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Chapter  5 

Collocation Method with Convergence for 

Generalized Fractional Integro-Differential 

Equations 

 

5.1 Introduction 

Fractional calculus describes many significant phenomena in science and engineering. 

The appearance of the fractional derivative in numerous applications can be found in the 

literature such as viscous-elasticity [126, 127], bioengineering [128], electrochemistry 

[115], electromagnetism [116], and more could be found in [43]. Most commonly used 

fractional derivatives in developing the theories and studying various applications are 

centred to the Riemann-Liouville and Caputo fractional derivatives. Some other 

derivatives of importance are also introduced and are known as Riesz- Riemann-

Liouville, Riesz- Caputo fractional, and Grünwald–Letnikov derivatives. Authors are 

referred to see Ref. [43, 129, 116] for a concrete comprehension of fractional derivatives. 

There has been much developments on the analytical and numerical methods for solving 

the FIDEs in recent years. Some of them are described as follows: The most of existing 

numerical approaches like collocation method [43], least square method [72], pseudo 

spectral method [67] and hybrid collocation method [60] required adequately dense 
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discretization of the domain. These methods follow the multistep process and it results in 

a large number of iteration which makes them low computationally efficient. 

Here, in this chapter we consider the FIDEs (Eq. 5.1) defined in terms of a class of 

generalized derivative (B-operator, Chapter 1 Section 1.6.3) and thus name it as 

generalized fractional integro-differential equations (in short GFIDEs) and present the 

collocation approach to solve it. The Legendre polynomials are considered to 

approximate the unknown function in the GFIDEs. The convergence properties for 

GFIDEs of the presented approach is also proved. Some illustrative examples from 

literature varying the kernel in B-operators are considered to perform the numerical 

investigations. As B-operators reduces to Riemann Liouville fractional derivative, 

Caputo derivative, Riesz Riemann-Liouville derivative, Riesz-Caputo fractional 

derivative and many other fractional derivatives thus the method presented here could be 

easily applicable to FIDEs defined in terms of these derivatives.  

5.2 Generalized Fractional Integro-Differential Equations 

Here, we define GFIDEs in terms of B-operator Section 1.6.3 (Chapter 1) as follows, 

(𝐵𝑃
𝛼𝛾)(𝜉) = (𝐻𝛾)(𝜉),         (5.1) 

𝛾(0) = 𝛾0.          (5.2) 

Here the right side of Eq. (5.1) is considered as, 

(𝐻𝛾)(𝜉) = 𝜑(𝜉) + 𝑞(𝜉) 𝛾(𝜉) + ∫ 𝜌(𝜉, 𝜂)𝒢(𝛾(𝜂))𝑑𝜂 
𝜉

0
,    (5.3) 

and, 
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(𝐵𝑃
𝛼𝛾)(𝜉) = 𝑟 ∫ 𝜔𝑚−𝛼(𝜉, 𝜂)𝔇𝑚𝛾(𝜂)𝑑𝜂 + 𝑠 ∫ 𝜔𝑚−𝛼(𝜂, 𝜉)𝔇𝑚𝛾(𝜂)𝑑𝜂, 𝛼 > 0

1

𝜉

𝜉

0
. (5.4) 

In Eq. (5.1), we consider ℑ = [0,1],  and  𝑚 = 1 in the B-operator. Here, functions 𝜑(𝜉) 

and 𝑞(𝜉) are known functions belong to 𝐿2(ℑ). We assume, 𝑞(𝜉) ≠ 0 for 𝜉 ∈ [0,1],  and 

𝛾(𝜉) is unknown function. The kernel 𝜌(𝜉, 𝜂) in Eq. (5.3) is either smooth or weakly 

singular of the form  

𝜌(𝜉, 𝜂) = (𝜉 − 𝜂)−𝜇,       0 < 𝜇 < 1.       (5.5) 

We study Eq. (5.1) under the assumption that kernel 𝜔𝛼(𝜉, 𝜂) ∈ 𝐿2(ℑ × ℑ) and 𝒢 is some 

linear or nonlinear operator. 

We assume that Eq. (5.1) with Eq. (5.2) possess a unique solution for all real values of 𝑟 

and 𝑠. This equation is solvable for any real number 𝑟 and  𝑠 = 0 or for any real number 

𝑠 and 𝑟 = 0. The particular cases of this problem given by Eq. (5.1) has been discussed 

and solved in references [55, 61, 65, 68] with 𝑟 = 1, 𝑠 = 0. The aim of this chapter is to 

develop a numerical technique to solve the Eq. (5.1) with initial condition given by Eq. 

(5.2) for 0 < 𝛼 < 1 or 𝑚 = 1. 

5.3 Shifted Legendre Polynomials  

The shifted Legendre polynomials are well known Legendre polynomials which are 

shifted from [−1,1] to [0,1] by variable transformation 𝜉 → 2𝜉 − 1. We define shifted 

Legendre polynomials as: 

𝜃𝑖(𝜉) = 𝑙𝑖(2ξ − 1),                   (5.6) 

where 𝑙𝑖  denote the Legendre polynomials of degree 𝑚 and satisfy,  
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𝑙0(𝜉) = 1, 𝑙1(𝜉) = 𝜉 and, 

𝑙𝑖+1(ξ) =
2𝑖+1

𝑖+1
𝜉𝑙𝑖(𝜉) −

𝑖

𝑖+1
𝑙𝑖−1(𝜉),  𝑖 =  1,2,3, … ,               (5.7) 

and satisfy orthogonality with respect to the weight function 1, i.e.,  

∫ 𝜃𝑖(𝜉)
1

0
𝜃𝑗(𝜉)𝑑𝜉 =

1

2𝑖+1
𝛿𝑖𝑗,                  (5.8) 

where 𝛿𝑖𝑗 is Kronecker Delta function. Suppose X = 𝐿2(ℑ) be the inner product space and 

inner product in this space is defined by,  

⟨ℎ1|ℎ2⟩ = ∫ ℎ1(𝜉)ℎ2(𝜉)𝑑𝜉
1

0
,                  (5.9) 

and the corresponding norm is as follows, 

∥ ℎ ∥2= (∫ |ℎ(𝜉)|2𝑑𝜉
1

0
)

1/2
.                  (5.10) 

5.3.1 Function Approximation 

Any function ℎ(𝜉) in 𝐿2(ℑ) can be approximated as, 

ℎ(𝜉) ≈ ∑ 𝑐𝑖  𝜃𝑖(𝜉)𝑅
𝑖=0 ,                    (5.11) 

where, 𝐶 and 𝜃(𝜉) are vectors given by, 

𝐶 = [𝑐0, 𝑐1 , … 𝑐𝑅],                   (5.12) 

𝜃(𝜉) = [𝜃0(𝜉), 𝜃1(𝜉), … , 𝜃𝑅(𝜉)].                 (5.13) 

Here, 𝐶 denotes a vector of some suitable coefficients. 
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Theorem 5.1 [86] Let ℎ(𝜉) be a real sufficiently smooth function in 𝐿2(ℑ) and ℎ(𝜉) ≈

∑ 𝑐𝑖  𝜃𝑖(𝜉)𝑅
𝑖=0  denotes the shifted Legendre expansion of ℎ(𝜉), where 

𝐶 = [𝑐0, 𝑐1 , … 𝑐𝑅] and, 

𝑐𝑖 = (2𝑖 + 1) ∫ ℎ(𝜉)𝜃𝑖(𝜉)
1

0
𝑑𝜉,                 (5.14) 

then there exists a real constant 𝛼 satisfying, 

∥ ℎ(𝜉) − ℎ𝑅(𝜉) ∥2≤
𝛼

(𝑅+1)!22𝑅+1
,                  (5.15) 

where, 𝛼 = max{ | ℎ𝑅+1(𝜉)| 𝜉 ∈ (0,1)}. 

5.4 Collocation Method for GFIDEs 

In this section, we solve a new GFIDEs given by Eq. (5.1) with boundary condition 

mentioned by Eq. (5.2) using collocation approach. Collocation method is based on 

projection method where we choose a finite dimensional family of functions to 

approximate exact solution and then by applying collocation method we obtain an 

algebraic system of algebraic equations and further such systems can be solved using any 

standard method. 

We now approximate function 𝛾(𝜉) by Eq. (5.11), 

𝛾𝑅(𝜉) ≈ ∑ 𝑐𝑖  𝜃𝑖(𝜉)𝑅
𝑖=0 .                (5.16) 

Substitute the value of 𝛾𝑅(𝜉) in (5.1), we get, 

(𝐵𝑃
𝛼𝛾𝑅)(𝜉) = (𝐻𝛾𝑅)(𝜉), 0 < 𝛼 < 1,                (5.17) 

and 𝛾𝑅(0) = 𝛾0.                   (5.18) 
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or,( 𝐵𝑃
𝛼(∑ 𝑐𝑖  𝜃𝑖

𝑅
𝑟=0 ))(𝜉) = (𝐻 ∑ 𝑐𝑖  𝜃𝑖

𝑅
𝑖=0 )(𝜉),                (5.19)                                                                     

∑ 𝑐𝑖  𝜃𝑖(𝜉)𝑅
𝑖=0 = 𝛾0.                (5.20) 

We pick distinct node points 𝜉𝑘 ∈  [0,1] , such that, 

(𝐵𝑃
𝛼(∑ 𝑐𝑖  𝜃𝑖

𝑅
𝑖=0 ))(𝜉𝑘) = (𝐻 ∑ 𝑐𝑖  𝜃𝑖

𝑅
𝑖=0 )(𝜉𝑘), 𝑘 = 0,1, … 𝑅 − 1.             (5.21)                                       

And, ∑ 𝑐𝑖  𝜃𝑖(𝜉𝑘)𝑅
𝑖=0 = 𝛾0.                 (5.22) 

Now, Eq. (5.1) is converted into Eq. (5.21)-(5.25) which is a system of equations in terms 

of unknowns {𝑐𝑖} and it by solving using any standard method the approximate solution 

is obtained. For solving system of equations numerically, we use the Mathematica 

software. 

5.4.1 Convergence Analysis 

Lemma 5.1 Let 𝛾(𝜉)  be sufficiently smooth function in 𝐿2(ℑ)  and (
𝑑𝛾R

𝑑𝜉
)  be the 

approximation of 
𝑑𝛾

𝑑𝜉
. Assume that 

𝑑𝛾

𝑑𝜉
 is bounded by a constant ∁, i.e.|

𝑑𝛾

𝑑𝜉
| ≤ ∁, then we 

have 

∥
𝑑𝛾

𝑑𝜉
− (

𝑑𝛾R

𝑑𝜉
) ∥2

2
≤ (

∁

𝜋
)

2
1

𝑅2
.                  (5.23) 

Proof: Let,  

 
𝑑𝛾

𝑑𝜉
= ∑ 𝑐𝑖𝜃𝑖(𝜉)∞

𝑖=0 .                   (5.24) 

Truncating it up to 𝑅 − 1 level, we get,  

(
𝑑𝛾R

𝑑𝜉
) = ∑ 𝑐𝑖𝜃𝑖(𝜉)𝑅−1

𝑖=0 .                  (5.25) 
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From Eq. (5.23) and (5.24), we have, 

𝑑𝛾

𝑑𝜉
− (

𝑑𝛾R

𝑑𝜉
) = ∑ 𝑐𝑖𝜃𝑖(𝜉)∞

𝑖=𝑅 , 

∥
𝑑𝛾

𝑑𝜉
− (

𝑑𝛾R

𝑑𝜉
) ∥2

2
= ∫ (

𝑑𝛾

𝑑𝜉
− (

𝑑𝛾R

𝑑𝜉
))

2
1

0
𝑑𝑥 = ∫ (∑ 𝑐𝑖𝜃𝑖(𝜉)∞

𝑖=𝑅 )21

0
𝑑𝜉, 

or, 

∥
𝑑𝛾

𝑑𝜉
− (

𝑑𝛾R

𝑑𝜉
) ∥2

2
= ∑

𝑐𝑖
2

2𝑖+1

∞
𝑖=𝑅 .                  (5.26) 

𝑐𝑖 = (2𝑖 + 1) ∫
𝑑𝛾

𝑑𝑥

1

0
𝜃𝑖(𝜉)𝑑𝜉, 

𝑐𝑖 ≤ (2𝑖 + 1)∁ ∫ 𝜃𝑖(𝜉)
1

0
𝑑𝜉 ≤ (2𝑖 + 1)∁

sin (𝑖𝜋)

(𝑖+𝑖2)𝜋
≤

(2𝑖+1)∁

(𝑖+𝑖2)𝜋
. 

|𝑐𝑖|2 ≤ (
(2𝑖+1)∁

(𝑖+𝑖2)𝜋
)

2

.                   (5.27) 

Thus, 

∑
𝑐𝑖

2

2𝑖+1
∞
𝑖=𝑅 ≤ ∑ (

∁

𝜋
)

2
∞
𝑖=𝑅

2𝑖+1

((𝑖+𝑖2 ))
2 = (

∁

𝜋
)

2 1

𝑅2
.                (5.28) 

5.4.2 Error Analysis 

Case 1: When 𝓖 is Linear. 

 Let 𝐸𝑅(𝜉) = 𝛾(𝜉) − 𝛾𝑅(𝜉) denote the error function of the approximate solution 𝛾𝑅(𝜉) 

to the exact solution 𝛾(𝜉) of Eq. (5.1).  

Substituting the approximate solution in Eq. (5.1) we get, 
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(𝐵𝑃
𝛼𝛾𝑅)(𝜉) = (𝐻𝛾𝑅)(𝜉) = 𝜑(𝜉) + 𝑞(𝜉)𝛾𝑅(𝜉) + ∫ 𝜌(𝜉, 𝜂)𝒢(𝛾𝑅(𝜂))𝑑𝜂 

𝜉

0
, 

Subtracting above equation from Eq. (5.1) and rearranging the term we get, 

𝑞(𝜉)(𝐸𝑅(𝜉))= ∫ 𝜌(𝜉, 𝜂) (𝒢(𝛾(𝜉)) − 𝒢(𝛾𝑅(𝜉))) 𝑑𝜂
𝜉

0
− (𝐵𝑃

𝛼(𝛾 − 𝛾𝑅))(𝜉),            (5.29) 

Since 𝒢 is linear, we have, 

|𝑞(𝜉)𝐸𝑅(𝜉)| ≤ |∫ 𝜌(𝜉, 𝜂)𝒢(𝐸𝑅(𝜂))𝑑𝜂
𝜉

0
| + |(𝐵𝑃

𝛼(𝛾 − 𝛾𝑅))(𝜉)|.             (5.30) 

|𝑞(𝜉)𝐸𝑅(𝜉)| ≤ Q |∫ 𝐸𝑅(𝜂)𝑑𝜂
𝜉

0
| + |(𝐵𝑃

𝛼(𝛾 − 𝛾𝑅))(𝜉)|. 

where Q = 𝑚𝑎𝑥 𝜌(𝜉, 𝜂). 

Now, by Gronwall’s inequality, 

∥ 𝑞(𝜉)𝐸𝑅(𝜉) ∥2≤∥ (𝐵𝑃
𝛼(𝛾 − 𝛾𝑅))(𝜉) ∥2.                (5.31) 

Now, ∥ (𝐵𝑃
𝛼(𝛾 − 𝛾𝑅))(𝜉) ∥2≤∥ 𝑇1 ∥2+∥ 𝑇2 ∥2.               (5.32) 

where 𝑇1 = 𝑟 ∫ 𝜔1−𝛼(𝜉, 𝜂)𝔇(𝛾(𝜂) − 𝛾𝑅(𝜂))𝑑𝜂
𝜉

0
 and 𝑇2 = 𝑠 ∫ 𝜔1−𝛼(𝜂, 𝜉)𝔇(𝛾(𝜉) −

1

𝜉

𝛾𝑅(𝜉))𝑑𝜉. 

Since 𝜔1−𝛼(𝜉, 𝜂) ∈ 𝐿2, then by Lemma 2.1 (Chapter 1) there exist constants Λ1 , Λ2 such 

that, 

∥ 𝑇1 ∥2≤ Λ1 ∥ 𝔇(𝛾(𝜉) − 𝛾𝑅(𝜉)) ∥2, 

and 

∥ 𝑇2 ∥2≤ Λ2 ∥ 𝔇(𝛾(𝜉) − 𝛾𝑅(𝜉)) ∥2. 
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Thus, ∥ (𝐵𝑃
𝛼(𝛾 − 𝛾𝑅))(𝜉) ∥2≤ Λ ∥ 𝔇(𝛾(𝜉) − 𝛾𝑅(𝜉)) ∥2, Λ = Λ1 + Λ2. 

Using Lemma 5.1, 

∥ (𝐵𝑃
𝛼(𝛾 − 𝛾𝑅))(𝜉) ∥2≤ Λ (

∁

𝜋
)

2 1

𝑅2
.                 (5.33) 

From Eq. (5.31) and (5.33), we get, 

∥ 𝑞(𝜉)𝐸𝑅(𝜉) ∥2≤ Λ (
∁

𝜋
)

2 1

𝑅2
.                  (5.34) 

Since 𝑞(𝜉) ≠ 0, therefore 𝐸𝑅(𝜉) → 0 or 𝛾(𝜉) → 𝛾𝑅(𝜉) as 𝑅 → ∞. 

Case 2: When 𝓖 is Nonlinear. 

Let 𝒢 satisfy the Lipschitz condition defined by, 

|𝒢(𝛾1(𝜂)) − 𝒢(𝛾2(𝜂))| ≤ ℒ|𝛾1(𝜂) − 𝛾2(𝜂)|,               (5.35) 

where ℒ is constant independent of 𝛾. 

So by Eq. (5.29), we obtain, 

|𝑞(𝜉)𝐸𝑅(𝜉)| ≤ ∫ ℒ|𝜌(𝜉, 𝜂)||𝐸𝑅(𝜂)|𝑑𝜂
𝜉

0
+ |(𝐵𝑃

𝛼(𝛾 − 𝛾𝑅))(𝜉)|, 

or, 

|𝑞(𝜉)𝐸𝑅(𝜉)| ≤ ℒ Q |∫ |𝐸𝑅(𝜂)|𝑑𝜂
𝜉

0
| + |(𝐵𝑃

𝛼(𝛾 − 𝛾𝑅))(𝜉)|.              (5.36) 

Now proceeding from Eq. (5.31), we obtain the result given by Eq. (5.34) 
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5.4.3 Error Estimate 

Let 𝐸𝑅(𝜉) = 𝛾(𝜉) − 𝛾𝑅(𝜉) denotes the error function of approximate solution 𝛾𝑅(𝜉) to 

the exact solution 𝛾(𝜉). By substitution of 𝛾𝑅(𝜉) in Eq. (5.1), we have 

(𝐵𝑃
𝛼𝛾𝑅)(𝜉) + 𝑌𝑅(𝜉) = 𝜑(𝜉) + 𝑞(𝜉)𝛾𝑅(𝜉) + ∫ 𝜌(𝜉, 𝜂)𝒢(𝛾𝑅(𝜂))𝑑𝜂

𝜉

0
,            (5.37) 

with 𝛾𝑅(0) = (𝛾0)𝑅, 

where, (𝛾0)𝑅 is the approximated value of approximate solution 𝛾𝑅(𝜉) at 𝜉 = 0, which 

depends on 𝑅 and (𝛾0)𝑅 → 𝛾0 as 𝑅 increases. 

From Eq.(5.39),  the perturbation function 𝑌𝑅(𝜉), can be calculated as, 

𝑌𝑅(𝜉) = 𝜑(𝜉) + 𝑞(𝜉)𝛾𝑅(𝜉) + ∫ 𝜌(𝜉, 𝜂)𝒢(𝛾𝑅(𝜂))𝑑𝜂
𝜉

0
− (𝐵𝑃

𝛼𝛾𝑅)(𝜉). 

Subtracting Eq. (5.39) from Eq. (5.5), we get 

(𝐵𝑃
𝛼𝐸𝑅)(𝜉) + 𝑌𝑅(𝜉) = 𝜑(𝜉) + 𝑞(𝜉)𝐸𝑅(𝜉) + ∫ 𝜌(𝜉, 𝜂)𝒢(𝐸𝑅(𝜂))𝑑𝜂

𝜉

0
, 

or 

(𝐵𝑃
𝛼𝐸𝑅)(𝜉) = 𝜑(𝜉) + 𝑞(𝜉)𝐸𝑅(𝜉) + ∫ 𝜌(𝜉, 𝜂)𝒢(𝐸𝑅(𝜂))𝑑𝜂

𝜉

0
− 𝑌𝑅(𝜉),            (5.38) 

with the initial condition 𝐸𝑅(0) = (𝐸0)𝑅. 

Now error 𝐸𝑅(𝜉) can be approximated by applying the proposed method described in 

section 5.4. 
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5.5 Numerical Results 

To perform the numerical investigations, five test examples varying the convolution type 

kernels in B- operator are chosen. We also present the case where the GFIDEs takes the 

form of FIDEs discussed in literature. The numerical simulations are performed on the 

mathematical software Mathematica 10. 

Test example 5.1 Consider Eq. (5.1) with 𝑟 = 𝑠 = 1 in B-operator, 𝛼 = 2/3, 𝜌(𝜉, 𝜂) =

(𝜉 − 𝜂)−1/2, kernel 𝜔1−𝛼(𝜉, 𝜂) =
{𝑑+(1−𝑑)(𝜉−𝜂)}−𝛼

Γ(𝛼)
, 𝑞(𝑡) = 1, and 

𝜑(𝜉) = −𝜉2 −
16𝜉

5
2

15
+

9𝜉
4
3

2Γ(
1

3
)

+
3(1−𝜉)1/3(1+3𝜉)

2Γ(
1

3
)

, with boundary condition 𝛾(0) = 0. 

This has exact solution 𝜉2 for 𝑑 = 0. This problem is solved using the proposed approach 

and numerical results with higher accuracy are obtained. Since the exact solution in this 

case is a second degree polynomial, therefore choice the basis functions up to 𝑅 = 2 

would be sufficient to approximate the exact solution. The respective maximum absolute 

errors are also calculated and are shown in Table 5.1. The maximum absolute errors 

varying the number of polynomials ( 𝑅 = 2  and 𝑅 = 3 ) are shown in Fig. 5.1. The 

numerical solutions are obtained varying the values of the parameter 𝑑 =
1

8
,

1

16
,

1

32
 and are 

displayed through Fig. 5.2. We observe that as 𝑑 decreases the approximate solution 

approaches to the exact solution for  𝑑 = 0.  Fig 5.2 shows the approximate solution 

varying the value of the parameter 𝑑. 

Test example 5.2 Here, we choose Eq. (5.1) with 𝑟 = 𝑠 = 1  in the B-operator, 𝛼 =

1/4, 𝜌(𝜉, 𝜂) = (𝜉 − 𝜂)−1/3, kernel 𝜔1−𝛼 (𝜉, 𝜂) = (1 − 𝛼 )(𝜉 − 𝜂), 𝑞(𝜉) = 1, and 
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𝜑(𝜉) =
17

16
−

3𝑥

2
− 𝑥2 −

𝑥3

2
+

3𝑥4

8
−

27

440
𝑥8 3⁄ (11 + 9𝑥), with boundary condition 𝛾(0) =

0. 

The exact solution in this case becomes 𝜉2 + 𝜉3.We solve this problem for 𝑅 = 2,3,4 and 

obtained good approximate solution for 𝑅 = 3. Maximum absolute errors for this case 

are listed in Table 5.1 for 𝑅 = 2,3  and are shown through Fig. 5.3 for 𝑅 = 3,4.  

Also we obtain and plot the approximate solution varying the value of 𝛼 =
1

5
,

1

6
,

1

7
,

1

8
. Fig. 

5.4 ensures that the numerical solution approach to the exact solution as 𝜉2 + 𝜉3 as 𝛼 

increases. 

Test example 5.3 We take Eq. (5.1) with 𝑟 = 𝑠 = 1  in the B-operator,  𝛼 = 3/4 , 

𝜌(𝜉, 𝜂) = (𝜉 − 𝜂)−1/2  kernel 𝜔1−𝛼(𝜉, 𝜂) =
(𝜉−𝜂)−𝛼

Γ(𝛼)
, 𝑞(𝑡) = 1 , and 𝜑(𝜉) = −𝑒𝜉 −

𝑒𝜉√𝜋 erf(√𝜉) +
𝑒𝜉(1−𝜉)

1
4{Γ(

1

4
)−Γ(

1

4
,𝜉−1)}

(𝜉−1)
1
4Γ(

1

4
)

+ 𝑒𝜉 {1 −
Γ(

1

4
,𝜉)

Γ(
1

4
)

},  

with boundary condition 𝛾(0) = 1. 

This Test example has exact solution 𝑒𝜉. This equation is solved for 𝑅 = 2,3,4 ,5 and 

numerical solutions are obtained. The approximated solutions appear very close to the 

exact solution and as the number of Legendre basis functions are increased the error 

decreases. The maximum absolute errors for this example are presented through Fig. 5.5 

and also shown in Table 5.2. Comparison of exact and numerical solution is shown in 

Fig. 5.6 with 𝑅 = 5. 
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Table 5.1 Maximum absolute errors for Test examples 5.1 and 5.2. 

𝑹 Test example 5.1 Test example 5.2 

𝟐 5.2041E-17 3.8524E-2 

𝟑 6.8082E-17 2.2898E-16 

 

 

Fig. 5.1 Plot of Maximum absolute errors for Test example 5.1 for 𝑅 = 3, 4. 
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Fig. 5.2 Plot of approximate solutions for different values of 𝑑 for Test example 5.1. 

 

 

Fig. 5.3 Plot of maximum absolute errors for Test example 5.2 for 𝑅 = 3, 4. 
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Fig. 5.4 Plot of approximate solutions for different values of 𝛼 for Test example 5.2. 

 

 

Fig.5.5 Error plot for Test example 5.3. 



Chapter 5 

~ 108 ~ 

 

Fig. 5.6 Numerical versus exact solution for Test example 5.3 with 𝑅 = 5. 

Test example 5.4 Consider Eq. (5.1) with 𝑟 = 1, 𝑠 = 1  in the B-operator,  𝛼 = 1/2 , 

𝜌(𝜉, 𝜂) = (𝜉 − 𝜂)−1/2, and kernel 𝜔1−𝛼(𝜉, 𝜂) = 𝑒−𝛼(𝜉−𝜂), with 𝑞(𝜉) = 1, 

and,  𝜑(𝜉) = −𝑒𝜉 +
2𝑒−𝜉 2⁄ (−1+𝑒3𝜉 2⁄ )

3√𝜋
+

−2𝑒𝜉+2𝑒
1+𝜉

2

√𝜋
− 𝑒𝜉√𝜋Erf[√𝜉], 

 with boundary condition 𝛾(0) = 1. In this case, the exact solution takes the form 𝑒𝜉 . The 

presented approach is applied to this case and approximate numerical results are obtained 

with good accuracy. The calculated maximum absolute errors are shown in Table 5.2 and 

variations of maximum absolute errors are displayed through Figs. 5.7. Plot for different 

values of 𝛼 is shown in Fig.5.8. 
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Fig. 5.7 Error plot for Test example 5.4. 

 

Fig. 5.8 Plot of approximate solutions for different values of 𝛼 for Test example 5.4. 
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Test example 5.5 [81] Consider the nonlinear case of Eq. (5.1) with 𝑟 = 1, 𝑠 = 0 in the 

B-operator, 𝛼 = 1/2, 𝜌(𝜉, 𝜂) = (𝜉)1/2, and kernel 𝜔1−𝛼(𝜉, 𝜂) =
(𝜉−𝜂)−𝛼

Γ(𝛼)
, with 

𝑞(𝜉) = 2√𝜉 + 2𝜉3 2⁄ − (√𝜉 + 𝜉3 2⁄ )ln[1 + 𝜉], 

and,  𝜑(𝜉) = −2𝜉3 2⁄ +
2ArcSinh[√𝜉]

√𝜋√1+𝜉
, 

 with boundary condition 𝛾(0) = 0. 

The exact solution of this problem is 𝑙𝑛(1 + 𝑡). The methods discussed in section 5.4 has 

been studied on this problem and numerical results are obtained with good accuracy. The 

obtained numerical errors are illustrated in Fig. 9. and Table 2. Fig. 10 represents the plot 

of numerical and exact solution for 𝑅 = 5. It is clear from Table 5.2 that numerical 

computational error converges to zero as the value of 𝑅 increases. 

Table 5.2 Maximum absolute errors for Test examples 5.3, 5.4 and 5.5. 

𝑹 Test example 5.3 Test example 5.4 Test example 5.5 

𝟐 1.7019E-2 1.1104E-2 2.2891E-3 

𝟑 1.9441E-4 5.5713E-3 2.0455E-4 

𝟒 3.6687E-5 4.0970E-5 4.0699E-5 

𝟓 2.2674E-5 2.0755E-5 4.1765E-6 
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Fig. 5.9 Error plot for Test example 5.5 varying the number of polynomials R. 

 

 

 

Fig. 5.10 Numerical versus exact solution for Test example 5.5 with 𝑅 = 5. 

 



Chapter 5 

~ 112 ~ 

5.6 Conclusion 

A simple collocation approach is developed for the linear as well as nonlinear GFIDEs 

defined in terms of the B-operators. The convergence analysis of the collocation approach 

is also discussed and error bound of the approximation is obtained. Some numerical tests 

varying the kernel in the B-operator are considered and obtained simulations results are 

presented. Numerical results indicate that the presented approach for GFIDEs works well 

sand obtains accurate results. It is observed that the proposed solution recovers the 

solutions of the FDIEs in special case and thus it could be considered as a general 

approach for solving FIDEs. We observe that good approximation of exact solution can 

be achieved with a less number of basis polynomials. The approximate method presented 

here could also be applied to similar problems defined in terms of the other fractional 

derivatives. This could be due to fact that the B-operators reduces to Riemann-Liouville 

fractional derivative and Caputo fractional derivatives and many other fractional 

derivatives defined in literature in special case. 


