
 

Chapter 3 

Bernstein’s Approximation of Generalized Abel’s 

Integral Equation with Application in               

Tomography 

 

3.1 Introduction 

Integral equations with weakly singular kernel create the base for many evolutionary 

models in the field of science and engineering. They have a very rich history [3, 4, 98]. 

Similar equations are first studied by Abel, where he found an equation of the curve such 

that the time taken by a mass particle (no matter where the particle is placed) to slide 

under influence of gravity, reaches to the end of the curve at the same time. In 1896, 

Volterra [98] further studied such equations under the regularity condition. Such equa-

tions were later named the Volterra integral equations. Volterra proved that there exists a 

unique solution 𝑢(𝛾) in 𝐶[𝑟, 𝑠] for continuous kernel 𝑘(𝛾, 𝛿) and continuous 𝑔(𝛾) for 

all 𝛾, 𝛿 ∈ [𝑟, 𝑠]. The general second kind Volterra integral equation defined on [𝑟, 𝑠], can 

be written as, 

𝑢(𝛾) = 𝑔(𝛾) + ∫ 𝑘(𝛾, 𝛿)
𝛾

𝑟
𝑢(𝛿)𝑑𝛿,                                   𝛾 ∈ (𝑟, 𝑠).   (3.1) 
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where 𝑘(𝛾, 𝛿) is a kernel which depends on two variables and 𝑔(𝛾) is a known function. 

The Fredholm integral equation of second kind can be defined as, 

𝑢(𝛾) = 𝑔(𝛾) + ∫ 𝑘(𝛾, 𝛿)
𝑠

𝑟
𝑢(𝛿)𝑑𝛿,                                   𝛾 ∈ (𝑟, 𝑠).   (3.2) 

In this paper, an idea is developed to solve the GAIEs given by, 

𝑎(𝛾) ∫ 𝜑(𝛿)𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ 𝜑(𝛿)𝑘(𝛾, 𝛿)𝑑𝛿 =
𝑠

𝛾

𝛾

𝑟
𝜁(𝛾), 𝛾 ∈ (𝑟, 𝑠)  (3.3) 

where the function 𝜑(𝛾) is unknown which we have to approximate and 𝑎(𝛾), 𝑏(𝛾), 𝜁(𝛾) 

and 𝑘(𝛾, 𝛿) =
1

(𝛾−𝛿)𝜇 , 0 < 𝜇 < 1, is the power kernel of convolution type. 

For, 𝑎(𝛾) = 1, 𝑏(𝛾) = 0, [𝑟, 𝑠] = [0,1], above equation, is converted into the standard 

form of  Abel’s integral equations defined as, 

∫ 𝜑(𝛿)𝑘(𝛾, 𝛿)𝑑𝛿 =
𝛾

0
𝜁(𝛾),        (3.4) 

which is a form of first kind Volterra integral equation. 

Abel’s equations play an important role in many fields of science. Some of them are ste-

reology, seismology, radio astronomy, satellite photometry, electron emission, molecular 

scattering, radar ranging, testing of optical fibers [99-103]. Many authors have worked 

on Abel’s and generalized Abel’s integral equations. Recently, many authors have em-

ployed some numerical methods to approximate the solution of a different form of gen-

eralized Abel’s integral equations. Some of them are: Bernstein operational matrix [97], 

homotopy perturbation method [6], VIM [7], HPLTM [30] and collocation method Chap-

ter 2. 
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In this chapter, Bernstein’s polynomials and hybrid Bernstein Block-Pulse functions 

(HBBPF) coupled with the collocation approach are used to developing the numerical 

schemes for the integral equation defined by Eq. (3.3). Recently, Bernstein’s polynomials 

have created interest among researchers for the applied problems such as integral equa-

tions [104], spectroscopy [27], system of Abel integral equations [105], astronomy [106], 

system of differential equations of fractional order [107], and isoperimetric constraint 

fractional variational problem [108]. Recently, Block-Pulse functions perform an im-

portant role to solve Lane Emden equations [106], integral equations [109, 110], fuzzy 

integral equations [111] and Volterra-Fredholm integral equations [112]. Here, an attempt 

is made using Bernstein and hybrid Bernstein Block-Pulse functions to develop the col-

location approach for the GAIEs. This approach is beneficial as we obtain good numerical 

results using only a few basis functions. 

The outline of this chapter is as follows. In section 3.2, we give some introduction of the 

Bernstein polynomials, HBBPF and Bernstein approximation. Section 3.3 presents the 

methods which are used to approximate the solution of Eq. (3.3). In section 3.4, we survey 

convergence analysis for the proposed methods. Numerical experiments are performed in 

section 3.5 to check the accuracy of the purposed method. Application of Abel inversion 

is added in section 3.6 and the last section concludes the paper. 

3.2 Basic Definitions and Results 

Definitions 3.1 [112]. Bernstein basis polynomial over [0,1] is given by, 

ℬ𝑛,𝑘(𝛾) = (𝑛
𝑘

)𝛾𝑘(1 − 𝛾)𝑛−𝑘, 𝑘 = 0, … , 𝑛.       (3.5) 
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For our convenience, we define  ℬ𝑛,𝑘(𝛾) = 0 ,𝑘 < 0 𝑜𝑟 𝑘 > 𝑛 . Any continuous func-

tion 𝜑 defined on the interval [0,1] can be approximated as, 

ℬ𝑛(𝜑(𝛾)) = ∑ 𝜑(𝑘/𝑛)𝑛
𝑘=0 ℬ𝑛,𝑘(𝛾),       (3.6) 

We can define shifted 𝑛𝑡ℎ degree Bernstein polynomials over [𝑎, 𝑏] as, 

ℬ𝑛,𝑘(𝛾) = (𝑛
𝑘

)
(𝛾−𝑎)𝑘(𝑏−𝛾)𝑛−𝑘

(𝑏−𝑎)𝑛 , 𝑘 = 0, … , 𝑛.      (3.7) 

and then the function 𝜑 can be approximated as,  

ℬ𝑛(𝜑) = ∑ 𝜑(𝑎 + (𝑏 − 𝑎)𝑘/𝑛)𝑛
𝑘=0 ℬ𝑛,𝑘(𝛾).      (3.8) 

Theorem 3.1 [104]. For any continuous function  𝜑  defined on the interval  [0,1] the 

Bernstein polynomial approximation of 𝜑 defined by, 

ℬ𝑛(𝜑(𝛾)) = ∑ 𝜑(𝑘/𝑛)𝑛
𝑘=0 ℬ𝑛,𝑘(𝛾),       (3.9) 

satisfies, 

lim
𝑛→∞

ℬ𝑛(𝜑(𝛾)) = 𝜑(𝛾).                  (3.10) 

Thus Bernstein polynomial is a way to prove the Weierstrass approximation theorem that 

states that for any function which is continuous on a bounded interval [0,1] can be ap-

proximated uniformly by a sequence of polynomials. This theorem implies that for any 

continuous function 𝜑 and for any 𝜖 > 0, there exists an 𝑛 such that, 

‖ℬ𝑛(𝜑(𝛾)) − 𝜑|| < 𝜖,                  (3.11) 

holds. It has been shown that 𝑛 satisfies, 
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𝑛 >
‖𝜑||

𝜌2𝜖
 ,                    (3.12) 

where ‖∗||  sup norm on [0,1] and since 𝜑 is uniformly continuous on [0,1], we have 

for 𝛾, 𝛿 ∈ [0,1] such that |𝛾 − 𝛿| < 𝜌, and  |𝜑(𝛾) − 𝜑(𝛿)| < 𝜖 [81]. 

and the error bound, 

|ℬ𝑛(𝜑(𝛾)) − 𝜑| ≤
1

2𝑛
𝛾(1 − 𝛾)||𝜑′′|| ≤

1

8𝑛
∥ 𝜑′′ ∥,               (3.13) 

from which  it follows that, 

lim
𝑛→∞

𝑛( 𝐵𝑛(𝜑(𝛾)) − 𝜑(𝛾)) =  
1

𝑛
𝛾(1 − 𝛾)||𝜑′′||.               (3.14) 

The Eq. (3.14) establishes the rate of convergence 𝑂(
1

𝑛
) for 𝜑 ∈ 𝐶2[0,1] [104]. 

Definitions 3.2 [112]. An 𝑀-set of Block-functions 𝑏𝑚(𝑡) for 𝑚 = 1,2, … , 𝑀 on [𝑎, 𝑏) 

is defined as 

𝑏𝑚(𝑡) = {
1
0

,       𝛾∈ [𝑝𝑚,𝑝𝑚−1]
        𝛾∉ [𝑝𝑚,𝑝𝑚−1]

,                  (3.15) 

where 𝑝𝑚 =
(𝑀−𝑚)𝑎+𝑚𝑏

𝑀
.                  (3.16) 

Definitions 3.3 [112]. The HBBPF 𝒷𝑚,𝑘(𝛾) on the interval [𝑎, 𝑏] are defined as 

𝒷𝑚,𝑘(𝛾) = {(𝑛
𝑘

)
(𝛾−𝑙𝑚−1)𝑘(𝑙𝑚−𝛾)𝑛−𝑘

(𝑙𝑚−𝑙𝑚−1)𝑛

0

,       𝛾∈ [𝑙𝑚,𝑙𝑚−1]
        𝛾∉ [𝑙𝑚 ,𝑙𝑚−1]

,               (3.17) 

for 𝑚 = 1,2, … , 𝑀 and 𝑘 = 0,1, … , 𝑛, 

where 𝑙𝑚 =
(𝑀−𝑚)𝑎+𝑚𝑏

𝑀
, 𝑚 = 1,2, … , 𝑀.               (3.18) 
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3.3 Outline of Method 

This section describes the methods to approximate the solution of Eq. (3.3). 

3.3.1 Bernstein Polynomials Method (B1): Any unknown function 𝜑 can be 

written in a linear combination of Bernstein basis polynomials as, 

ℬ𝑛(𝜑𝑛(𝛾)) = ∑ 𝜑𝑛(𝑘/𝑛)𝑛
𝑘=0 ℬ𝑛,𝑘(𝛾),  𝑡 ∈ [0,1].             (3.19) 

Here 𝜑𝑛(𝑘/𝑛) are known as Bernstein coefficients which we have to calculate. 

To approximate the solution of Eq. (3.3), we consider the following form, 

(𝑎(𝛾) ∫ ∑ 𝜑𝑛 (
𝑘

𝑛
)𝑛

𝑘=0 ℬ𝑛,𝑘(𝛾)𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ ∑ 𝜑𝑛 (
𝑘

𝑛
)𝑛

𝑘=0 ℬ𝑛,𝑘(𝛾)𝑘(𝛿, 𝛾)𝑑𝛿
1

𝛾

𝛾

0
) =

𝜁(𝛾),                     (3.20) 

In order to find the unknowns, 𝜑𝑛 (
𝑘

𝑛
) , 𝑘 = 0,1, … 𝑛, we replace 𝛾 by 𝛾𝑘 ∈ [0,1], 𝑘 =

0,1, … 𝑛 and convert Eq. (3.20) into a system of algebraic equations. Now Eq. (3.20) re-

duces to the form, 

𝒜𝑋 = ℬ,                    (3.21) 

where, 

𝒜 = [(𝑎(𝛾𝑘) ∫ ∑ 𝜑𝑛 (
𝑖

𝑛
)𝑛

𝑖=0 ℬ𝑛,𝑘(𝛾𝑘)𝑘(𝛾𝑘 , 𝛿)𝑑𝛿 +
𝛾𝑘

0

𝑏(𝛾𝑘) ∫ ∑ 𝜑𝑛 (
𝑖

𝑛
)𝑛

𝑖=0 ℬ𝑛,𝑘(𝛾𝑘)𝑘(𝛿, 𝛾𝑘)𝑑𝛿
1

𝛾𝑘
)],                (3.22) 

𝑋 = [𝜑 (
𝑖

𝑛
)]

𝑇

,                    (3.23)  

ℬ = [𝜁(𝛾𝑘)]𝑇,                    (3.24) 
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where 𝑖, 𝑘 = 0,1, … , 𝑛. 

Solving this system of equations given by Eq. (3.21), the approximate solution of the Eq. 

(3.3) is calculated. 

3.3.2 Hybrid Bernstein Block-Pulse Functions Method (B2): This section 

describes the use of HBBPF approximation of the solution of Eq. (3.3). 

Any function 𝑓 ∈ 𝐿2[0,1)  can be written as, 

𝑓(𝛾) = ∑ ∑ 𝑝𝑚,𝑘𝒷𝑚,𝑘(𝛾)∞
𝑘=0

∞
𝑚=1 .                 (3.25) 

After truncating it to some finite values 𝑛 and 𝑀, we obtain, 

𝑓(𝛾) = ∑ ∑ 𝑝𝑚,𝑘𝒷𝑚,𝑘(𝛾)𝑛
𝑘=0

𝑀
𝑚=1 = 𝑃𝑇𝐻(𝛾),               (3.26) 

where, 

𝑃 = [𝑝10, … , 𝑝1𝑛 , 𝑝20, … , 𝑝2𝑛 , 𝑝𝑀1, … , 𝑝𝑀𝑛]𝑇,               (3.27) 

and, 

𝐻(𝛾) = [𝒷1,0(𝛾), … , 𝒷1,𝑛(𝛾), 𝒷2,0(𝛾), … , 𝒷2,𝑛(𝛾), 𝒷𝑀,1(𝛾), … , 𝒷𝑀,𝑛(𝛾)]
𝑇
.            (3.28) 

We approximate 𝜑 as,  

𝜑(𝛾) = ∑ ∑ 𝑝𝑚,𝑘𝒷𝑚,𝑘(𝛾)𝑛
𝑘=0

𝑀
𝑚=1 = 𝑃𝑇𝐻(𝛾).               (3.29) 

where 𝑃 and 𝐻(𝛾) are defined by Eq. (3.27) and Eq. (3.28) respectively. 

To solve the Eq. (3.3), put 𝜑 from Eq. (3.29) in Eq. (3.3), gives,  
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(𝑎(𝛾) ∫ ∑ ∑ 𝑝𝑚,𝑘𝒷𝑚,𝑘(𝛾)𝑛
𝑘=0

𝑀
𝑚=1 𝑘(𝛾, 𝛿)𝑑𝛿 +

𝛾

0

𝑏(𝛾) ∫ ∑ ∑ 𝑝𝑚,𝑘𝒷𝑚,𝑘(𝛾)𝑛
𝑘=0

𝑀
𝑚=1 𝑘(𝛿, 𝛾)𝑑𝛿

1

𝛾
) = 𝜁(𝛾),              (3.30) 

or, 

∑ ∑ 𝑝𝑚,𝑘
𝑛
𝑘=0

𝑀
𝑚=1 (𝑎(𝛾) ∫ 𝒷𝑚,𝑘(𝛾)𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ 𝒷𝑚,𝑘(𝛾)𝑘(𝛿, 𝛾)𝑑𝛿

1

𝛾

𝛾

0
) = 𝜁(𝛾),

                     (3.31) 

Collocating Eq. (3.31) at 𝑀(𝑛 + 1) points 𝛾𝑙 ∈ [0,1], 𝑙 = 1,2, … , 𝑀(𝑛 + 1), the above 

equations reduces to the following linear system of equations, 

∑ ∑ 𝑝𝑚,𝑘
𝑛
𝑘=0

𝑀
𝑚=1 (𝑎(𝛾𝑙) ∫ 𝒷𝑚,𝑘(𝛾𝑙)𝑘(𝛾𝑙 , 𝛿)𝑑𝛿 + 𝑏(𝛾𝑙) ∫ 𝒷𝑚,𝑘(𝛾𝑙)𝑘(𝛿, 𝛾𝑙)𝑑𝛿

1

𝛾𝑙

𝛾𝑙

0
) =

𝜁(𝛾𝑙).                     (3.32) 

After solving the above system of equations, we obtained the unknown values  𝑝𝑚,𝑘⏞ , 

which are the approximate values of 𝑝𝑚,𝑘 . 

3.4 Convergence Analysis 

This section includes the results on convergence of the schemes described in the last 

section and we will estimate an error bound for both schemes. For this, Banach space Χ =

𝐶[0,1]  is considered associated with the norm defined as, 

∥ 𝜑(𝛾) ∥= max
0≤𝛾≤1

|𝜑(𝛾)|. 

Also, we define, 

𝛹(𝜔(𝛾)) = ∫ 𝑘(𝛾, 𝛿)
𝛾

0
𝜔(𝛿)𝑑𝛿,                 (3.33) 
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and 𝛹1(𝜔(𝛾)) = ∫ 𝑘(𝛿, 𝛾)
1

𝛾
𝜔(𝛿)𝑑𝛿,                 (3.34) 

Then 𝛹  and 𝛹1are bounded on [0,1], 𝑖. 𝑒., there exist two constants such that, 

∥ 𝛹(𝜔(𝑥)) ∥≤ ∁∥ 𝜔(𝑥) ∥ and ∥ 𝛹1(𝜔(𝑥)) ∥≤ ∁1∥ 𝜔(𝑥) ∥.              (3.35) 

Refer to Chapter 2 (Lemma 2.1). 

3.4.1 Convergence for B1: 

Theorem 3.2 Consider that all the functions of Eq. (3.3) belongs to 𝐶[0,1] and the kernel 

𝑘(𝛿, 𝛾)  either belongs to 𝐶[0,1] × 𝐶[0,1]  or 𝐿2[0,1) . Let 𝜑(𝛾)  and ℬ𝑛(𝜑𝑛(𝛾)) =

∑ 𝜑𝑛(𝑘/𝑛)𝑛
𝑘=0 ℬ𝑛,𝑘(𝛾) be the exact and approximated solution by scheme 1 of Eq. (3.3) 

respectively. Then,  

∥ 𝜑(𝛾) − ℬ𝑛(𝜑𝑛(𝛾)) ∥≤ (1 +
(∁∥𝑎(𝛾)∥+∥∁1𝑏(𝛾)∥)

(∁∥𝑎(𝛾)∥−∁1∥𝑏(𝛾)∥)
)

1

8𝑛
∥ 𝜑′′ ∥.              (3.36) 

Proof: Suppose that ℬ𝑛(𝜑(𝛾)) = ∑ 𝜑(𝑘/𝑛)𝑛
𝑘=0 ℬ𝑛,𝑘(𝛾)  be the best approximation of 

𝜑(𝛾). Then we have, 

∥ 𝜑(𝛾) − ℬ𝑛(𝜑𝑛(𝛾)) ∥≤ ∥ 𝜑(𝛾) − ℬ𝑛(𝜑(𝛾)) ∥ +∥ ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾)) ∥.      (3.37) 

From relation given by Eq. (3.13), we obtain, 

∥ 𝜑(𝛾) − ℬ𝑛(𝜑(𝛾)) ∥≤
1

8𝑛
∥ 𝜑′′ ∥.                 (3.38) 

Therefore, 

∥ 𝜑(𝛾) − ℬ𝑛(𝜑𝑛(𝛾)) ∥≤ 
1

8𝑛
∥ 𝜑′′ ∥ +∥ ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾)) ∥.             (3.39) 
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Now, it is enough to estimate a bound for  ∥ ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾)) ∥ . Theorem 1 im-

plies that for any 𝜑 ∈ 𝐶[0,1] and for any 𝜀 > 0 there exists 𝑛 such that, ∥ 𝐵𝑛(𝜑) − 𝜑 ∥<

𝜀. 

So, we can write Eq. (3.3) as,  

𝑎(𝛾) ∫ ℬ𝑛(𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ ℬ𝑛(𝜑(𝛿))𝑘(𝛿, 𝛾)𝑑𝛿 = 𝜁(𝛾)
1

𝛾

𝛾

0
,            (3.40) 

If we substitute ℬ𝑛(𝜑𝑛(𝛿)) instead of ℬ𝑛(𝜑(𝛿)) in Eq. (3.40) then RHS is replaced by a 

new function 𝜁1(𝛾) (say). So, we have, 

𝑎(𝛾) ∫ ℬ𝑛(𝜑𝑛(𝛿))𝑘(𝑥, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ ℬ𝑛(𝜑𝑛(𝛿))𝑘(𝛿, 𝛾)𝑑𝛿 =
1

𝛾

𝛾

0
𝜁1(𝛾).            (3.41) 

Consequently, we have, 

𝑎(𝛾) ∫ {ℬ𝑛(𝜑(𝛿)) − ℬ𝑛(𝜑𝑛(𝛿))}𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ {ℬ𝑛(𝜑(𝛿)) −
1

𝛾

𝛾

0

ℬ𝑛(𝜑𝑛(𝛿))}𝑘(𝛿, 𝛾)𝑑𝛿 = 𝜁(𝛾) − 𝜁1(𝛾).                (3.42) 

or, 

∥ 𝑎(𝛾) ∫ {ℬ𝑛(𝜑(𝛿)) − ℬ𝑛(𝜑𝑛(𝛿))}𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ {ℬ𝑛(𝜑(𝛿)) −
1

𝛾

𝛾

0

ℬ𝑛(𝜑𝑛(𝛿))}𝑘(𝛿, 𝛾)𝑑𝛿 ∥ ≤∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥.                (3.43) 

Or we can write, 

∥ 𝑎(𝛾)𝛹{ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾))} + 𝑏(𝛾)𝛹1{ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾))} ∥  

≤∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥. 

Using Lemma 3.1, we obtain, 
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∥ ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾)) ∥ (∁∥ 𝑎(𝛾) ∥ −∁1∥ 𝑏(𝛾) ∥) ≤∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥.  

∥ ℬ𝑛(𝜑(𝛾)) − ℬ𝑛(𝜑𝑛(𝛾)) ∥≤
1

(∁∥𝑎(𝛾)∥−∁1∥𝑏(𝛾)∥)
∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥.             (3.44) 

For finding a bound for,∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥, we assume, 

𝑎(𝛾) ∫ 𝜑(𝛿)𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ 𝜑(𝛿)𝑘(𝛾, 𝛿)𝑑𝛿 =
1

𝛾

𝛾

0
𝜁(𝛾),        

and, 𝑎(𝛾) ∫ ℬ𝑛(𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ ℬ𝑛(𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 =
1

𝛾

𝛾

0
𝜁1(𝛾).  

So that, 

𝜁(𝛾) − 𝜁1(𝛾) =  𝑎(𝛾) ∫ (ℬ𝑛(𝜑(𝛿)) − 𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ (ℬ𝑛(𝜑(𝛿)) −
1

𝛾

𝛾

0

𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿, 

∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥=∥ 𝑎(𝛾) ∫ (ℬ𝑛(𝜑(𝛿)) − 𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ (ℬ𝑛(𝜑(𝛿)) −
1

𝛾

𝛾

0

𝜑(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 ∥, 

Using Lemma 3.1, 

∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥≤ (∁∥ 𝑎(𝛾) ∥ +∥ ∁1𝑏(𝛾) ∥) ∥ 𝛹1 ∥∥ ℬ𝑛(𝜑(𝛿)) − 𝜑(𝛿) ∥.               (3.45) 

Now using Eq. (3.13), we obtain, 

∥ 𝜁(𝛾) − 𝜁1(𝛾) ∥≤ (∁∥ 𝑎(𝛾) ∥ +∥ ∁1𝑏(𝛾) ∥)
1

8𝑛
∥ 𝜑′′ ∥,              (3.46) 

By Eq. (3.39), (3.44), and (3.46), we conclude the required result. 
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3.4.2 Convergence for B2: 

Theorem 3.3 Consider that all the functions of Eq. (3.1) belongs to 𝐶[0,1] and the kernel 

𝑘(𝛿, 𝛾)  either belongs to 𝐶[0,1] × 𝐶[0,1]  or 𝐿2[0,1) . Let 𝜑(𝛾)  and 𝜑𝑀,𝑛(𝛾) =

∑ ∑ 𝑝𝑚,𝑘𝒷𝑚,𝑘(𝛾)𝑛
𝑘=0

𝑀
𝑚=1 = 𝑃𝑇𝐻(𝛾) be the exact and approximated solution by scheme 

2 of Eq. (3.1) respectively. Suppose ∁∥ 𝑎(𝛾) ∥< ∁1∥ 𝑏(𝛾) ∥. Then, 

lim
𝑛→∞

∥ 𝜑(𝛾) − 𝜑𝑀,𝑛(𝛾) ∥ = 0. 

Proof: Substituting 𝜑𝑀,𝑛(𝛾) in Eq. (3.1), results in 

𝑎(𝛾) ∫ 𝜑𝑀,𝑛(𝛿)𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ 𝜑𝑀,𝑛(𝛿)𝑘(𝛿, 𝛾)𝑑𝛿 = 𝜁(𝛾)
1

𝛾

𝛾

0
,             (3.47) 

Now we have, 

𝑎(𝛾) ∫ (𝜑(𝛿) − 𝜑𝑀,𝑛(𝛿))𝑘(𝛾, 𝛿)𝑑𝛿 + 𝑏(𝛾) ∫ (𝜑(𝛿) − 𝜑𝑀,𝑛(𝛿))𝑘(𝛿, 𝛾)𝑑𝛿 = 0
1

𝛾

𝛾

0
, (3.48) 

∥ 𝑎(𝛾) ∫ (𝜑(𝛿) − 𝜑𝑀,𝑛(𝛿)) 𝑘(𝛾, 𝛿)𝑑𝛿
𝛾

0
∥  

−∥ 𝑏(𝛾) ∫ (𝜑(𝛿) − 𝜑𝑀,𝑛(𝛿))𝑘(𝛿, 𝛾)𝑑𝛿
1

𝛾
∥≤ 0,               (3.49) 

Using Lemma 3.1, above equation reduces to, 

∁∥ 𝑎(𝛾) ∥∥ 𝜑(𝛾) − 𝜑𝑀,𝑛(𝛾) ∥ −∁1∥ 𝑏(𝛾) ∥∥ 𝜑(𝛾) − 𝜑𝑀,𝑛(𝛾) ∥≤ 0, 

(∁∥ 𝑎(𝛾) ∥ −∁1∥ 𝑏(𝛾) ∥) ∥ 𝜑(𝛾) − 𝜑𝑀,𝑛(𝛾) ∥≤ 0, 

taking 𝜏 =
∁1∥𝑏(𝛾)∥

∁∥𝑎(𝛾)∥
, we have, 

(1 − 𝜏) ∥ 𝜑(𝛾) − 𝜑𝑀,𝑛(𝛾) ∥≤ 0, 
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since 0 < 𝜏 < 1, therefore, 

lim
𝑛→∞

∥ 𝜑(𝛾) − 𝜑𝑀,𝑛(𝛾) ∥ = 0.                 (3.50) 

3.5 Results, Discussion and Numerical Stability: 

In this section, the numerical practice of the proposed method will be done and its veracity 

will be verified. Also, the stability will be shown by implementing it on the GAIEs with 

known solutions. We consider three known examples of various type from the literature. 

In first two examples, the case of GAIEs is considered with different types of solution. 

The last example is the well-known form of Abel’s integral, 

∫ 𝜑(𝛿)
1

(𝛾−𝛿)1/2 𝑑𝛿
𝛾

𝑟
= 𝜁(𝛾), which is a special case of GAIEs. 

The accuracy of both proposed methods is demonstrated by the maximum absolute error 

defined by, 

𝐸 = |𝜑(𝛾) − 𝜑𝑛(𝛾)|. 

Here, 𝜑𝑛(𝛾) is the approximated solution and 𝜑(𝛾) is the exact solution of GAIEs. 

In the following considered examples, if we rewrite the Eq. (3.1) in operator form as, 

𝜒(𝜑(𝛾)) = 𝜁(𝛾).                   (3.51) 

Here, 𝜑(𝛾) denotes the exact solution of Eq. (3.51), 𝜑𝑛
𝛿(𝛾) is the noisy approximated 

function corresponding to the 𝜀 times random error to 𝜑(𝛾) such that 𝜑𝑛
𝛿(𝛾) is the ap-

proximate solution of the problem, 

𝜒(𝜑(𝛾)) = 𝜁(𝛾) + 𝜀𝛿.                  (3.52) 
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𝜑𝑛
0(𝛾) denotes the approximate solution of Eq. (3.52) without noise. 𝜀 is a sufficiently 

small constant and 𝛿  is uniform random variable with in [−1,1]. By applying the both 

methods mentioned above for noisy analysis, the solution 𝜑𝑛
𝛿(𝛾) of Eq. (3.52) is ob-

tained. Each of the test examples are solved and analyzed. The obtained results are 

demonstrated in the different figures which represents the comparison between, 

i.Exact solution 𝜑(𝛾), approximate solution without noise 𝜑𝑛
0(𝛾) , approximate 

solution with noise 𝜑𝑛
𝛿1(𝛾) and 𝜑𝑛

𝛿2(𝛾) with random noise 𝛿1 and 𝛿2 respec-

tively. 

ii.The approximate solution with random noise 𝜑𝑛
𝛿1(𝛾) and 𝜑𝑛

𝛿2(𝛾). 

Test example 3.1 In this case, we consider Eq. (3.3) with 𝑎(𝛾) = 𝑏(𝛾) = 1 , 𝑘(𝛾, 𝛿) =

1

(𝛾−𝛿)1/5 and 

𝜁(𝛾) = 𝑒𝛾 [(1 − 𝛾)4/5(𝛾 − 1)−4/5 {Γ (
4

5
) − Γ (

4

5
, 𝛾 − 1)} + {Γ (

4

5
) − Γ (

4

5
, 𝛾)}] , where 

Γ denotes the Gamma function. This takes the form of GAIEs given in [56, 82]. In this 

case, the known exact solution is 𝜑(𝛾) = 𝑒𝛾. 

In Table 3.1, maximum absolute errors are illustrated by B1 and B2. The obtained maxi-

mum absolute errors are also compared with the presented method [97, Chapter 2] of the 

same problem. Jacobi polynomials based collocation method Chapter 2 and almost Bern-

stein operational matrix approach [97] are used to approximate the solution of GAIEs. 

The minimum of maximum absolute errors for above problem in Chapter 2 has order 

𝑂(10−3) for 𝑛 = 3 and 𝑂(10−7) for 𝑛 = 5 (Table 3.2) and in [97] is of order 𝑂(10−5). 

By scheme B2, the achieved maximum absolute error has 𝑂(10−9) with only 𝑛 = 3  ba-

sis polynomials (Table 3.1). 
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Fig 3.1. Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 𝜑𝑛

0(𝛾) 

(green triangle), approximate solution with noises 𝜑𝑛
𝛿1(𝛾) (blue square) and 

𝜑𝑛
𝛿2(𝛾) (yellow circle) for Test example 3.1 by Scheme B1. 

 

 
Fig 3.2 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 𝜑𝑛

0(𝛾) 

(green triangle), approximate solution with noises 𝜑𝑛
𝛿1(𝛾) (blue square) and 

𝜑𝑛
𝛿2(𝛾) (yellow circle) for Test example 3.1 by Scheme B2. 
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Fig. 3.3 Approximate solutions with noises 𝜑𝑛

𝛿1(𝛾) (red circle) and 𝜑𝑛
𝛿2(𝛾) (green 

triangle) for Test example 3.1 by Scheme B1. 

 

 
Fig. 3.4 Approximate solutions with noises 𝜑𝑛

𝛿1(𝛾) (red circle) and 𝜑𝑛
𝛿2(𝛾) (green 

triangle) for Test example 3.1 by Scheme B2. 

Test example 3.2 This example has been taken from Chapter 2, in which exact solution 

is in fraction power of 𝛾. For this, we have, 𝑎(𝛾) = 𝑏(𝛾) = 1 , 𝑘(𝛾, 𝛿) =
1

(𝛾−𝛿)1/2  and 

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5



Bernstein’s approximation of generalized Abel’s integral equation  

with application in tomography 

 

~ 61 ~ 
 

𝜁(𝛾) =
√𝜋𝛾

5
6Γ(−

5

6
)

Γ(−
1

3
)

+
√𝜋𝛾

5
6Γ(

4

3
)

Γ(
11

6
)

+  
6

52
𝐹1[−

5

6
,

1

2
,

1

6
, 𝛾]. 

For this case, the exact solution is given by 𝜑(𝛾) = 𝛾1/3. This problem is solved by the 

scheme B1 described in section 3.3 with 𝑛 = 1,2,3 and by scheme B2 with 𝑛 = 1,2,3 

and 𝑀 = 5,10,15,20. The obtained maximum absolute errors are shown in Table 3. Ac-

cording to the Table 3.3, we achieved maximum absolute error in order 𝑂(10−5) which 

shows the superiority of scheme B2 over B1 and the method presented in Chapter 2 (Table 

3.4).  

As the exact solution, in this case, is not smooth so scheme B1 doesn’t provide the better 

accuracy and fast convergence (Figure 3.5). This is also clear from Eq. (3.13) which states 

that the Bernstein approximation converges to the exact solution when the solution is 

twice continuously differentiable i.e.,  𝜑 ∈ 𝐶2[0,1] . Also, the available methods for 

GAIEs are failed to achieve an approximation close to the exact solution when the exact 

solution is not smooth [97, Chapter 2]. This is the beauty of taking the basis functions as 

hybrid Bernstein polynomial and the approximation converges to exact solution rapidly 

even when the exact solution is not smooth (Figure 3.6).  
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Fig 3.5 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 𝜑𝑛
0(𝛾) 

(green triangle), approximate solution with noises 𝜑𝑛
𝛿1(𝛾) (blue square) and 

𝜑𝑛
𝛿2(𝛾) (yellow circle) for Test example 3.2 by Scheme B1. 

 

 

 

Fig 3.6 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 𝜑𝑛
0(𝛾) 

(green triangle), approximate solution with noises 𝜑𝑛
𝛿1(𝛾) (blue square) and 

𝜑𝑛
𝛿2(𝛾) (yellow circle) for Test example 3.2 by Scheme B2. 
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Fig. 3.7 Approximate solutions with noises 𝜑𝑛
𝛿1(𝛾) (red circle) and 𝜑𝑛

𝛿2(𝛾) (green 

triangle) for Test example 3.2 by Scheme B1. 

 

 

 

Fig. 3.8 Approximate solutions with noises 𝜑𝑛
𝛿1(𝛾) (red circle) and 𝜑𝑛

𝛿2(𝛾) (green tri-

angle) for Test example 3.2 by Scheme B2. 

Test example 3.3 Consider [5, 85], 𝑎(𝛾) = 1, 𝑏(𝛾) = 0 , 𝑘(𝛾, 𝛿) =
1

(𝛾−𝛿)1/2 and 

0.0 0.2 0.4 0.6 0.8 1.0

0.60

0.65

0.70

0.75

0.80

0.85

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



Chapter 3 

~ 64 ~ 
 

𝜁(𝛾) = 𝑒𝛾 − 1.  

This problem has exact solution  𝑒𝛾 Erf[√𝛾] √𝜋⁄  which is also not smooth. This problem 

is also solved by B1 and B2 and obtained numerical errors are shown in Table 3.5. It can 

be observed from Table 3.5 and from figs. 3.9, 3.10 that B2 provides a good approxima-

tion over B1 and available methods. 

Table 3.1. Maximum absolute error by B1 and B2 for Test example 3.1. 

𝒏 𝑩𝟏 𝑺𝟐 

𝑴 = 𝟓 𝑴 = 𝟏𝟎 𝑴 = 𝟏𝟓 𝑴 = 𝟐𝟎 
  

𝟏 0.177 2.41𝐸 − 3 7.19𝐸 − 4 3.39𝐸 − 4 1.96𝐸 − 4 
 

𝟐 2.94𝐸 − 2 1.48𝐸 − 4 1.89𝐸 − 5 5.61𝐸 − 6 2.35𝐸 − 6 
 

𝟑 1.66𝐸 − 3 2.44𝐸 − 6 1.59𝐸 − 7 3.17𝐸 − 8 9.74𝐸 − 9 
 

 

Table 3.2 Maximum absolute error for Test example 3.1 using different polynomials 

Chapter 2. 

𝒏 𝑱𝒂𝒄𝒐𝒃𝒊    𝑳𝒆𝒈𝒆𝒏𝒅𝒓𝒆   𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝑮𝒆𝒈𝒆𝒏𝒃𝒂𝒖𝒆𝒓 

𝟑 1.667𝐸 − 3 1.667𝐸 − 3 1.667𝐸 − 3 1.667𝐸 − 3 

𝟓 4.123𝐸 − 5 2.182𝐸 − 7 1.123𝐸 − 5 1.123𝐸 − 5 

 

Table 3.3 Maximum absolute error by B1 and B2 for Test example 3.2. 

𝒏 𝑩𝟏 𝑺𝟐 

𝑴 = 𝟓 𝑴 = 𝟏𝟎 𝑴 = 𝟏𝟓 𝑴 = 𝟐𝟎 
  

𝟏 0.193 2.08𝐸 − 3 2.26𝐸 − 3 9.05𝐸 − 4 5.44𝐸 − 4 
 

𝟐 0.119 6.49𝐸 − 4 3.54𝐸 − 4 1.54𝐸 − 4 7.81𝐸 − 5 
 

𝟑 7.49𝐸 − 2 5.29𝐸 − 4 1.43𝐸 − 4 6.64𝐸 − 5 3.88𝐸 − 5 
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Table 3.4 Maximum absolute error for Test example 3.2 using different polynomials 

Chapter 2. 

𝒏 𝑱𝒂𝒄𝒐𝒃𝒊    𝑳𝒆𝒈𝒆𝒏𝒅𝒓𝒆   𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝑮𝒆𝒈𝒆𝒏𝒃𝒂𝒖𝒆𝒓 

𝟑 7.499𝐸 − 2 7.499𝐸 − 2 7.499𝐸 − 2 7.499𝐸 − 2 

𝟓 5.781𝐸 − 2 5.781𝐸 − 2 5.781𝐸 − 2 5.781𝐸 − 2 

 

Table 3.5 Maximum Absolute error by B1 and B2 for Test example 3.3. 

𝒏 𝑩𝟏 𝑺𝟐 

𝑴 = 𝟓 𝑴 = 𝟏𝟎 𝑴 = 𝟏𝟓 𝑴 = 𝟐𝟎 
  

𝟏 0.73 3.67𝐸 − 4 3.09𝐸 − 4 1.29𝐸 − 4 6.50𝐸 − 5 
 

𝟐 1.35𝐸 − 2 3.15𝐸 − 4 6.29𝐸 − 5 2.23𝐸 − 5 9.49𝐸 − 6 
 

𝟑 9.42𝐸 − 2 1.48𝐸 − 4 1.13𝐸 − 5 5.28𝐸 − 6 1.66𝐸 − 6 
 

 

3.6 Application in Tomography: 

The interior of an object was imaged by Abel [4] in terms of inversion in 1826, which 

resulted in Abel inversion techniques. Abel analytically solved the inversion of a cylin-

drically symmetric object. Before the invention of x-rays, there was not any developed 

technique which images the interior of an object. Although the Radon transform is gen-

erally used in x-ray tomography. The Radon transform reduces to the Abel transform, 

which exactly reconstructs a cylindrically symmetrical object from a single x-ray radio-

graph. However, difficulties in utilizing the Abel transform arise for several reasons that 

include the physics of x-ray radiography, as well as properties of the Abel transform itself, 

as it applies to this problem. 
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Abel transform describes the relationship between the result distribution of the emission 

coefficient 𝜀(𝑟) and measured intensity 𝐼(𝑦). Reconstruction of the emission coefficient 

from its projection is known as Abel inversion. 

The relation between the emission coefficients 𝜀𝜆(𝑟) and intensity 𝐼𝜆(𝑦) can be described 

as [105], 

𝐼𝜆(𝑦) = ∫ 𝜀𝜆(𝑟)𝑑𝑟
√𝑎2−𝑦2

−√𝑎2−𝑦2 ,                  (3.53) 

for a specific wavelength 𝜆, here 𝑦 denotes the displacement of the intensity profile from 

the line of plasma center, the radial distance from the center of the source 𝑥2 + 𝑦2 = 𝑟2is 

𝑟 , and 𝑎 is the source radius. It is assumed that 𝜀𝜆(𝑟) vanishes for 𝑟 >  𝑎, and hence 

𝐼𝜆(𝑦) vanishes for 𝑚𝑜𝑑(𝑦) >  𝑎. For simplicity, we take 𝑎 = 1.0 in Eq. (3.1).  

The relation between the emission coefficients 𝜀𝜆(𝑟) and intensity 𝐼𝜆(𝑦) can be described 

as [105], 

𝐼(𝑦) = 2 ∫
𝜀(𝑟).𝑟

√𝑟2−𝑦2
𝑑𝑟

1

𝑦
.                  (3.54) 

By change of variables, Eq. (3.54) reduces to a special case of Eq. (3.3) when 𝑎(𝛾) =

0, 𝑏(𝛾) = 1, 

𝜁(𝛾) = ∫
𝜙(𝑦)

√𝛾−𝑦
𝑑𝑦

1

𝛾
,                   (3.55) 
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Fig. 3. A Geometrical interpretation of the Abel transform in two dimensions with radius 

a [105]. 

where 𝜁(𝛾) = 𝐼(√𝛾) and 𝜙(𝑦) = (𝜀√𝛾).  

Test example 3.4 Consider Eq. (3.55) with [113, 105] 

 𝜙(𝑦) =
1

2
(1 + 10𝑦 − 23𝑦2 + 12𝑦3), 0 ≤ 𝑦 ≤ 1, 

 𝜁(𝛾) =
8

105
(1 − 𝛾)5 2⁄ (19 + 72𝛾), 0 ≤ 𝛾 ≤ 1. 

We solve this problem with both schemes and obtain numerical results. In this case, the 

obtained maximum absolute error is 𝐸 = 2.868 × 10−16 by B1 and 𝐸 = 5.270 × 10−15 

by B2. Also, we solve Test example 3.4, with some random noise. Figures 3.13 and 3.14 

illustrates that approximate solutions with and without noise almost coincide. For this 

𝑥 + 𝑑𝑥 

𝑟 

𝑟 

𝑥 

𝑥 

𝑦

 

𝑥 

𝑦 

 

𝑎 

𝐼(𝑦) 𝑟 + 𝑑𝑟
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Test examples, we plot the output results (Figs. 3.13-3.16) and also the maximum abso-

lute errors (Figs. 3.17-3.18) which are defined as, 

i.) Maximum absolute error 𝐸 between the exact and approximate solution without noise, 

𝐸 = |𝜑(𝛾) − 𝜑𝑛(𝛾)|.  

ii.) Maximum absolute error 𝐸1 between the exact and approximate solution with noise 

𝛿1, 

𝐸1 = |𝜑(𝛾) − 𝜑𝑛
𝛿1(𝛾)|. 

iii.) Maximum absolute error 𝐸2 between the exact and approximate solution with noise 

𝛿2, 

𝐸2 = |𝜑(𝛾) − 𝜑𝑛
𝛿2(𝛾)|. 

 

Fig. 3.9 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 𝜑𝑛
0(𝛾) 

(green triangle), approximate solution with noises 𝜑𝑛
𝛿1(𝛾) (blue square) and 

𝜑𝑛
𝛿2(𝛾) (yellow circle) for test example 3 by Scheme B1. 
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Fig. 3.10 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 

𝜑𝑛
0(𝛾) (green triangle), approximate solution with noises 𝜑𝑛

𝛿1(𝛾) (blue square) 

and 𝜑𝑛
𝛿2(𝛾) (yellow circle) for test example 3 by Scheme B2. 

 

 

Fig. 3.11 Approximate solutions with noises 𝜑𝑛
𝛿1(𝛾) (red circle) and 𝜑𝑛

𝛿2(𝛾) 

(green triangle) for test example 3 by Scheme B1. 
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Fig. 3.12 Approximate solutions with noises 𝜑𝑛
𝛿1(𝛾) (red circle) and 𝜑𝑛

𝛿2(𝛾) 

(green triangle) for test example 3 by Scheme B2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 

𝜑𝑛
0(𝛾) (green triangle), approximate solution with noises 𝜑𝑛

𝛿1(𝛾) (blue square) 

and 𝜑𝑛
𝛿2(𝛾) (yellow circle) for test example 4 by Scheme B1. 
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Fig 3.14 Exact solution 𝜑(𝛾)(red circle), approximate solution without noise 

𝜑𝑛
0(𝛾) (green triangle), approximate solution with noises 𝜑𝑛

𝛿1(𝛾) (blue square) 

and 𝜑𝑛
𝛿2(𝛾) (yellow circle) for test example 4 by Scheme B2. 

 

 

Fig. 3.15 Approximate solutions with noises 𝜑𝑛
𝛿1(𝛾) (red circle) and 𝜑𝑛

𝛿2(𝛾) 

(green triangle) for test example 4 by Scheme B1. 
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Fig. 3.16 Approximate solutions with noises 𝜑𝑛
𝛿1(𝛾) (red circle) and 𝜑𝑛

𝛿2(𝛾) 

(green triangle) for test example 4 by Scheme B2. 

 

 

Fig. 3.17 Obtained maximum absolute errors 108𝐸(𝑟𝑒𝑑),
𝐸1(𝑔𝑟𝑒𝑒𝑛),  103𝐸2(𝑦𝑒𝑙𝑙𝑜𝑤) for test example 4 by B1. 
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Fig. 3.18 Obtained maximum absolute errors 108𝐸(𝑟𝑒𝑑),
𝐸1(𝑔𝑟𝑒𝑒𝑛),  101𝐸2(𝑦𝑒𝑙𝑙𝑜𝑤) for test example 4 by B2. 

3.7 Conclusion 

A new and simple approach based on Bernstein polynomials (scheme 1) is presented cou-

pled with collocation method to approximate the numerical solution of GAIEs. In order 

to obtain the better accuracy, when the exact solution is not smooth or twice continuously 

differentiable, hybrid Bernstein Block-Pulse function is used as basis functions (in 

scheme 2) and better results has been obtained. The simplicity of this method is that it 

converts the GAIEs into algebraic equations which can be rapidly solved by computation. 

The theoretical results describing the convergence of the schemes B1 and B2 are also 

established. Numerical experiments are added to demonstrate the accuracy of lower-order 

approximations. It has been noticed that both schemes work well and provide better ap-

proximation. Moreover, scheme 2 provides better results in comparison of scheme 1 and 

has very high accuracy. It proves its superiority over the B1 and over available methods 

in literature [5, 105, 113, Chapter 2]. 
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