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Chapter 4 

Galerkin and Collocation Methods for Weakly 

Singular Fractional Integro-Differential 

Equations 

 

4.1 Introduction 

Theory of fractional integration and differentiation is applicable in various fields. 

Specially, FIDEs has been found applicable in fluid dynamics, rheology, biology, porous 

media, physics [44, 114-117]. As the exact solution of most of the FIDEs is not easy to 

find, so it is necessary to develop numerical methods for the approximation of FIDEs. 

The main motivation of this chapter is to develop some efficient numerical methods to 

approximate the solution of FIDEs [43] of the form, 

𝒟𝜐𝑤(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + ∫ 𝜅(𝑥, 𝑢)𝒢(𝑤(𝑢))𝑑𝑢  
𝑥

0
,0 < 𝜐 < 1,  (4.1) 

with given initial condition, 

𝑤(0) = 𝑤0,       (4.2) 
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where 𝑤(𝑥) is to find out and 𝑔(𝑥), 𝑓(𝑥) are given functions. Here 𝒟𝜐  is fractional 

derivative in Caputo sense (Definition 1.4). 𝒢 is some operator which may be linear or 

nonlinear and 𝜅(𝑥, 𝑢) is weakly singular kernel defined by, 

𝜅(𝑥, 𝑢) = (𝑥 − 𝑢)−𝜇,       0 < 𝜇 < 1.      (4.3) 

This type of equations has been solved using various approaches. The present chapter is 

based on the comparison of Jacobi collocation and Jacobi Galerkin methods for FIDEs. 

In last decade, collocation and Galerkin methods attracted mathematician as well 

engineers. Here, we cite some most recent works which investigate the collocation and 

Galerkin methods for integral equations. These recent works such as a spectral iterative 

method [117], collocation method [43], and meshless discrete Galerkin method [94] are 

devoted to solve the different type of integral equations.  

In this chapter, Jacobi collocation and Jacobi Galerkin methods are presented to solve 

linear and nonlinear FIDEs. The main focus of this chapter is to consider FIDEs with the 

weakly singular kernel as these type of problem is not easy to solve analytically. First, 

we introduce a change of variables so that the exact solution becomes sufficiently smooth 

near the origin. After that exact solution is approximated in terms of Jacobi polynomials 

with unknown coefficients, and by using collocation and Galerkin methods the FIDEs are 

reduced to a system of equations. This makes easy solving such problem and also 

accelerate the computational efficiency. Such behaviour were also addressed by 

Mustapha and co-authors in their research works [118-121]. In these works, non-uniform 

meshes have been employed to reimburse the singular behaviour of the solution near 

origin by concentrating the mesh elements near zero. High order convergences were also 

obtained.    
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The chapter is arranged in the following manner. In section 2, some elementary 

definitions and lemmas are presented. In section 3, an introduction of Jacobi polynomials 

is added and it is shown that any continuous function can be approximated as a series of 

Jacobi polynomials and this series converges uniformly on the respective domain. 

Existence and uniqueness of the solution of Eq. (1) with the initial condition given by Eq. 

(2) is discussed in section 4. Section 5, describes the variable transformation which 

removes the singularity of the solution at the origin. Also, collocation and Galerkin 

methods are discussed in this section. Numerical experiments with different parameters 

for the linear and nonlinear case are performed in section 6. The last section concludes 

the chapter. 

4.2 Approximation of Function 

To calculate the solution of Eq. (4.1) in [0,1], we use shifted Jacobi polynomials 𝑗𝑎,𝑏
𝑄 (𝑥) 

and the shifted weight function which are defined as, 

𝑃𝑎,𝑏
𝑄 (𝑥) = 𝑗𝑎,𝑏

𝑄 (2𝑥 − 1),        (4.4) 

and, 

𝑠(𝑥) = 𝑆(2𝑥 − 1).         (4.5) 

A function 𝑤 belonging to 𝐿2[0,1] can be approximated using Jacobi polynomials as 

𝑤(𝑥) = ∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟 (𝑥),    𝑥 ∈ [0,1]∞

𝑟=0 ,       (4.6) 

where 𝑘𝑟 =
⟨𝑤(𝑥)|𝑃𝑎,𝑏

𝑟 (𝑥)⟩
𝑠

⟨𝑃𝑎,𝑏
𝑟 (𝑥)|𝑃𝑎,𝑏

𝑟 (𝑥)⟩
𝑠

.       (4.7) 



Chapter 4 

~ 78 ~ 
 

If we truncate the infinite series in Eq. (4.6) we have, 

𝑤(𝑥) = ∑ 𝑘𝑗𝑃𝑎,𝑏
𝑟 (𝑥)

𝑄
𝑟=0 .        (4.8) 

Theorem 4.1 Let 𝑤 ∈ 𝐿2[0,1]⋂𝐶[0,1] and 𝑠𝑢𝑝|𝑤| ≤ ℱ, then the Jacobi approximation 

of 𝑤 given by Eq.(4.8) converges uniformly and also we have 

∥ 𝑘𝑟 ∥≤
ℱ

2

(2𝑟+𝑎+𝑏+1)Γ(𝑏+1)

Γ(𝑟+𝑏+1)
.        (4.9) 

Proof A function 𝑤 ∈ 𝐿2[0,1]⋂𝐶[0,1] can be written by Eq. (4.8) and the coefficients 

are determined by, 

𝑘𝑟 =
1

∥𝑃𝑎,𝑏
𝑟 (𝑥)∥2

2 ∫ 𝑤(𝑥)
1

0
𝑠(𝑥)𝑃𝑎,𝑏

𝑟 (𝑥)𝑑𝑥, 

≤
1

∥𝑃𝑎,𝑏
𝑟 (𝑥)∥2

2 𝑠𝑢𝑝|𝑤(𝑥)| ∫ |𝑠(𝑥)𝑃𝑎,𝑏
𝑟 (𝑥)|𝑑𝑥

1

0
. 

Substitute 𝑥 = (𝑦 + 1)/2, we obtain, 

𝑘𝑟 ≤
ℱ

2∥𝑃𝑎,𝑏
𝑟 (𝑥)∥2

2 ∫ |𝑆(𝑦)𝑗𝑎,𝑏
𝑟 (𝑦)|𝑑𝑦

1

−1
, 

𝑘𝑟 ≤
ℱ

2∥𝑃𝑎,𝑏
𝑟 (𝑥)∥2

2 ∑ 𝐴(𝑖, 𝑎, 𝑏, 𝑟)𝑟
𝑖=0 ∫ |(1 − 𝑦 )𝑎(1 + 𝑦 )𝑏 (

𝑦−1

2
)

𝑖

| 𝑑𝑦
1

−1
, 

where 𝐴(𝑖, 𝑎, 𝑏, 𝑟) = (𝑟
𝑖
)

Γ(𝑎+𝑟+1)

𝑟!Γ(𝑎+𝑏+𝑟+1)

Γ(𝑎+𝑏+𝑟+𝑖+1)

Γ(𝑎+𝑖+1)
.               (4.10) 

𝑘𝑟 ≤
ℱ

2∥𝑃𝑎,𝑏
𝑟 (𝑥)∥2

2 ∑ 𝐴(𝑖, 𝑎, 𝑏, 𝑟)𝑟
𝑖=0 2𝑎+𝑏+𝑖+1 Γ(𝑎+𝑖+1)Γ(𝑏+1)

Γ(𝑎+𝑏+𝑖+2)
.              (4.11) 

Substituting the values of 𝐴(𝑖, 𝑎, 𝑏, 𝑟)  from Eq. (4.10) and ∥ 𝑃𝑎,𝑏
𝑟 (𝑥) ∥2

2
 in above 

equation, we get, 
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∥ 𝑘𝑟 ∥≤
ℱ

2

(2𝑟+𝑎+𝑏+1)Γ(𝑏+1)

Γ(𝑟+𝑏+1)
.                  (4.12) 

For particular values of 𝑎 = 𝑏 = 0 (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠), 

∥ 𝑘𝑟 ∥≤
ℱ

2

2𝑟+1

Γ(𝑟+1)
,       

 and for 𝑎 = 𝑏 = −1/2 (𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠), 

∥ 𝑘𝑟 ∥≤
√𝜋ℱ

2

2𝑟

Γ(𝑟+1/2)
. 

It is clear from Eq. (4.12), ∑ 𝑘𝑟
𝑄
𝑟=0  converges absolutely and hence ∑ 𝑘𝑟𝑃𝑎,𝑏

𝑟 (𝑥)𝑄
𝑟=0  

converges uniformly to 𝑤(𝑥). 

4.3 Uniqueness of the Solution 

Eq. (4.1) can be written as, 

𝒟𝜐𝑤(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + 𝜒(𝑤(𝑥)),                (4.13) 

where 𝜒(𝑤(𝑥)) = ∫ 𝜅(𝑥, 𝑢)𝒢(𝑤(𝑢))𝑑𝑢
𝑥

0
.                (4.14) 

Operating 𝒥𝜐 on Eq. (4.13) gives, 

𝑤(𝑥) = 𝑂(𝑥) + 𝒥𝜐[𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + 𝜒(𝑤(𝑥))],              (4.15) 

where, 𝑂(𝑥) = 𝑤(0+). 

Rewriting the Eq. (4.15) as fixed point problem 𝐻(𝑤(𝑥)) = 𝑤(𝑥), where 𝐻  can be 

defined as, 

𝐻(𝑤(𝑥)) = 𝑂(𝑥) + 𝒥𝜐[𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + 𝜒(𝑤(𝑥))].              (4.16) 
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Let  𝐶[0,1] be the space of continuous functions equipped with sup norm ∥. ∥∞. Then   

(𝐶[0,1], ∥. ∥∞) forms a Hilbert space. We suppose 𝒢 to be satisfied the Lipchitz condition 

on [0,1] given by, 

|𝒢(𝑤1(𝑥) − 𝑤2(𝑥))| ≤ ℒ|𝑤1(𝑥) − 𝑤2(𝑥)|,                (4.17) 

where ℒ defines the Lipschitz constant. Then uniqueness of the solution can be described 

by the following condition: 

Theorem 4.2 The condition of uniqueness of solution of the IVP (4.1) is given by 

 ∥ 𝑓(𝑥) ∥∞+ ℒ ∥ 𝜒 ∥∞≤ Γ(𝜐 + 1).                 (4.18) 

Proof: Pl. see theorem 2 in [122] (In Press). 

4.4 Proposed Method 

The classical approximation theory states that if we consider the Eq. (4.1) with integer 

order and the forcing terms of Eq.(4.1) are smooth on the respective domains, then the 

solution of Eq.(4.1) is also smooth with the equal degree of smoothness. But, for 0 < 𝜇 <

1  in Eq. (4.1), all the smooth forcing functions 𝑔(𝑥) , 𝑓(𝑥) , 𝜅(𝑥, 𝑢)  show that the 

behaviour of the solution will be like 𝑂(𝑥𝜇) and the derivative will be like 𝑂(𝑥𝜇−1) near 

the left boundary of 𝐼 = [0,1]  and thus the solution becomes unbounded near left 

boundary of the interval. Now it can be observed that the solution of Eq. (4.1) may not 

be continuously differentiable near the left boundary of the interval [0,1]. Due to the 

unboundedness of the derivative of the solution, numerical methods for solving such 

FIDEs don’t allow a fast convergence. To obtain the rapid convergence, it is essential to 
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consider the smooth behaviour of the exact solution. In particular, we can build methods 

for solving these type of FIDEs by using Jacobi polynomials.  

The above discussion implies that derivative of 𝑤(𝑥) is unbounded near 𝑥 = 0 which 

depends on both parameters  𝜐, 𝜇 . In order to remove this singularity, a variable 

transformation is being applied, 

𝑥 = 𝑡𝛾 , 𝑢 = 𝑦𝛾,                   (4.19) 

where 𝛾  is the least common multiple of denominators of 𝜐, 𝜇. Now, Eq. (4.1)-(4.2) 

transform into 

𝔇𝜐𝐴(𝑡) = 𝑊(𝑡) + 𝑃(𝑡)𝐴(𝑡) + ∫ 𝐾(𝑡, 𝑦)𝒢(𝐴(𝑦))𝛾𝑦𝛾−1𝑑𝑦  
𝑡

0
,             (4.20) 

𝐴(0) = 𝑤0,                    (4.21) 

where,   

𝔇𝜐𝐴(𝑡) =
1

𝛤(1−𝜐)
∫ (𝑡𝛾 − 𝑦𝛾)−𝜐𝐴′(𝑦)𝑑𝑦

𝑡

0
.     

𝑊(𝑡) = 𝑔(𝑡𝛾), 𝑃(𝑡) = 𝑓(𝑡𝛾), 𝐾(𝑡, 𝑦) = 𝜅(𝑡𝛾 , 𝑦𝛾), 

and the exact solution 𝐴(𝑡) can be written as, 

𝐴(𝑡) = 𝑤(𝑡𝛾).   

In above definition we use, 𝐴′(𝑦) = 𝛾𝑡𝛾−1𝑤′(𝑡) and 𝑑𝑢 = 𝛾𝑡𝛾−1𝑑𝑦 ⟹ 𝑑𝑦 =
1

𝛾𝑡𝛾−1 𝑑𝑢. 

Now, the Jacobi collocation and Jacobi Galerkin methods will be stated to solve FIDE 

given by Eq. (4.20) with (4.21). 
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4.4.1 Collocation Method 

A function 𝑤𝑄(𝑡) is to find out such that, 

𝑤𝑄(𝑡) = ∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟 (𝑡),    𝑡 ∈ [0,1]𝑄−1

𝑟=0 ,                 (4.22) 

and 𝑤𝑄(𝑡) must satisfy the following condition, 

𝔇𝜐 ∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟 (𝑡𝑙)

𝑄−1
𝑟=0 = 𝑊(𝑡𝑙) + 𝑃(𝑡𝑙) ∑ 𝑘𝑟𝑃𝑎,𝑏

𝑟 (𝑡𝑙)𝑄−1
𝑟=0 + 

∫ 𝐾(𝑡𝑙 , 𝑦)𝒢 (∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟𝑄−1

𝑟=0 (𝑦)) 𝛾𝑦𝛾−1𝑑𝑦
𝑡𝑙

0
.                (4.23) 

For 𝑡𝑙 ∈ [0,1], 𝑙 = 0,1, … 𝑄 − 2, Eq. (4.23) contains 𝑄 − 1 equations with 𝑄 unknowns 

and initial condition,  

∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟 (0)𝑄−1

𝑟=0 = 𝑤0,                   (4.24) 

Eq. (4.23)-(4.24) provide us a set of algebraic equations and by applying Newton’s 

iterative method [123], this nonlinear system can be solved and hence approximate 

solution 𝑤𝑄 is obtained. 

4.4.2 Galerkin Method 

Our aim is to find a function 𝑤𝑄(𝑡) which can be approximated as 

𝑤𝑄(𝑡) = ∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟 (𝑡),    𝑡 ∈ [0,1]𝑄−1

𝑟=0 ,                 (4.25) 

and satisfying, 

⟨𝔇𝜐𝑤𝑄(𝑡)|𝜙(𝑡)⟩ = ⟨𝑊(𝑡)|𝜙(𝑡)⟩ + ⟨𝑃(𝑡)𝑤𝑄(𝑡)|𝜙(𝑡)⟩  

+ ⟨∫ 𝐾(𝑡, 𝑦)𝒢 (𝑤𝑄(𝑦)) 𝛾𝑦𝛾−1𝑑𝑦
𝑡

0
|𝜙(𝑡)⟩, ∀ 𝜙 ∈ 𝐿2(𝐼).              (4.26) 
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Take, 𝜙 = 𝑃𝑎,𝑏
𝑗 (𝑡), 𝑗 = 0,1, … 𝑄 − 2, 

⟨𝔇𝜐𝑤𝑄(𝑡)|𝑃𝛼,𝛽
𝑗 (𝑡)⟩ = ⟨𝑊(𝑡)|𝑃𝛼,𝛽

𝑗 (𝑡)⟩ + ⟨𝑃(𝑡)𝑤𝑄(𝑡)|𝑃𝛼,𝛽
𝑗 (𝑡)⟩  

+ ⟨∫ 𝐾(𝑡, 𝑦)𝒢 (𝑤𝑄(𝑦)) 𝛾𝑦𝛾−1𝑑𝑦
𝑡

0
|𝑃𝛼,𝛽

𝑗 (𝑡)⟩.                (4.27) 

From Eq. (4.27), we obtain 𝑄 − 1 equations with 𝑄 unknowns and remaining equation is 

obtained by Eq. (4.24). This system of equations is solved by Newton’s method.  

4.5 Convergence of the Proposed Method 

Theorem 4.3 Suppose 𝑤 ∈ 𝐿2(𝐼) be smooth sufficiently and(
𝑑𝑤𝑄(𝑡)

𝑑𝑡
) denote the Jacobi 

approximation of  
𝑑𝑤(𝑡) 

𝑑𝑡
 with respect to the shifted Jacobi polynomials. If |

𝑑𝑤(𝑡) 

𝑑𝑡
| ≤ ℳ, 

then we have, 

∥
𝑑𝑤(𝑡)

𝑑𝑡
− (

𝑑𝑤𝑄(𝑡)

𝑑𝑡
) ∥2

2

≤ ∑
ℳ2

21−𝑎−𝑏

(2𝑟+𝑎+𝑏+1)(𝛤(𝑏+1))
2

𝛤(𝑟+𝑎+1)

𝑟!𝛤(𝑟+𝑏+1)𝛤(𝑟+𝑎+𝑏+1)

∞
𝑟=𝑄 .             (4.28) 

Proof: We assume, 

 
𝑑𝑤(𝑡)

𝑑𝑡
= ∑ 𝑘𝑟𝑃𝑎,𝑏

𝑟 (𝑡)∞
𝑟=0 .                  (4.29) 

After truncation up to 𝑄 − 1 level, we get  

𝑑𝑤𝑄(𝑡)

𝑑𝑡
= ∑ 𝑘𝑟𝑃𝑎,𝑏

𝑟 (𝑡)𝑄−1
𝑟=0 .                  (4.30) 

Subtracting Eq. (4.29) from Eq. (4.30), we obtain, 

𝑑𝑤(𝑡)

𝑑𝑡
− (

𝑑𝑤𝑄(𝑡)

𝑑𝑡
) = ∑ 𝑘𝑟𝑃𝑎,𝑏

𝑟 (𝑡)∞
𝑟=𝑄 , 
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∥
𝑑𝑤(𝑡)

𝑑𝑡
− (

𝑑𝑤𝑄(𝑡)

𝑑𝑡
) ∥2

2

= ∫ (
𝑑𝑤(𝑡)

𝑑𝑡
− (

𝑑𝑤𝑄(𝑡)

𝑑𝑡
))

2
1

0
𝑠(𝑡)𝑑𝑡, 

= ∫ (∑ 𝑘𝑟𝑃𝑎,𝑏
𝑟 (𝑡)∞

𝑟=𝑄 )
21

0
𝑠(𝑡)𝑑𝑡, 

= ∫ (∑ 𝑘𝑟
2∞

𝑟=𝑄 (𝑃𝑎,𝑏
𝑟 (𝑡))

2

+ 2 ∑ ∑ 𝑘𝑖𝑘𝑗𝑃𝑎,𝑏
𝑖 (𝑡)𝑃𝑎,𝑏

𝑗 (𝑡)∞
𝑗=𝑄
𝑗≠𝑖

∞
𝑖=𝑄 )

1

0
𝑠(𝑡)𝑑𝑡. 

Using orthogonal condition of Jacobi polynomials, we get 

∥
𝑑𝑤(𝑡)

𝑑𝑡
− (

𝑑𝑤𝑄(𝑡)

𝑑𝑡
) ∥2

2

= ∑ 𝑘𝑟
2 ∥ 𝑃𝑎,𝑏

𝑟 (𝑡) ∥2
2∞

𝑟=𝑄 .               (4.31) 

Now repeating the same procedure as in Theorem 1, we obtain, 

∥ 𝑘𝑟 ∥≤
ℳ

2

(2𝑟+𝑎+𝑏+1)𝛤(𝑏+1)

𝛤(𝑟+𝑏+1)
.                  (4.32) 

Substitute the value of 𝑘𝑟 from Eq.(42) and ∥ 𝑃𝑎,𝑏
𝑟 (𝑡) ∥2

2
in Eq.(41), we have, 

∥
𝑑𝑤(𝑡)

𝑑𝑡
− (

𝑑𝑤𝑄(𝑡)

𝑑𝑡
) ∥2

2

≤ 𝐵(𝑄, 𝑎, 𝑏).                 (4.33) 

where, 𝐵(𝑄, 𝑎, 𝑏) = ∑
ℳ2

21−𝑎−𝑏

(2𝑟+𝑎+𝑏+1)(𝛤(𝑏+1))
2

𝛤(𝑟+𝑎+1)

𝑟!𝛤(𝑟+𝑏+1)𝛤(𝑟+𝑎+𝑏+1)

∞
𝑟=𝑄 .             (4.34) 

By ratio test, the series denoted by 𝐵(𝑄, 𝛼, 𝛽) converges to 0 as 𝑄 → ∞. 

Theorem 4.4 Let 𝐴(𝑡) and 𝑤𝑄(𝑡) denote the exact and the approximated solution of Eq. 

(4.20) and operator 𝒢  satisfies the Lipchitz condition given by Eq. (4.17). Then 

approximation error 𝜀𝑄 = 𝐴 − 𝑤𝑄 → 0 and 

∥ 𝐴(𝑡) − 𝑤𝑄(𝑡) ∥2≤
1

∥𝑃(𝑡)∥2−𝑞ℒ

𝐵(𝑄,𝑎,𝑏)

𝛤(1−𝜐)
.                (4.35) 

Proof: Since 𝑤𝑄(𝑡) is the approximate solution of Eq. (4.20). So we have, 
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𝔇𝜐𝑤𝑄(𝑡) = 𝑊(𝑡) + 𝑃(𝑡)𝑤𝑄(𝑡) + ∫ 𝐾(𝑡, 𝑦)𝒢 (𝑤𝑄(𝑦)) 𝛾𝑦𝛾−1𝑑𝑦
𝑡

0
.             (4.36) 

Subtracting above equation from Eq. (4.20), we have, 

𝑃(𝑡) (𝐴(𝑡) − 𝑤𝑄(𝑡)) =  

𝔇𝜐 (𝐴(𝑡) − 𝑤𝑄(𝑡)) − ∫ 𝐾(𝑡, 𝑦)𝒢((𝐴(𝑦) − 𝑤𝑄(𝑦)))𝛾𝑦𝛾−1𝑑𝑦
𝑡

0
,             (4.37) 

∥ 𝑃(𝑡) (𝐴(𝑡) − 𝑤𝑄(𝑡)) ∥2≤∥ 𝔇𝜐 (𝐴(𝑡) − 𝑤𝑄(𝑡)) ∥2+∥ ∫ 𝐾(𝑡, 𝑦)𝒢 ((𝐴(𝑦) −
𝑡

0

𝑤𝑄(𝑦))) 𝛾𝑦𝛾−1𝑑𝑦 ∥2, 

≤∥
1

𝛤(1−𝜐)
∫ (𝑡𝛾 − 𝑦𝛾)−𝜐 (𝐴′(𝑦) − 𝑤𝑄′(𝑦)) 𝑑𝑦

𝑡

0
∥2+ ℒ ∥ 𝐴(𝑡) −

𝑤𝑄(𝑡) ∥2 ∫ 𝐾(𝑡, 𝑦)𝛾𝑦𝛾−1𝑑𝑦
𝑡

0
∥2, 

∥ 𝑃(𝑡) (𝐴(𝑡) − 𝑤𝑄(𝑡)) ∥2− ℒ ∥ 𝐴(𝑡) − 𝑤𝑄(𝑡) ∥2∥ ∫ 𝐾(𝑡, 𝑦)𝛾𝑦𝛾−1𝑑𝑦  
𝑡

0
∥2  

≤
𝐵(𝑄,𝑎,𝑏)

𝛤(1−𝜐)
∫ |(𝑡𝛾 − 𝑦𝛾)−𝜐|𝑑𝑦

𝑡

0
, 

∥ 𝐴(𝑡) − 𝑤𝑄(𝑡) ∥2≤
1

∥𝑃(𝑡)∥2−𝑞ℒ

𝑐

𝛤(1−𝜐)
 ,                (4.38) 

where, 𝑞 =∥ ∫ 𝐾(𝑡, 𝑦)𝛾𝑦𝛾−1𝑑𝑦 
𝑡

0
∥2. 

Eq. (4.38) concludes ∥ 𝐴(𝑡) − 𝑤𝑄(𝑡) ∥2→ 0 as 𝑄 → ∞ since 𝐵(𝑄, 𝑎, 𝑏) → 0 as 𝑄 → ∞. 

4.6 Numerical Simulation and Results 

To examine the validity of the proposed methods two test examples are considered and 

numerical simulations are performed as follows:   
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Test example 1 Consider the linear case of FIDE, 

𝒟𝜐𝑤(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + ∫ 𝜅(𝑥, 𝑢)𝑤(𝑢)𝑑𝑢  
𝑥

0
, 𝑤(0) = 0,             (4.39) 

𝜐 =
1

3
, 𝜅(𝑥, 𝑢) = (𝑥 − 𝑢)−1/2, 𝑓(𝑥) = −

32

35
𝑥1/2, 

where, 𝑔(𝑥) =
6𝑥8 3⁄

Γ(11/3) 
+ (32 35⁄ −

Γ(1 2)⁄  Γ(7 3)⁄

Γ(17 6)⁄ ]
)𝑥11 6⁄ + Γ(7 3)⁄ ∗ 𝑥, 

The exact solution for this case is 𝑥3 + 𝑥4/3. 

We approximate the solution of above problem Eq. (4.39) by methods described in 

section 5 and MAEs are shown in Table 1.1 for different values of 𝑄. In addition, as we 

know that the exact solution of above problem is not smooth, so we apply variable 

transformation 𝑥 = 𝑡6, 𝑢 = 𝑦6, which reduces to, 

𝔇𝜐𝐴(𝑡) = 𝑊(𝑡) + 𝑃(𝑡)𝐴(𝑡) + ∫ (𝑡6 − 𝑦6)−1/2𝐴(𝑦)6𝑦5𝑑𝑦  
𝑡

0
,𝐴(0) = 0,            (4.40) 

where,  

𝔇𝜐𝐴(𝑡) =
1

𝛤(
2

3
)

∫ (𝑡6 − 𝑦6)−𝜐𝐴′(𝑦)𝑑𝑦
𝑡

0
,       

𝑊(𝑡) =
6𝑡16

Γ(11/3) 
+ (32 35⁄ −

Γ(1 2)⁄  Γ(7 3)⁄

Γ(17 6)⁄ ]
)𝑡11 + Γ(7 3)⁄ ∗ 𝑡6, 

𝑃(𝑥) = −
32

35
𝑡3,  

and exact solution in this case is  𝑡8 + 𝑡18. 

By using collocation and Galerkin method, we approximate the solution of Eq. (4.40) 

with 𝑎 = 𝑏 = 0  (Legendre polynomials) for  𝑄 = 12,15,18  and obtained MAEs are 



Galerkin and Collocation Methods for Weakly Singular 

 Fractional Integro-differential Equations 

 

~ 87 ~ 
 

shown in Table 4.1. The obtained MAEs by collocation and Galerkin methods are 

7.786E-16 and 6.188E-15 respectively. 

It is clear from Table 4.1 and Table 4.2 that after applying the variable transformation, 

we obtain the better numerical accuracy as a solution of Eq. (4.40) becomes smooth. This 

problem is also considered in [43, 124, 125]. In [43], the solution is approximated by 

collocation method coupled with Simpson and Newton’s 3/8 rule whereas Chebyshev 

spectral method is applied in [124]. Mokhtary [125] solved Eq. (4.39) by operational Tau 

method using Jacobi polynomials and numerical solution closer to exact solution is 

obtained. 

Table 4.1 MAEs for Eq. (4.39) using collocation and Galerkin methods 

𝑵 𝑪𝒐𝒍𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒎𝒆𝒕𝒉𝒐𝒅 𝑮𝒂𝒍𝒆𝒓𝒌𝒊𝒏 𝒎𝒆𝒕𝒉𝒐𝒅 

3 4.021𝐸 − 3 3.241𝐸 − 3 

6 6.798𝐸 − 4 2.124𝐸 − 4 

9 3.033𝐸 − 4 3.033𝐸 − 4 

12 1.435𝐸 − 4 1.435𝐸 − 4 

15 5.654𝐸 − 5 5.654𝐸 − 5 

18 3.138𝐸 − 5 1.028𝐸 − 5 
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Table 4.2 MAEs for Eq. (4.40) using collocation and Galerkin methods 

𝑵 𝑪𝒐𝒍𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒎𝒆𝒕𝒉𝒐𝒅 𝑮𝒂𝒍𝒆𝒓𝒌𝒊𝒏 𝒎𝒆𝒕𝒉𝒐𝒅 

12 1.468𝐸 − 6 1.468𝐸 − 6 

15 4.787𝐸 − 9 5.495𝐸 − 9 

18 7.786𝐸 − 16 6.188𝐸 − 15 

 

Table 4.3 Numerical error for test example 1 by the method presented in [124] 

𝑵 weighted 𝑳𝟐-error 

2 1.34𝐸 − 2 

4 5.14𝐸 − 4 

6 1.56𝐸 − 4 

8 6.46𝐸 − 5 

16 7.38𝐸 − 6 

18 4.62𝐸 − 6 

20 2.85𝐸 − 6 
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Table 4.4 Numerical error for test example 1 in [43]. 

 

𝒉 

Numerical Errors 

Simpson’s collocation 

method 

Newton’s 3/8 collocation 

method 
  

1

2
 

5.32𝐸 − 2 1.72𝐸 − 2 
 

1

4
 

7.04𝐸 − 3 1.11𝐸 − 3 
 

1

8
 

6.91𝐸 − 4 7.03𝐸 − 5 
 

1

16
 

5.61𝐸 − 5 4.41𝐸 − 6 
 

1

32
 

4.15𝐸 − 6 2.75𝐸 − 7 
 

1

64
 

2.93𝐸 − 7 1.72𝐸 − 8 
 

1

128
 

2.02𝐸 − 8 1.07𝐸 − 9 
 

Test example 2 Consider the nonlinear case of FIDE, 

𝒟𝜐𝑤(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + ∫ 𝜅(𝑥, 𝑢)(𝑤(𝑢))
2
𝑑𝑢  

𝑥

0
,𝑤(0) = 0,            (4.41) 

𝜐 =
1

2
, 𝜅(𝑥, 𝑢) = (𝑥 − 𝑢)−1/5, 𝑓(𝑥) = 1, 

where, 𝑔(𝑥) = 0.88622 − √𝑥 −
25

36
𝑥

9

5, 

For problem, we have 𝑤(𝑥) = √𝑥. 
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As the solution of Eq. (4.41) is not smooth, so we apply variable transformation 𝑥 =

𝑡10, 𝑢 = 𝑦10, which reduces the above problem in 

𝔇𝜐𝐴(𝑡) = 𝑊(𝑡) + 𝑃(𝑡)𝐴(𝑡) + ∫ (𝑡10 − 𝑦10)−1/2(𝐴(𝑦))
2
10𝑦9𝑑𝑦  

𝑡

0
,𝐴(0) = 0,      (4.42) 

where,  

𝔇𝜐𝐴(𝑡) =
1

𝛤(
1

2
)

∫ (𝑡10 − 𝑦10)−
1

2𝐴′(𝑦)𝑑𝑦
𝑡

0
,       

𝑊(𝑡) = 0.88622 − 𝑡5 −
25

36
𝑡18, 

𝑃(𝑡) = 1,  

and exact solution in this case is  𝑡5. 

By using collocation and Galerkin method, the solution of Eq. (4.41) is approximated 

using the methods described in section 5 but we don’t get a better approximation as 

analytic solution is not smooth.  So we apply the variable transformation and obtained 

Eq. (4.42). We solve Eq. (4.42) by Jacobi collocation and Galerkin methods and obtained 

solution which coincides with the exact solution  𝑡5 for 𝑄 ≥ 5. The obtained MAEs by 

collocation and Galerkin methods are shown in Table 4.5. 

Table 4.5 MAEs for Eq. (4.42) using collocation and Galerkin methods 

𝑵 𝑪𝒐𝒍𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒎𝒆𝒕𝒉𝒐𝒅 𝑮𝒂𝒍𝒆𝒓𝒌𝒊𝒏 𝒎𝒆𝒕𝒉𝒐𝒅 

3 4.361𝐸 − 3 1.025𝐸 − 2 

4 7.492𝐸 − 4 6.822𝐸 − 4 

5 5.290𝐸 − 17 1.925𝐸 − 15 
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4.7 Conclusion 

Two numerical schemes such as collocation and Galerkin methods using Jacobi 

polynomials to approximate the solution of weakly singular FIDEs are presented and 

analyzed. In numerical experiments, we consider the FIDEs on [0,1]  which have a 

nonsmooth solution. The obtained MAEs verify the theoretical convergence and have the 

good agreement with the known results. It can be observed by the obtained maximum 

absolute errors that the accuracy and convergence of collocation and Galerkin methods 

provide better results after applying the variable transformation (Table 4.1 and Table 4.2). 

The smoothness of the solution makes approximation better and help us to improve the 

convergence rate. Further, it is noticed from the numerical errors that collocation method 

is more computationally efficient than Galerkin method for solving FIDEs and this is due 

to the calculation of the double integration term in Galerkin method. Also, collocation 

method provides better results with a faster convergence rate. The presented methods are 

more computationally efficient and provide the comparatively better solution than the 

methods described in [43, 124] for FIDEs. 
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