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Chapter 2 

Collocation Method for Generalized Abel’s 

Integral Equations 

 

2.1 Introduction 

It is a well-known fact that many problems in engineering and applied sciences are 

converted to integral equations. Integral equation builds the base for modeling of various 

phenomena in basic and engineering sciences. Abel’s equation is one of the integral 

equations which is directly derived from the problem of physics [81, 82, 83, 84]. This 

integral equation arises in various type of mathematical modeling. Abel’s equation is one 

of the integral equations derived directly from a concrete problem of mechanics or 

physics (without using any differential equation). 

In this chapter, we consider the generalized Abel’s integral equation [8, 9], 

𝑎(𝑥) ∫
𝜓(𝑡)

(𝑥−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑥) ∫
𝜓(𝑡)

(𝑡−𝑥)𝜇 𝑑𝑡 =
1

𝑥

𝑥

0
𝜁(𝑥),    (2.1) 

where 0 < 𝜇 < 1, the function 𝜓 ∈ 𝐿2[0,1], 𝜓(𝑡) is the unknown function. 

Several methods have been purposed to solve integral equations in general and the 

Generalized Abel’s integral equation Eq. (2.1) in particular. In [85], Pandey and Mandal 
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used the Bernstein’s polynomials for solving a system of Generalized Abel’s integral 

equations using Bernstein’s polynomials.  

Collocation method has been established as one of the important methods to solve the 

problems of integral equations and differential equations. Some of the recent studies on 

Collocation methods are described as follows. Nemati [86] has applied Legendre 

collocation method for solving Volterra- Fredholm integral equations. Saadatmandi and 

Dehghan [87] applied collocation method to solve Abel’s integral equations of first and 

second kinds using shifted Legendre’s polynomials. Hashemizadeh et al. [88] have used 

the Sinc-collocation approach for solving Hammerstein integral equations. Assari et al. 

[89] discussed a numerical scheme based on the radial basis functions (RBFs) for solving 

weakly singular Fredholm integral equations by combining the product integration and 

collocation methods. Parand et al. [90, 91] presented the sinc-collocation methods and 

Gegenbauer collocation methods for solving the Thomas–Fermi equations and laminar 

boundary layer equations respectively. In [43], authors have used the collocation methods 

for solving fractional integro-differential equations and Sahu and Ray applied the 

Legendre-collocation method for solving a biological model in [92]. Some other methods 

of importance such as mesh less based methods [93, 94] and finite difference method [95] 

are also successfully applied to solve integral equations and Fredholm integro-differential 

equations. These methods may also be discussed for the Generalized Abel’s integral 

equations in future. 

In this chapter, we extend the collocation method to solve the general Abel’s integral 

given by Eq. (1) using polynomials bases. The basic idea is to find an approximate 

solution of Eq. (1) from a finite-dimensional family of functions. The description of the 

proposed method is presented in Section 2. The error estimate of the collocation method 

http://www.sciencedirect.com/science/article/pii/S0377042712003238
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for Generalized Abel’s integral equation is established in Section 3. In Section 4, we use 

some standard polynomials to compute the numerical solutions of the illustrative 

examples. 

2.2 Description of the Method 

In this section, we extend the collocation method described in Chapter 1 to solve the 

integral equation given by Eq. (2.1). Consider Eq. (2.1) in an operator form as, 

𝜒(𝜓) = 𝜁 ,          (2.2) 

where the operator 𝜒 is assumed on a Banach space 𝑋. We choose a sequence of finite 

dimensional subspaces 𝑋𝑛⊂𝑋, 𝑛 ≥ 1, having dimension 𝑛 + 1 . Let 𝑋𝑛  has a basis 𝑆 =

{𝜃0, 𝜃1, … 𝜃𝑛} in 𝑋 . We seek a function  𝜓𝑛 ∈ 𝑋𝑛 , which is the best approximation 

of𝜓such that, 

𝜓𝑛(𝑡) = ∑ 𝑐𝑗𝜃𝑗(𝑡),    𝑡 ∈ [0,1].𝑛
𝑗=0        (2.3) 

Substituting Eq. (2.3) into Eq. (2.1), coefficients  {𝑐𝑗|𝑗 = 0,1, … . , 𝑛} are determined by 

forcing the equation to be exact in some sense. For later use, introduce, 

𝜏𝑛(𝑡) = 𝑎(𝑥) ∫
∑ 𝑐𝑗𝜃𝑗(𝑡)𝑛

𝑗=0

(x−t)μ dt + 𝑏(𝑥) ∫
∑ 𝑐𝑗𝜃𝑗(𝑡)𝑛

𝑗=0

(t−x)μ dt −
1

x

𝑥

0
𝜁(𝑥).         (2.4) 

This is called the residual in approximating Eq. (2.1) when 𝜓 is replaced by 𝜓𝑛. 

Symbolically, 

    𝜏𝑛 = 𝜒(𝜓𝑛)– 𝜁,     (2.5) 

Or,    𝜏𝑛 = 𝜒(∑ 𝑐𝑗𝜃𝑗(𝑡)𝑛
𝑗=0 )– 𝜁.     (2.6) 
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The coefficients {𝑐𝑗|𝑗 = 0,1, … . , 𝑛}  are chosen by forcing 𝜏𝑛(𝑡) to be approximately 

zero. The hope and expectation are that the resulting 𝜓𝑛(𝑡) will be a good approximation 

of the true solution 𝜓(𝑡). We approximate the solution of Eq. (2.1) using collocation 

method. We pick distinct node points 𝑡0, . . . . . . . , 𝑡𝑛 ∈  [ 0,1 ] , such that 𝜏𝑛(𝑡𝑖) =

0, ( 𝑖 = 0,1,2, . . . . . 𝑛 ).   

𝜒(𝜓𝑛(𝑡𝑖))– 𝜁(𝑡𝑖) = 0.         (2.7) 

𝜒(∑ 𝑐𝑗𝜃𝑗(𝑡𝑖)
𝑛
𝑗=0 )– 𝜁(𝑡𝑖) = 0.        (2.8) 

This leads to determining {𝑐𝑗|𝑗 = 0,1, … . , 𝑛} as the solution of the linear system, 

𝑎(𝑡𝑖) ∫
∑ 𝑐𝑗𝜃𝑗(𝑡)𝑛

𝑗=0

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
∑ 𝑐𝑗𝜃𝑗(𝑡)𝑛

𝑗=0

(𝑡−𝑡𝑖)𝜇 𝑑𝑡 =
1

𝑡𝑖

𝑡𝑖

0
𝜁(𝑡𝑖),𝑡𝑖 ∈ (0,1), 𝑖 = 0,1, … … . 𝑛   (2.9) 

Now, Eq. (2.1) is converted into a system of linear equations as given by Eq. (2.9) in 

unknowns {𝑐𝑗}. 

2.3 Convergence Analysis 

Here, we discuss the convergence analysis and error bound of the collocation method 

presented in the Section 2.2 to compute the approximate solution of the generalized 

Abel’s integral equation Eq. (2.1).  We use some notations as, 𝐼 = [0,1], 𝑋 = 𝐿2(𝐼), and 

𝑒𝑛(𝑥) = 𝜓(𝑥) − 𝜓𝑛(𝑥).  

To establish the error estimate, we use the following results. 

Lemma 2.1 [84]. Let 𝑋 = 𝐿2(𝐼) and Κ be a Volterra integral operator on 𝑋 with square 

summable kernel 𝜅(𝑥, 𝑡)i.e.,∫ ∫ |
1

0

1

0
𝜅(𝑥, 𝑡)|𝑑𝑥𝑑𝑡 = 𝑀2, where 𝑀 is a constant. Let the 

operator 𝐾 is defined by,  
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𝛫(𝜙(𝑥)) = ∫ 𝜅(𝑥, 𝑡)
𝑥

0
𝜙(𝑡)𝑑𝑡,                 (2.13) 

then 𝐾 is bounded. That is, 

||𝛫(𝜙(𝑥))|| ≤ 𝑀|| 𝜙||.                        (2.14) 

Lemma 2.2 [86]. If 𝑦(𝑥) is a sufficiently smooth function on [0,1] and 𝑝𝑛(𝑥) is the 

interpolating polynomial to 𝑦(𝑥) at points𝑥𝑖, where 𝑥𝑖, 𝑖 = 0,1, . . . . . , 𝑛 are the roots of 

(𝑛 + 1) degree interpolating polynomial in [0,1] , then we have 

𝑦(𝑥) − 𝑝𝑛(𝑥) =
𝑦𝑛+1(𝑥)

(𝑛+1)!
∏ (𝑥 − 𝑥𝑖)𝑛

𝑖=0  , 𝑥 ∈ [0,1],                     (2.15) 

|𝑦(𝑥) − 𝑝𝑛(𝑥)| ≤
𝑀𝑛

22𝑛+1(𝑛+1)!
  ,                    (2.16) 

where, 𝑀𝑛 = max{ | 𝑦𝑛+1(𝑥)| 𝑥 ∈ (0,1)} . 

Lemma 2.3 Let us define the linear operators 𝐴 and 𝐵 on 𝑋 by 

𝐴(𝜓 (𝑥)) = ∫
𝜓 (𝑡)

(𝑥−𝑡)𝜇 𝑑𝑡,
𝑥

0
                                                                                            (2.17) 

and,  

𝐵(𝜓 (𝑥)) = ∫
𝜓 (𝑡)

(𝑡−𝑥)𝜇
𝑑𝑡,

1

𝑥
                                                                                   (2.18) 

where 0 < 𝜇 < 1 , 𝑥 ∈ [0,1] and for all 𝜓 ∈ 𝐿2(𝐼). 

Thus, by Lemma 1, both operator 𝛢 and 𝐵 defined above are bounded. If Α is one-one 

and onto, then Α−1 is bounded. 

Theorem 2.1 Suppose that the known functions in Eq. (2.1) are real (𝑛 + 1)-times 

continuously differentiable function on the interval (0, 1) and 𝜓𝑛
′(𝑡) = ∑ 𝑐𝑗𝜃𝑗(𝑡)𝑛

𝑗=0  be 
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the expansion of exact solution 𝜓 (𝑥) with respect to the basis function in 𝑆. Let 𝜓𝑛(𝑥) =

∑ 𝑎𝑗𝜃𝑗(𝑥)𝑛
𝑗=0  be the approximate solution obtained by the purposed method discussed in 

Section 2.2 and 𝑀𝑛 = max{ | 𝜓𝑛+1(𝑥)| ;  𝑥 ∈ (0,1)} .Then there exists 

constants Λ1  , Λ2 and 𝜀𝑛 such that, 

∥ 𝑒𝑛(𝑥) ∥2≤ Λ1Λ2 (
𝑀𝑛

22𝑛+1(𝑛+1)!
+ 𝜀𝑛 ∥ 𝑐 − 𝑎 ∥2),                                 (2.19) 

where 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛)𝑇 and 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛)𝑇. 

Proof: From the notation mentioned in Eq. (2.17) and Eq. (2.18), Eq. (2.1) takes the form, 

𝐴(𝜓 (𝑥)) + 𝐵(𝜓 (𝑥)) = 𝜁(𝑥). 

If A is bijective then, 

𝜓 (𝑥) + 𝐴−1 (𝐵(𝜓 (𝑥))) = 𝐴−1(𝜁(𝑥)).                            (2.20) 

𝜓𝑛(𝑥) is the approximate solution of Eq.(2.1), then Eq. (2.20) can be written as 

𝜓𝑛(𝑥) + 𝐴−1 (𝐵(𝜓𝑛(𝑥))) = 𝐴−1(𝜁(𝑥)).                                 (2.21) 

Subtracting Eq. (2.20) from Eq. (2.21), we get, 

𝑒𝑛(𝑥) = 𝐴−1 (𝐵(𝜓𝑛(𝑥) − 𝜓 (𝑥))),                                                           (2.22) 

Using Lemma 2.3, and we have 𝐵  and 𝐴−1  are bounded therefore, there exist two 

constants Λ1 and Λ2 such that, 

𝑒𝑛(𝑥) = Λ1Λ2 ∥ 𝜓(𝑥) − 𝜓𝑛(𝑥) ∥2.                                                                    (2.23) 
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Let ℝ𝑛(𝑥)  be the space of all real-valued polynomials of degree  ≤  𝑛  . Using the 

definition, 𝜓 (𝑥) and 𝜓𝑛(𝑥) are in ℝ𝑛(𝑥) .Therefore, we have, 

∥ 𝜓(𝑥) − 𝜓𝑛(𝑥) ∥2≤∥ 𝜓(𝑥) − 𝜓𝑛
′(𝑡) ∥2+∥ 𝜓𝑛

′(𝑡) − 𝜓𝑛(𝑥) ∥2.             (2.24) 

Now using Lemma 2.2, we get, 

∥ 𝜓(𝑥) − 𝜓𝑛
′(𝑡) ∥2≤

𝑀𝑛

22𝑛+1(𝑛+1)!
 ,                 (2.25) 

where,   𝑀𝑛 = max{ | 𝜓𝑛+1(𝑥)|∶  𝑥 ∈ (0,1)},     

and, 

∥ 𝜓𝑛
′(𝑡) − 𝜓𝑛(𝑥) ∥2= [∫ {∑ (𝑐𝑖 − 𝑎𝑖)𝑛

𝑖=0 𝜃𝑖(𝑥)}21

0
]

1/2

  

≤ 𝜀𝑛[{∑ (𝑐𝑖 − 𝑎𝑖)
𝑛
𝑖=0 }2]1/2                  (2.26) 

where, 

𝜀𝑛 = [∑ ∫ |𝜃𝑖(𝑥)|2𝑑𝑥
1

0
𝑛
𝑖=0 ]

1/2

.                       (2.27) 

Thus,∥ 𝜓(𝑥) − 𝜓𝑛(𝑥) ∥2≤
𝑀𝑛

22𝑛+1(𝑛+1)!
+ 𝜀𝑛 ∥ 𝑐 − 𝑎 ∥2.              (2.28) 

Now from Eq. (2.23) and Eq. (2.28), we have, 

∥ 𝑒𝑛(𝑥) ∥2≤ Λ1Λ2 (
𝑀𝑛

22𝑛+1(𝑛+1)!
+ 𝜀𝑛 ∥ 𝑐 − 𝑎 ∥2),                     (2.29) 

This completes the proof. 
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2.4 Approximations Using Polynomials Bases and Numerical 

Results 

Here, we analyze the collocation method presented in the previous section for Eq. (2.1) 

using the polynomials bases. Different polynomials such as Jacobi, Legendre, Chebyshev 

and Gegenbauer polynomials are used to get the approximate solution of Eq. (2.1). We 

named these polynomial schemes as S1, S2, S3 and S4 respectively and corresponding 

bases comparison is also presented in Table 2.1. These polynomials are described as 

follows: 

1)  Jacobi Polynomials (S1) 

Jacobi polynomial of degree 𝑛, denoted as 𝑃𝑛
𝛼,𝛽

, form a basis for the vector space of 

polynomials of degree at most 𝑛. Jacobi polynomials [81] are defined on the interval 

[−1,1] and can be determined with the aid of the following recurrence formulae: 

𝑃𝑛
𝛼,𝛽

= ∑ (𝑛+𝛼
𝑠

)𝑠 (𝑛+𝛽
𝑛−𝑠

) (
𝑥−1

2
)

𝑛−𝑠

(
𝑥+1

2
)

𝑠

,    𝑛 ≥ 𝑠 ≥ 0,              (2.30) 

where,(𝑛
𝑖
) is binomial coefficient. Jacobi polynomials also satisfy the recurrence formula 

2𝑛(𝑛 + 𝛼 + 𝛽)(2𝑛 + 𝛼 + 𝛽 − 2)𝑃𝑛
𝛼,𝛽(𝑥) = (2𝑛 + 𝛼 + 𝛽 − 1){(2𝑛 + 𝛼 + 𝛽)(2𝑛 +

𝛼 + 𝛽 − 2)𝑥 + 𝛼2 − 𝛽2}𝑃𝑛−1
𝛼,𝛽(𝑥)  

−2(𝑛 + 𝛼 − 1)(𝑛 + 𝛽 − 1)(2𝑛 + 𝛼 + 𝛽)𝑃𝑛−2
𝛼,𝛽(𝑥).                                      (2.31) 

Jacobi polynomials 𝑃𝑛
𝛼,𝛽(𝑥) satisfy the orthogonality condition with respect to the weight 

function ( 1 − 𝑥 )𝛼( 1 + 𝑥 )𝛽on the interval [−1,1] and defined as, 
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∫ ( 1 − 𝑥)𝛼( 1 + 𝑥)𝛽1

−1
𝑃𝑛

𝛼,𝛽(𝑥)𝑃𝑚
𝛼,𝛽(𝑥)𝑑𝑥 =

2𝛼+𝛽+1

2𝑛+𝛼+𝛽+1

(𝑛+𝛼)!(𝑛+𝛽)!

𝑛!(𝑛+𝛼+𝛽)!
𝛿𝑛𝑚, 

where, 𝛼, 𝛽, 𝛼 + 𝛽 > −1, and 𝛿𝑛𝑚 is Kronecker Delta function. We choose Jacobi 

polynomials as basis functions on [0,1]. In order to use these polynomials on the 

interval [0,1], we shift Jacobi polynomials from [0,1] to [−1,1] by introducing a linear 

transformation 𝑥 →  2𝑥 − 1 and obtain, 

𝜓𝑛(𝑡) = ∑ 𝑐𝑗𝑃𝑛
𝛼,𝛽(2𝑡 − 1),    𝑡 ∈ [0,1]𝑛

𝑗=0 .                      (2.32) 

Substituting Eq. (2.32) in Eq. (2.4) and collocating at points 𝑡𝑖 ∈ [0,1], 𝑖 = 0,1, … … . 𝑛, 

we obtain, 

𝑎(𝑡𝑖) ∫
∑ 𝑐𝑗𝑃𝑗

𝛼,𝛽(2𝑡−1)𝑛
𝑗=0

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
∑ 𝑐𝑗𝑃𝑗

𝛼,𝛽(2𝑡−1)𝑛
𝑗=0

(𝑡−𝑡𝑖)𝜇 𝑑𝑡 =
1

𝑡𝑖

𝑡𝑖

0
𝜁(𝑡𝑖), 

𝑡𝑖 ∈ (0,1), 𝑖 = 0,1, … … . 𝑛,  

∑ 𝑐𝑗
𝑛
𝑗=0 (𝑎(𝑡𝑖) ∫

𝑃𝑗
𝛼,𝛽(2𝑡−1)

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
𝑃𝑗

𝛼,𝛽(2𝑡−1)

(𝑡−𝑡𝑖)𝜇 𝑑𝑡
1

𝑡𝑖

𝑡𝑖

0
) = 𝜁(𝑡𝑖),              (2.33) 

This leads to a linear system of equations in unknowns {𝑐𝑗}  which has a unique solution 

by Eq. (2.12). 

2) Legendre Polynomials (S2) 

Jacobi polynomials are defined as Legendre polynomials 𝑃𝑛(𝑥) for 𝛼 = 𝛽 = 0. Legendre 

polynomials [86] also form an orthogonal set with respect to the weight function 1 on the 

interval [−1,1]. We choose Legendre polynomials as basis functions of all polynomials 

of degree ≤  𝑛 defined over [ 0,1 ] by transforming intervel[−1,1] to [0,1] (shifted by a 

linear transformation 𝑡 →  2𝑡 − 1 ). And hence Eq. (2.4) takes the form, 
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∑ 𝑐𝑗
𝑛
𝑗=0 (𝑎(𝑡𝑖) ∫

𝑃𝑗(2𝑡−1)

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
𝑃𝑗(2𝑡−1)

(𝑡−𝑡𝑖)𝜇 𝑑𝑡
1

𝑡𝑖

𝑡𝑖

0
) = 𝜁(𝑡𝑖).             (2.34) 

The remaining steps are performed similar to the S1 and numerical solutions are obtained. 

3) Chebyshev Polynomials (S3) 

Jacobi polynomials with  𝛼 = −1/2, 𝛽 = −1/2 , are defined as Chebyshev polynomials 

and denoted by 𝑇𝑛(𝑥). Chebyshev polynomials [67] also form an orthogonal set with a 

weight (1 − 𝑥)−1/2 on the interval [−1,1] . Using the transformation 𝑡 →  2𝑡 −

1, Chebyshev polynomials on [ 0,1 ] together with Eq. (2.4) converts into a system of 

linear equations,  

∑ 𝑐𝑗
𝑛
𝑗=0 (𝑎(𝑡𝑖) ∫

𝑇𝑗(2𝑡−1)

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
𝑇𝑗(2𝑡−1)

(𝑡−𝑡𝑖)𝜇 𝑑𝑡
1

𝑡𝑖

𝑡𝑖

0
) = 𝜁(𝑡𝑖),              (2.35) 

By solving the system Eq. (2.35), the approximate solution can be obtained.  

4) Gegenbauer Polynomials (S4) 

Here, we consider the well-known Gegenbauer polynomials [96] denoted as 𝐶𝑛
𝛼(𝑥) on 

interval [ −1,1 ] and determined using the following recurrence formulae, 

𝐶0
𝛼 = 1 𝑎𝑛𝑑 𝐶1

𝛼 = 2𝛼𝑥.                                              (2.36) 

𝐶𝑛
𝛼(𝑥) =

1

𝑛
[2𝑥(𝑛 + 𝛼 − 1)𝐶𝑛−1

𝛼 (𝑥) − (𝑛 + 2𝛼 − 2)𝐶𝑛−2
𝛼 (𝑥)].             (2.37) 

These polynomials are also the special case of the Jacobi polynomials for 𝛼 =  𝛽 =

 𝛼 –  1/2 and in terms of Jacobi polynomials it is defined as, 

𝐶𝑛
𝛼(𝑥) =

(2𝛼)𝑛

(𝛼+1/2)𝑛
𝑃𝑛

𝛼−1/2,𝛼−1/2(𝑥).                                           (2.38) 
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Gegenbauer polynomials 𝐶𝑛
𝛼(𝑥)satisfy the ortghogonality condition on [ −1,1 ]  with 

respect to the weight function (1 − 𝑥)𝛼−1/2 and given by, 

∫ ( 1 − 𝑥2)𝛼−1/2𝐶𝑛
𝛼(𝑥)𝐶𝑚

𝛼 (𝑥)
1

−1
𝑑𝑥 =

𝜋2(1−2𝛼)(𝑛+2𝛼−1)!

𝑛!(𝑛+𝛼−1)![(𝛼−1)!]2 𝛿𝑛𝑚,                                  (2.39) 

where 𝛿𝑛𝑚  is Kronecker Delta function. Now, we shift the properties of Gegenbauer 

polynomials from [−1,1] to [0,1] by introducing a linear transformation 𝑥 →  2𝑥 − 1 

and define, 

𝜓𝑛(𝑡) = ∑ 𝑐𝑗𝐶𝑗
𝛼(2𝑥 − 1),    𝑡 ∈ [0,1]𝑛

𝑗=0 .                                        (2.40) 

Substituting Eq. (2.40) in Eq. (2.4) and then collocating at points 𝑡𝑖, 𝑖 = 0,1, … … . 𝑛, one 

obtains, 

𝑎(𝑡𝑖) ∫
∑ 𝑐𝑗𝐶𝑗

𝛼(2𝑡−1)𝑛
𝑗=0

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
∑ 𝑐𝑗𝐶𝑗

𝛼(2𝑡−1)𝑛
𝑗=0

(𝑡−𝑡𝑖)𝜇 𝑑𝑡 =
1

𝑡𝑖

𝑡𝑖

0
𝜁(𝑡𝑖), 𝑡𝑖 ∈ (0,1), 𝑖 =

0,1, … … . 𝑛, 

∑ 𝑐𝑗
𝑛
𝑗=0 (𝑎(𝑡𝑖) ∫

𝐶𝑗
𝛼(2𝑡−1)

(𝑡𝑖−𝑡)𝜇 𝑑𝑡 + 𝑏(𝑡𝑖) ∫
𝐶𝑗

𝛼(2𝑡−1)

(𝑡−𝑡𝑖)𝜇 𝑑𝑡
1

𝑡𝑖

𝑡𝑖

0
) = 𝜁(𝑡𝑖),                        (2.41) 

Eq. (2.41) leads the system of linear equations and that can be solved using any standard 

method. The unknowns {𝑐𝑗} are obtained uniquely under the condition of Eq. (2.12). 

Test Example 2.1 Consider the Generalized Abel integral equation [97] given by Eq. 

(2.1) with 𝑎(𝑥) = 𝑏(𝑥) = 1 , 𝜈 = 1/2  and 𝜁(𝑥) =
4

105
𝑥3/2(35 − 24𝑥2) +

8

105
(1 −

𝑥)1/2(5 + 13𝑥 − 6𝑥2 + 12𝑥3). It has exact solution 𝜓(𝑥) = 𝑥 − 𝑥3. 

This example is solved for the values of 𝑛 = 3  and 5  and the numerical results are 

obtained. It is observed that the presented method discussed in Section 2 works well and  
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Table 2.1 Comparison of the different polynomial bases for 𝑛 = 0, 1, 2, and 3. 

n Jacobi Legendre Chebyshev Gegenbauer 

0 1 1 1 1 

1 
(

1

2
) (𝛼 − 𝛽 + (2 + 𝛼

+ 𝛽)𝑥) 

𝑥 𝑥 

 

2𝛼𝑥 

2 
(

1

2
) (1 + 𝛼)(2 + 𝛼) + 

(
1

2
) (2 + 𝛼)(3 + 𝛼 + 𝛽)(−1

+ 𝑥) 

+ (
1

8
) (3 + 𝛼 + 𝛽)(−1

+ 𝑥2) 

1

2
(3𝑥2 − 1) 

2𝑥2 − 1 −𝛼 + 2𝛼(1
+ 𝛼)𝑥2 

 

3 
(

1

6
) (1 + 𝛼)(2 + 𝛼)(3 + 𝛼) 

+ (
1

4
) (2 + 𝛼)(3 + 𝛼)(3

+ 𝛼 + 𝛽)(−1
+ 𝑥) 

+ (
1

8
) (3 + 𝛼)(4 + 𝛼

+ 𝛽)(5 + 𝛼
+ 𝛽)(−1
+ 𝑥)2 

+ (
1

48
) (4 + 𝛼 + 𝛽)(5 + 𝛼

+ 𝛽)(6 + 𝛼
+ 𝛽)(−1
+ 𝑥)3 

1

2
(5𝑥3 − 3𝑥) 

4𝑥3 − 3𝑥 −2𝛼(1 + 𝛼)𝑥

+
4

3
𝛼(1 + 𝛼)(2

+ 𝛼)𝑥3 

 

achieve high accuracy in the numerical results. Since the exact solution in the present test 

example is a polynomial of degree 3 so it is sufficient to choose only the basis 

polynomials up to degree 3 to compute the approximate solution which turns out to the 

exact solution. All four polynomials based schemes works well and the obtained errors 

for each schemes are shown in Table 2.1. The respective errors for each scheme are also 
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plotted and shown through Figs. 2.1-Figs. 2.4. In each Figures,  𝑛 = 3 represents the thik 

line and 𝑛 = 5 indicates the dashed line. 

Test Example 2.2 In this case, Generalized Abel integral Eq. (2.1) is considered from 

[97] with 𝑎(𝑥) = 𝑏(𝑥) = 1 , 𝜈 = 1/5  and 𝜁(𝑥) = 𝑒𝑥 [(1 − 𝑥)4/5(𝑥 − 1)−4/5 {Γ (
4

5
) −

Γ (
4

5
, 𝑥 − 1)} + {Γ (

4

5
) − Γ (

4

5
, 𝑥)}], where Γ denotes the Gamma function. In this case, 

the exact solution is given by 𝜓(𝑥) = 𝑒𝑥. 

Here, we study the performance of the scheme discussed in Section 2. We consider the 

schemes S1, S2, S3 and S4 with the values of 𝑛 = 3 and 5 and obtain the numerical 

results. The obtained errors corresponding to these schemes are given in Table 2.3 and 

the respective errors are described through Figs. 2.5-2.8. Here, we observe that as we 

increase the number of basis functions in the presented method the errors decreases 

respectively.  

Test Example 2.3 Here, we consider a case similar to one as discussed in [97] where the 

exact solution of Generalized Abel integral Eq. (2.1) is a fractional polynomial. For 

𝑎(𝑥) = 𝑏(𝑥) = 1 , 𝜈 = 1/2 and 𝜁(𝑥) =
√𝜋𝑥

5
6Γ(−

5

6
)

Γ(−
1

3
)

+
√𝜋𝑥

5
6Γ(

4

3
)

Γ(
11

6
)

+ 
6

5 
𝐹12

 [−
5

6
,

1

2
,

1

6
, 𝑥] , the 

exact solution of Eq.(2.1) is given by 𝜓(𝑥) = 𝑥1/3. 

Here, the presented method in testing on the Generalized Abel’s integral equation which 

has an exact solution as the fractional power of 𝑥 . The numerical investigations are 

performed for 𝑛 = 3 and 5 and respective errors are obtained. The comparison of the 

errors obtained through the different polynomials are given in Table 2.4. We observe that 

all the schemes work well. The errors in each case are shown through Figs. 2.9-2.12.  
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Table 2.2 Maximum absolute errors with various schemes for Test example 2.1. 

𝑛 S1 S2 S3 S4 

3 1.666E-16 2.376E-16 1.301E-16 1.804E-16 

5 4.037E-17 1.034E-15 3.789E-17 1.998E-16 

 

Table 2.3 Maximum absolute errors with various schemes for Test example 2.2. 

𝑛 S1 S2 S3 S4 

3 1.667E-3 1.667E-3 1.667E-3 1.667E-3 

5 4.123E-5 2.182E-7 1.123E-5 1.123E-5 

 

Table 2.4 Maximum absolute errors with various schemes for Test example 2.3. 

𝑛 S1 S2 S3 S4 

3 7.499E-2 7.499E-2 7.499E-2 7.499E-2 

5 5.781E-2 5.781E-2 5.781E-2 5.781E-2 
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Fig. 2.1 Absolute error plot for Test example 2.1 using scheme S1 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 

 

 

 

Fig. 2.2 Absolute error plot for Test example 2.1 using scheme S2 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 
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Fig. 2.3 Absolute error plot for Test example 2.1 using scheme S3 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 

 

 

 

Fig. 2.4 Absolute error plot for Test example 2.1 using scheme S4 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 
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Fig. 2.5 Absolute error plot for Test example 2.2 using scheme S1 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 

 

 

Fig. 2.6 Absolute error plot for Test example 2.2 using scheme S2 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 
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Fig. 2.7 Absolute error plot for Test example 2.7 using scheme S3 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 

 

 

Fig. 2.8 Absolute error plot for Test example 2.2 using scheme S4 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 
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Fig. 2.9 Absolute error plot for Test example 2.3 using scheme S1 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 

 

 

Fig. 2.10 Absolute error plot for Test example 2.3 using scheme S2 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 
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Fig. 2.11 Absolute error plot for Test example 2.3 using scheme S3 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 

 

Fig. 2.12 Absolute error plot for Test example 2.3 using scheme S4 for 𝑛 = 3 (thik line) 

and 𝑛 = 5 (dashed line). 
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and for different forcing function are considered to examine the accuracy of the proposed 

method. Approximate solutions are also compared with exact solutions and it is found 

that the approximate solutions are close to known results. We investigated the 

performance of the presented methods on the test examples having different solution 

behavior. From Table 2.2, it is observed that the scheme S3 achieves minimum error and 

converges rapidly to the exact solution when the exact solution is a polynomial. And in 

case, where the exact solution is exponential the scheme S2 converges to the exact 

solution with lesser number of basis elements (table 2.3). From Test example 2.3, we 

conclude that the each scheme produces similar results. The present study shows that, for 

any choice of 𝑡𝑖, (𝑖 = 0,1, … , 𝑛), the approximate solution can be obtained uniquely. It is 

also noticed that present work is more straight forward and computationally efficient than 

the existing methods for the problem [97].  
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