link l_{kb} are operational
$R_{k,kb,DM_i,A_{\lambda}}(X)$	The reliability with no deadline-miss DM_i in addition to node k and link
	l_{kb} are operational considering the conditional steady-state availability
	A_{λ} of resources
S_i	The set of nodes allowed at the next step by ant m
T	Set of transactions
T_i	i^{th} transaction $\forall i = 1,,m$
T_{j}	Total time for execution of allocated tasks on the j^{th} node
T_g	The maximum time taken by any node when $g \in j$
T_{miss}	Number of transactions that have missed their deadline
T_{total}	Total number of transactions

Symbols xxxiii

t	time
Vib_{best}	Strongest vibration among all nodes
Vib_{N_k}	Vibration of k^{th} node
$Vib_{N_{thres}}$	Threshold vibration
Vib_{tar}	Vibration of target node
$W_j(t)$	Waiting time at the j^{th} node
w_{kb}	The transmission rate of link l_{kb}
X	An m by n binary matrix corresponding to a task allocation
y_{ik}	The memory required by all the transactions at k^{th} node $\forall i = 1,,m$
α	Factor that controls the importance of the trail
β	Factor that controls the importance of the visibility
$\eta_{jar{j}}$	Visibility from node j to node \bar{j}
λ_j	Task arrival rate at the j^{th} node
μ_j	Service rate of the j^{th} node
$ au_j$	Pheromone trail deposited on the j^{th} node
Δau_j	Quantity per unit time of pheromone trail laid on the node j by the i^{th}
	ant between time t and t + number of iterations till this instant
ρ	Evaporation of the trail
$\{\phi\}$	The null set
γ	Failure rate of node
σ_{kb}	The failure rate of communication link l_{kb}
ψ_i	The rate of the deadline-miss failure in transaction T_i
η	Repair rate of node
λ	Arrival rate of transaction
μ	Processing rate of transaction
Π_i	the steady-state probability for an $M/M/c$ model

This thesis is dedicated to my parents For their endless love, support and encouragement