
Chapter 1 

Introduction 

1.1 Integral Equations 

The philosophy of integral equations or the inversion of integrals has come unexpectedly 

into prominence among mathematicians. Du Bois-Reymond prescribed the principal 

meaning of integral equation in 1888, as an equation which contains one or more integral 

operator defined on the unknown function [1]. An integral equation in 𝑢(𝑥) can be 

defined as [2], 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
,      (1.1) 

where 𝜆 is some parameter, 𝑢(𝑥) and ℎ(𝑥) are integration limits, and 𝑘(𝑥, 𝑡) is called the 

kernel of  an integral equation. The function 𝑢(𝑥) is unknown which has to be find out. 

The functions 𝑓(𝑥) and 𝑘(𝑥, 𝑡) are known.  

Integral equations have several forms. An integral equation has two types on the basis of 

the character of limits of integration, namely: 

i. If integration limits are constants, then Eq. (1.1) referees to Fredholm integral 

equation (FIE), 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
.      (1.2) 



Introduction 

~ 2 ~ 

ii. If either lower or upper limit is not fixed, i.e., only one limit is fixed, then Eq. 

(1.1) is known as Volterra integral equation (VIE) and written as, 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
.      (1.3) 

Moreover, integral equations can be characterized on the presence of 𝑢(𝑥): 

iii. If  𝑢(𝑥) is present inside the integral sign only, the integral equation is referred to 

integral equation of first kind. 

iv. If an integral equation contains an integral operator defined on the unknown 

functions and also the unknown function is present outside the integral, then it is 

known as the integral equation of second kind. 

1.2 Singular Integral Equations  

Singular integral equations (SIEs) are integral equations in which either,  

I. integration limits are not finite, or 

II. 𝑘(𝑥, 𝑡) tends to infinity inside the range of integration. 

Kernel 𝑘(𝑥, 𝑡) is said to be weakly singular if it can be written as, 

𝑘(𝑥, 𝑡) = 𝑎(𝑥, 𝑡)(𝑥 − 𝑡)−𝛼,     0 < 𝛼 < 1,      (1.4) 

where 𝑎(𝑥, 𝑡) is a smooth function. When 𝛼 = 1, the SIE is called hyper singular integral 

equation. 

1.2.1 Abel’s Integral Equations 

The concept of integral equations was introduced by the great mathematician Niels 

Henrik Abel in the theory of mathematical physics in 1823 [3, 4]. Abel integral equation 
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(AIE) arises in mechanics as the derivation of the equation of motion of a particle which 

slides through a smooth curve, given by,  

𝑓(𝑥) = ∫
𝑢(𝑡)

(𝑥−𝑡)1/2 𝑑𝑡
𝑥

0
,  0 < 𝑥 < 1,      (1.5) 

A physical particle sliding under the effect of gravity along a smooth curve is taking time 

𝑓(𝑥) to travel to the initial point 0 from the vertical height 𝑥 on the curve, and the equation 

of the curve is to find out. 

Abel generalized this problem by presenting the SIEs [5], 

𝑓(𝑥) = ∫
𝑢(𝑡)

(𝑥−𝑡)𝛼
𝑑𝑡

𝑥

0
,      0 < 𝛼 < 1,       (1.6) 

referred to Generalized Abel’s integral equation (GAIEs) where 0 <  𝛼 <  1 is a given 

constant. The AIEs considered above is a particular case of the GAIEs Eq. (1.6) with 

 𝛼 =  1/2 . The term (𝑥 − 𝑡)−𝛼 is known as Abel’s kernel.  

The integral equation (1.5) is occasionally named Abel’s integral equation of the first 

type. A trivial generalization of first type AIE is Eq. (1.6). Abel’s integral equation in 

form of second kind Volterra integral equation has been studied in [6, 7] written as, 

∫
𝜓(𝑥)

(𝑡−𝑥)𝜇
𝑑𝑥 +

𝑡

0
𝑓(𝑡) = 𝜓(𝑡).        (1.7) 

The AIEs of the second type is, 

𝑓(𝑥) = ∫
𝑢(𝑡)

(𝑡−𝑥)1/2 𝑑𝑡
1

𝑥
,  0 < 𝑥 < 1,      (1.8) 

The general form of AIEs (1.6) is, 

𝑓(𝑥) = ∫
𝑢(𝑡)

(ℎ(𝑥)−ℎ(𝑡))𝛼
𝑑𝑡

𝑥

0
, 0 < 𝑥 < 1,      (1.9) 
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where 0 < 𝛼 < 1 and ℎ(𝑥) is a differentiable and strictly monotonically increasing 

function of 𝑥 on [0,1] and ℎ′(𝑥)  ≠  0 on [0,1] [2]. 

The more generalized form of AIEs [8, 9],  

𝑎(𝑥)∫
𝑢(𝑡)

(𝑥−𝑡)𝛼
𝑑𝑡 + 𝑏(𝑥)∫

𝑢(𝑡)

(𝑡−𝑥)𝛼
𝑑𝑡 =

1

𝑥

𝑥

0
𝑓(𝑥). 0 < 𝛼 < 1,             (1.10) 

where 𝑎(𝑥) and 𝑏(𝑥) are not zero simultaneously. Eq. (1.10) was first studied by 

Chakrabarty [8] in 1993. Chakrabarty and George [8] derived a formula to obtain the 

analytical solution of GAIEs. This formula is derived by using the fractional operators 

namely right and left Riemann-Liouville operators and some standard results of fractional 

calculus. In 2008, Chakrabarty [9] again provided a theoretic method based on direct 

function to obtain the closed form of the exact solution. By a suitable variable 

transformation, Eq. (1.10) can be rewrite as, 

𝑎(𝑥)∫
𝑡𝛾−1𝑢(𝑡)

(𝑥𝛾−𝑡𝛾)𝛼
𝑑𝑡 + 𝑏(𝑥)∫

𝑡𝛾−1𝑢(𝑡)

(𝑡𝛾−𝑥𝛾)𝛼
𝑑𝑡 =

1

𝑥

𝑥

0
𝑓(𝑥).               (1.11) 

Eqs. (1.10) and (1.11) belongs to the class of GAIEs. The Eq. (1.11) was studied in 

Gakhov’s book with the expectations that the coefficients 𝑎(𝑥) and 𝑏(𝑥) satisfy Holder’s 

condition in [0,1] and 𝑓(𝑥) and 𝑢(𝑥) can be write as, 

𝑓(𝑥) = (𝑥(1 − 𝑥))
𝛿
𝑓∗(𝑥), and 𝑢(𝑥) =

𝑢∗(𝑥)

(𝑥(1−𝑥))
1−𝛼−𝛿

𝑥𝛾−1
, 𝛿 > 0. 

1.2.2 Literature Review of Abel’s Integral Equations 

AIEs, solved and treated as a first integral equation, have a wide background in literature. 

An extensive range of problems of physics are described by AIEs, for example, transfer 

of heat [10], the transmission of nonlinear waves [11], diffusion [12], and appliance in 

neutron transport and traffic theory. There are numerous applications and methods in the 
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literature involving numerical analysis related to the study of AIEs [13–22]. In 1930, 

Tamarkin [23] applied numerous integral operators to deliberate the integral solution of 

AIEs with definite conditions. In 1956, convolution transform was defined in terms of 

AIEs by Summer [24]. Minerbo and Levy [25] examined the inversion of AIEs by means 

of orthogonal polynomials. In this paper, four methods for inversion of AIEs were 

investigated for smooth testing functions including orthogonal polynomials. Hatcher [26] 

solved a nonlinear equation in closed form by converting the main problem to a GAIEs. 

In [27], a stable solution of AIEs is approximated in form of Abel’s inversion using 

Bernstein polynomials where a series of orthonormal Bernstein polynomials was 

constructed to form a basis. Using this basis, the integration was reduced to a matrix and 

then converted in the system of algebraic equations. In [28], a positive illustration of the 

solution to the integral equation of Abel’s type was provided using fractional ordered 

Mikusinski operator and discussed a new explanation to the solution of AIEs. AIEs of the 

first kind was numerically solved by Jahanshahi et al. [29] by approximating the 

fractional integrals and Caputo derivatives. Kumar et al. [30] suggested a novel and easy 

approach (HPLTM) for AIEs based on the homotopy perturbation method coupled with 

Laplace transform. The main benefit of this approach is that it is easy to apply and 

computationally efficient. Li and Clarkson [31] applied a simple approach for solving 

AIEs using fractional integrals and Babenko’s approach. In this paper, the AIEs of second 

kind is extended to a distributional space using some definitions and results of the 

fractional operator. 

1.3 Integro-Differential Equations 

Integro differential equations (IDEs) [2] can be defined as an integral equation which 

contains a derivative term of the unknown function 𝑢 (𝑥), written as, 
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𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
,                (1.12) 

where 𝑢𝑛(𝑥) =
𝑑𝑛𝑢(𝑥)

𝑑𝑥𝑛  and 𝑓(𝑥) is a known function . 

IDEs perform a major role in many scientific and engineering areas, especially when IVPs 

or BVPs are converted to integral equations. IDEs are classified in the same category as 

we used before to classify the integral equations. 

1.3.1 Volterra Integro-Differential Equations  

Volterra integro-differential equations (VIDEs) [2] arise in the inversion of initial value 

problems into integral equations. In VIDEs, one of the integration limits is a variable like 

in VIEs. It is very important to notice here that for a specified solution the initial 

conditions must be given for VIDEs. The VIDEs is defined as, 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
,                 (1.13) 

where 𝑓(𝑥) is known function, 𝑘(𝑥, 𝑡) is the kernel and 𝑢 (𝑥) is an unknown function. 

1.3.2 Fredholm Integro-Differential Equations  

Fredholm integro-differential equations (FdIDEs) arise in the inversion of boundary value 

problem to an integral equation. In FdIDEs, the integration limits are fixed as in FIEs. To 

obtain a specified solution, the boundary conditions must be given for FdIDEs. The 

FdIDE has the form, 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
.                 (1.14) 

where 𝑓(𝑥) and 𝑘(𝑥, 𝑡) are known function and 𝑢 (𝑥) is unknown function. Other 

derivatives of 𝑢(𝑥) may appear in the above IDEs. 
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1.3.3 Volterra-Fredholm Integro-Differential Equations 

The Volterra-Fredholm integro-differential equations (VFIDEs) occurs in literature in 

two forms [2], specifically 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆1 ∫ 𝐾(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝐿(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑏

𝑎
,             (1.15) 

𝑢𝑛(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) + 𝜆 ∫ ∫ 𝐺(𝑥, 𝑡, 𝑤, 𝑧, 𝑢(𝑤, 𝑧))
 

𝐷
𝑑𝑤𝑑𝑧

𝑥

𝑎
,              (1.16) 

where 𝐷 is some closed subset of 𝑅𝑛, (𝑥, 𝑡) ∈ 𝐷 × [0,𝑇]and  𝐺(𝑥, 𝑡, 𝑤, 𝑧, 𝑢(𝑤, 𝑧)) and 

𝑓(𝑥, 𝑡) are analytic on 𝐷 × [0, 𝑇 ]. Initial and boundary conditions must be specified to 

conclude the solution. 

The equations of the form (1.15)-(1.16) play an important role in abstract formulation of 

many initials, boundary value problems of perturbed differential equations, partial 

differential equations and partial integro-differential equations which arise in various 

applications like chemical reaction kinetics, population dynamics, heat-flow in material 

with memory, viscoelastic and reaction-diffusion problems [32-35]. 

1.4 Linear Integral Equation  

If we define an integral equation in operator form and this operator satisfies linearity in 

𝑢(𝑥)  then the integral equation is called linear otherwise it is nonlinear. In other words, 

an integral equation is nonlinear if the exponent of 𝑢(𝑥) is not equal to one, or if the 

equation encloses nonlinear functions of 𝑢(𝑥), the integral equation is called nonlinear. 
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1.5 Homogeneous condition for Integral Equation 

This category is defined only for second kind integral equations. Second kind integral 

equations are categorized as homogeneous if the function 𝑓(𝑥) in Eq. (1.1) vanishes, 

otherwise it is known as inhomogeneous.  

1.6 Fractional Calculus 

In 1695, a letter was written by Leibniz to L`Hospital querying “Can the meaning of 

derivatives with integer order be generalized to derivatives with non-integer orders?" 

L`Hospital found this query interesting and replied to Leibniz with another query: "What 

if the order will be 1/2?" On September 30, 1695, —fractional calculus’s exact birthday 

— Leibniz replied: "It will lead to a paradox, from which one-day useful consequences 

will be drawn." The query boosted by Leibnitz for non-integer ordered derivative was an 

unfinished argument for more than 3 centuries. Many prominent mathematicians devoted 

themselves to this discussion, like J. Liouville, B. Riemann, H. Weyl, J. Fourier, N. H. 

Abel, S. F. Lacroix, G. Leibniz, A. K. Grunwald and A. V. Letnikov. Further, it was the 

start of a new branch of mathematics namely fractional calculus [36], which deals with 

arbitrary ordered differentiations and integrations. 

In 1975, B.  Ross [37] wrote a book and mentioned that Abel solved an integral equation 

named Tautochrone problem using fractional derivative in 1823. The first explanation of 

fractional derivative was given by J. Liouville explicitly in 1832. G. Boole (1844) 

established a symbolic approach for solving linear differential equations with constant 

coefficients with the help of fractional calculus. According to Ross’s book (1975), B. 

Riemann (1847) [37], suggested this definition of fractional integration, 
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𝒟−𝑞𝑓(𝑥) =
1

Γ(𝑞)
∫ (𝑥 − 𝑡)𝑞−1𝑓(𝑡)𝑑𝑡 + 𝜀(𝑥)

𝑥

𝑎
,               (1.17) 

where 𝜀(𝑥) is used for Riemann's complementary function. 

Though the mathematics of fractional calculus occurred in mathematical history for more 

than 300 years, its applicability has been executed a bit recently. Nowadays, fractional 

calculus [38, 39, 40] has been found applicable in many areas of engineering and science. 

Few of them are cellular diffusion processes, atmospheric diffusion of pollution, 

dynamics of visco-elastic materials, network traffic, electronics etc. 

1.6.1 Fractional Derivatives  

Here, we will mention some renowned and broadly applied definitions of fractional 

derivative which help us to form fractional order modeling [39]. 

1.6.1.1 Riemann-Liouville (RL) Fractional Derivative 

Definition 1.1: If   𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝑞 > 0, then 

𝐽𝑎+
𝑞

𝑓(𝑥) =
1

Γ(𝑞)
∫ (𝑥 − 𝑢)𝑞−1𝑓(𝑢)𝑑𝑢

𝑥

𝑎
, 𝑥 > 𝑎,               (1.18) 

𝐽𝑏−
𝑞

𝑓(𝑥) =
1

Γ(𝑞)
∫ (𝑢 − 𝑥)𝑞−1𝑓(𝑢)𝑑𝑢

𝑏

𝑥
, 𝑥 < 𝑏,                (1.19) 

are known as the left and the right RL fractional integral of order 𝑞 respectively. 

Definition 1.2: 𝐷𝑎
𝑞

 
𝑅𝐿 𝑓(𝑥) =

1

Γ(1−𝑞)

𝑑

𝑑𝑥
∫ (𝑥 − 𝑡)𝑞𝑥

𝑎
𝑓(𝑡)𝑑𝑡,              (1.20) 

for 0 < 𝑞 < 1, is known as left Riemann-Liouville fractional derivative (RL derivative) 

of order 𝑞 whenever the RHS exists [39]. 

Now, we define RL derivative for an arbitrary value of 𝑞 as follows. 
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Definition 1.3: Let 𝑛 − 1 < 𝑞 ≤ 𝑛, then the left and right RL derivative of order 𝑞 are 

defined as [39], 

𝐷𝑎+
𝑞

 
𝑅𝐿 𝑓(𝑥) =

1

Γ(𝑛−𝑞)

𝑑𝑛

𝑑𝑥𝑛 ∫ (𝑥 − 𝑡)𝑛−𝑞−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡 = 𝐷𝑛𝐽𝑎+

𝑛−𝑞
𝑓(𝑥), 𝑥 > 𝑎,            (1.21) 

𝐷𝑏−
𝑞

 
𝑅𝐿 𝑓(𝑥) =

1

Γ(𝑛−𝑞)

𝑑𝑛

𝑑𝑥𝑛 ∫ (𝑡 − 𝑥)𝑛−𝑞−1𝑏

𝑥
𝑓(𝑡)𝑑𝑡 = 𝐷𝑛𝐽𝑏−

𝑛−𝑞
𝑓(𝑥), 𝑥 < 𝑏,            (1.22) 

respectively, whenever the RHSs exist. 

In further discussion, unless mentioned otherwise, we denote 𝐷𝑎+
𝑞

 
𝑅𝐿 𝑓(𝑥) by  𝐷𝑎

𝑞
 

𝑅𝐿 𝑓(𝑥)  

and 𝐽𝑎+
𝑞

𝑓(𝑥)
 
by 𝐽𝑎

𝑞
𝑓(𝑥), respectively. Also 𝐷 

𝑞
 

𝑅𝐿 𝑓(𝑥)
 
and, 𝐽 

𝑞𝑓(𝑥) refer to  )(
0

xfDqRL
   

and
0

( )qJ f x ,respectively. 

Properties: (i) The RL derivative is non-zero for a constant. 

𝐷 
𝑞

 
𝑅𝐿 𝐶 =

𝐶𝑡−𝑞

Γ(1−𝑞)
≠ 0.                   (1.23) 

(ii) Initial value problem (IVP) containing RL derivative requires initial conditions of the 

form 𝐷 
𝑞

 
𝑅𝐿 𝑓(0) i.e., 

𝐽 
𝑞( 𝐷 

𝑞
 

𝑅𝐿 𝑓(𝑥)) = 𝑓(𝑡) − ∑ 𝐷 
𝑞−𝑗

 
𝑅𝐿𝑛

𝑗=1 𝑓(0)
𝑡𝑞−𝑗

Γ(𝑞−𝑗+1)
,  𝑛 − 1 < 𝑞 < 𝑛,            (1.24) 

which is not useful in real phenomena. To overcome these drawbacks, M. Caputo and F 

Mainardi (1971) proposed a new definition of the fractional derivative, namely Caputo 

derivative which permits the construction of initial conditions for fractional IVPs in a 

form including only the limit values of integer order derivatives at the lower terminal 

[41]. 
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1.6.1.2 Caputo Fractional Derivative 

The definition and properties of the Caputo fractional derivative [39] are given as follows; 

Definition 1.4: Let 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏] and 𝑛 − 1 < 𝑞 < 𝑛, then 

𝐷𝑎
𝑞

 
𝐶 𝑓(𝑥) =

1

𝛤(𝑛−𝑞)
∫ (𝑥 − 𝑢)𝑛−𝑞−1 (

𝑑𝑛𝑓(𝑢)

𝑑𝑢𝑛 ) 𝑑𝑢
𝑥

𝑎
, 𝑎 < 𝑥 < 𝑏.               (1.25) 

Properties:  (i) 𝐷𝑎
𝑞

 
𝐶 𝐶=0, 𝐶 is a constant.                (1.26) 

(ii) lim
𝑞→𝑛

𝐷𝑎
𝑞

 
𝐶 𝑓(𝑥) =

𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛 .                  (1.27) 

Lemma 1.1: [39] Let 𝑓(𝑥) ∈ 𝑅 be a differentiable function. Then for any 𝑥 ≥ 𝑥0, 

1

2
𝐷𝑎

𝑞
 

𝐶 𝑓2(𝑥) ≤ 𝑓(𝑥) 𝐷𝑎
𝑞

 
𝐶 𝑓(𝑥), ∀ 𝑞 ∈ (0,1).                (1.28) 

Lemma 1.2: Let 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏] and 𝑛 − 1 < 𝑞 < 𝑛, then, 

𝐷𝑎
𝑞

 
𝑅𝐿 𝑓(𝑥) = 𝐷𝑎

𝑞
 

𝐶 𝑓(𝑥) + ∑
𝑓𝑘(𝑎+)

𝛤(1+𝑘−𝑞)

𝑛−1
𝑘=0 (𝑥 − 𝑎)𝑘−𝑞 .                         (1.29) 

From the above lemmas, we can conclude the following results: 

(i) If 𝑞 = 𝑛 ∈ 𝑁, then 𝐷𝑎
𝑞

 
𝑅𝐿 𝑓(𝑥) = 𝐷𝑎

𝑞
 

𝐶 𝑓(𝑥) = 𝐷𝑛𝑓(𝑥). 

(ii) If  𝑓𝑘(𝑎 ) = 0 for 𝑘 = 0,1,… , 𝑛 − 1, then 𝐷𝑎
𝑞

 
𝑅𝐿 𝑓(𝑥) = 𝐷𝑎

𝑞
 

𝐶 𝑓(𝑥). 

(iii) If 0 < 𝑞 < 1, ,10  q then 𝐷𝑎
𝑞

 
𝑅𝐿 𝑓(𝑥) = 𝐷𝑎

𝑞
 

𝐶 𝑓(𝑥) +
𝑓(𝑎)

𝛤(1−𝑞)
(𝑥 − 𝑎)−𝑞. 

Theorem 1.1: Let 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏] and 𝑛 − 1 < 𝑞 < 𝑛, then, 

𝐽𝑎
𝑞

𝐷𝑎
𝑞

 
𝐶 𝑓(𝑥) = 𝑓(𝑥) − ∑

𝑓𝑘(𝑎+)

𝛤(1+𝑘)

𝑛−1
𝑘=0 (𝑥 − 𝑎)𝑘 , 𝑥 ≥ 𝑎.                (1.30) 
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Proof: [39] 

1.6.2 Leibniz rule 

If  𝑓, 𝑔 ∈ 𝐶∞[𝑎, 𝑏], then the Leibnitz rule for the fractional derivative is given by [39], 

𝐷𝑎
𝑞

 
𝐶 (𝑓(𝑥)𝑔(𝑥)) = ∑ (𝑞

𝑘
)∞

𝑘=0 𝑔𝑘(𝑥) 𝐷𝑎
𝑞−𝑘

 
𝐶 𝑓(𝑥) − 𝑅𝑛

𝑞
(𝑥),

                

(1.31) 

where, 𝑅𝑛
𝑞(𝑥) =

1

𝑛! 𝛤(−𝑞)
∫

𝑓(𝑡)

(𝑥−𝑡)𝑞+1 𝑑𝑡 ∫ 𝑔𝑛+1(𝑢)(𝑡 − 𝑢)𝑛𝑑𝑢
𝑥

𝑡

𝑥

𝑎
. 

1.6.3 Generalized Fractional Derivatives 

Here, first we state the definition of the K and A/B-operators and then define the FIDEs 

in terms of B operator. The operators namely K and A/B operators as presented recently 

in [42] are defined on integrable functions ℎ(𝜉) as follows: 

(𝐾𝑃
𝛼ℎ)(𝜉) =  𝑟 ∫ 𝜔𝛼(𝜉, 𝜂)

𝜉

𝑎
ℎ(𝜂)𝑑𝜂 + 𝑠 ∫ 𝜔𝛼(𝜂, 𝜉)

𝑏

𝜉
ℎ(𝜂)𝑑𝜂 , α > 0,            (1.32) 

where, 𝜉 ∈ ℑ = [𝑎, 𝑏],   𝑃 = 〈𝑎, 𝜉, 𝑏, 𝑟, 𝑠〉 is a set of parameters, and 𝜔𝛼(𝜉, 𝜂) be defined 

on ℑ × ℑ . We assume ℎ(𝜉) and 𝜔𝛼(𝜉, 𝜂) are the square integrable functions such that 

right side of the Eq. (1) exists. It follows the linearity property, i.e. for any two integrable 

functions ℎ1(𝜉) and ℎ2(𝜉), 

(𝐾𝑃
𝛼(ℎ1 + ℎ2))(𝜉) = (𝐾𝑃

𝛼ℎ1)(𝜉) + (𝐾𝑃
𝛼ℎ2)(𝜉) .               (1.33) 

Now we consider A and B-operators [42], 

(𝐴𝑃
𝛼ℎ)(𝜉) = 𝔇𝑚(𝐾𝑃

𝑚−𝛼ℎ)(𝜉),                 (1.34) 

= 𝔇𝑚 (𝑟 ∫ 𝜔𝑚−𝛼(𝜉, 𝜂)ℎ(𝜂)𝑑𝜂 + 𝑠 ∫ 𝜔𝑚−𝛼(𝜂, 𝜉)ℎ(𝜂)𝑑𝜂
𝑏

𝜉

𝜉

𝑎
) , 𝛼 > 0, 
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(𝐵𝑃
𝛼ℎ)(𝜉) = (𝐾𝑃

𝑚−𝛼𝔇𝑚ℎ)(𝜉), 

= 𝑟 ∫ 𝜔𝑚−𝛼(𝜉, 𝜂)𝔇
𝑚ℎ(𝜂)𝑑𝜂 + 𝑠 ∫ 𝜔𝑚−𝛼(𝜂, 𝜉)𝔇𝑚ℎ(𝜂)𝑑𝜂, 𝛼 > 0

𝑏

𝜉

𝜉

𝑎
,            (1.35) 

where, 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 is an integrer and 𝑃 = 〈𝑎, 𝜉, 𝑏, 𝑟, 𝑠〉 and 𝔇 denote the 

differential operator. In the definition of B-operator, we assume that 𝔇𝑚ℎ(𝜉) is once 

integrable on the domain. More details on these operators can be found in [42]. 

1.7 Fractional Integro-Differential Equation  

Fractional differential equations have been developed as a significant object of 

exploration in recent years motivated by their several applications to the problems arising 

in physics, mechanics, and other fields. Fractional integro-differential equation (FIDEs) 

are the type of IDEs in which fractional derivative is defined for the unknown function 

instead of ordinary derivative. According to the literature, FIDEs can be defined in several 

ways. The most of the authors defined FIDEs of Volterra type in the following ways [43], 

𝔇𝑤(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)𝑤(𝑥) + ∫ 𝜅(𝑥, 𝑢)𝒢(𝑤(𝑢))𝑑𝑢
𝑥

0
.              (1.36) 

Here 𝔇 denotes some fractional derivative (RL or Caputo derivative) of 𝑤 with respect 

to 𝑥 and 𝒢 is some linear or nonlinear operator and 𝜅(𝑥, 𝑢) may be smooth or weakly 

singular defined by, 

𝜅(𝑥, 𝑢) = 𝑎(𝑥, 𝑢)(𝑥 − 𝑢)−𝜇,       0 < 𝜇 < 1,                (1.37) 

where 𝑎(𝑥, 𝑢) is a smooth function. 

 

 



Introduction 

~ 14 ~ 

1.7.1 Literature Review of Fractional Integro-Differential Equations 

Mathematical modelling of most of the real-life problems frequently described in form of 

fractional differential equations (FDEs) and FIDEs. In particular, these equations arise in 

a lot of practical problems, for examples, electromagnetic waves, heat conduction, 

dielectric polarization, radiative equilibrium, viscoelasticity, elasticity, fracture 

mechanics and diffusion equations  [44-50] etc. It isn't convincible to tackle all FIDEs 

analytically, thus we require to create approximations procedure in sense of numerical 

techniques to solve FIDEs. Recently, fractional calculus has pulled in numerous analysis 

effectively in various areas by scientists and engineers. The benefit of using fractional 

integral and derivative is that these are not local property of the function.  

The existence and uniqueness of the solution of FDEs are explored in [44, 48]. In 2002, 

Diethelm [48] published a paper investigating the results of existence, uniqueness, and 

stability of the solution of nonlinear FDEs considering the Riemann– Liouville 

differential operators and the initial conditions were taken in Caputo's sense, thus 

permitting the explanation in a physical manner. In particular, it was investigated how the 

solution depended on the order and the initial conditions. Local and global existence and 

uniqueness of the solution FIDEs have been discussed in [51, 52]. 

Kubo [53] investigated the presence of singular FIDEs in traditional Brownian motion 

using fractional Langevin equation. There are numerous numerical methods in literature 

to approximate the solution of singular FIDEs additionally for IDEs. Kamrani [54] solved 

a stochastic form of FIDEs by Galerkin method and discussed its convergence. A special 

form of FIDEs has been solved by polynomial spline collocation method [55]. Piecewise 

polynomial collocation method has been used to approximate the solution of linear FIDEs 

with weakly singular kernel [56]. Legendre and Chebyshev wavelets have been used to 
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obtain the approximate solution of FIDEs [57, 58, 59]. Some more methods for the 

numerical treatment of linear FIDEs such as discrete collocation [41] and collocation 

method based on hybrid function [60] have been discussed to solve linear FIDEs. In [61], 

Saadatmandi and Dehghan applied the Legendre collocation method for numerical 

solution of the FIDEs. Kumar et. al. [62] presented the comparison of three schemes 

namely linear, quadratic and quadratic-linear and their convergence results for solving 

the FIDEs. The solution of nonlinear FIDEs has been obtained in using collocation and 

hybrid functions [63, 64]. In [65], spectral collocation method has been studied for 

solving FIDEs. The approach is based on Jacobi-Gauss quadrature formula. In [66, 67], 

the system of FIDEs has been studied by the authors. Galerkin method and wavelet 

Galerkin method based numerical methods are studied by the authors respectively in [68] 

and [69] for FIDEs. In [70, 71], authors presented the second kind Chebyshev wavelet-

based approximation and CAS wavelet methods respectively for the FIDEs. Some other 

methods such as least squares method [72], tau approximation method [73] and novel 

matrices method [74] are discussed by the authors in past few years. More recently in 

2015, Tohidi and co-authors [75] presented the Euler function based operational matrix 

approach for such problems.  

1.8 Projection Method: 

We describe the projection method [76] for the second kind integral equation, 

𝛾𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
 

𝐼
= 𝑓(𝑥), 𝑥 ∈ 𝐼.                (1.38) 

A function  𝑢𝑛 is chosen from a finite dimensional subspace of functions that is supposed 

to be the best approximation of exact solution 𝑢(𝑥). The preferred solution  𝑢𝑛 is chosen 

such that it satisfy (1.38) approximately. There are various senses in which  𝑢𝑛 satisfy 
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(1.38) approximately and these lead to so many methods. The most widespread of these 

are Galerkin methods and collocation methods, and they are defined below. When we 

formulate these methods in abstract context with functional analysis, they all need 

necessary usage of projection operators.  

1.8.1 General Theory  

The operator form of integral equation (1.38) can be written as, 

(𝛾 − 𝐾)𝑢(𝑥) = 𝑓(𝑥).                   (1.39) 

Here 𝐾 is supposed to be a compact operator from a Banach space 𝑋 to 𝑋 defined by, 

𝐾𝑢(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
 

𝐼
.                  (1.40) 

The most popular choices for 𝑋 are 𝐶(𝐼) and 𝐿2(𝐼) .For Galerkin's method and its 

generalizations, Sobolev spaces 𝐻0(𝐼) are also used commonly, with 𝐻0(𝐼) = 𝐿2(𝐼). 

We consider a family of subspaces 𝑋𝑛⊂𝑋, 𝑛 ≥ 1, with finite dimension 𝑛 + 1 . Let 𝑋𝑛  

has a basis 𝑆 = {𝜃0, 𝜃1, … 𝜃𝑛} in 𝑋. A function 𝑢𝑛 ∈ 𝑋𝑛, which is assumed to be the best 

approximation of 𝑢, can be written as, 

𝑢𝑛(𝑥) = ∑ 𝑐𝑗𝜃𝑗(𝑥),    𝑥 ∈ 𝐼𝑛
𝑗=0 .                  (1.41) 

Substituting this in Eq. (1.39),  

𝛾 𝑢𝑛(𝑥) − ∫ 𝐾(𝑥, 𝑡) 𝑢𝑛(𝑡)𝑑𝑡
 

𝐼
= 𝑓(𝑥).                 (1.42) 

The coefficients  {𝑐𝑗|𝑗 = 0,1,… . , 𝑛} are approximated by making the equation to be exact. 

For further use, we assume, 
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𝜏𝑛(𝑥) = 𝛾 𝑢𝑛(𝑥) − ∫ 𝐾(𝑥, 𝑡) 𝑢𝑛(𝑡)𝑑𝑡
 

𝐼
− 𝑓(𝑥).                (1.43) 

The term 𝜏𝑛(𝑥) is called the residual and it is obtained by replacing 𝑢 by  𝑢𝑛. 

Mathematically, 

𝜏𝑛(𝑥) = (𝛾 − 𝐾) 𝑢𝑛(𝑥) − 𝑓(𝑥),  

=∑ 𝑐𝑗(𝛾 − 𝐾)𝜃𝑗(𝑥) − 𝑓(𝑥)𝑛
𝑗=0 .                 (1.44) 

The coefficients {𝑐𝑗|𝑗 = 0,1, … . , 𝑛}  are selected by making 𝜏𝑛(𝑥) to be nearly zero [76]. 

1.8.2 Collocation Method: 

We choose 𝑛 nodes 𝑥0, 𝑥1, . . . , 𝑥𝑛 ∈ 𝐼 and require, 

 𝜏𝑛(𝑥𝑖) = 0,  𝑖 = 0,1,2, . . . . . 𝑛,                 (1.45) 

⟹ (𝛾 − 𝐾) 𝑢𝑛(𝑥𝑖) − 𝑓(𝑥𝑖) = 0, 

⟹ 𝛾 ∑ 𝑐𝑗𝜃𝑗
𝑛
𝑗=0 (𝑥𝑖) − ∑ 𝑐𝑗 

𝑛
𝑗=0 ∫ 𝐾(𝑥𝑖, 𝑡)𝜃𝑗(𝑡)𝑑𝑡

 

𝐼
− 𝑓(𝑥𝑖) = 0.              (1.46) 

This directs to a system of linear equations in unknowns {𝑐𝑗} [76]. 

Now the question arises, is this system possess a solution, and if so, will it be unique? 

1.8.3 Existence Uniqueness of the Solution Obtained by Collocation 

Method: 

For this discussion, an operator named projection operator 𝑃𝑛 is introduced such that 

𝑃𝑛: 𝑋𝑜𝑛𝑡𝑜⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑋𝑛. 
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For 𝑢 ∈ 𝑋, we define 𝑃𝑛𝑢 to be that element of 𝑋𝑛 that interpolates 𝑢 at the points 

𝑥0, 𝑥1, . . . , 𝑥𝑛 ∈ 𝐼. That is, 

𝑃𝑛𝑢(𝑥) = ∑ 𝑎𝑗
𝑛
𝑗=0 𝜃𝑗(𝑥),                   (1.47) 

where the coefficients 𝑎𝑗 will be calculated by the linear system, 

∑ 𝑎𝑗
𝑛
𝑗=0 𝜃𝑗(𝑥𝑖) = 𝑢(𝑥𝑖), 𝑖 = 0,1,2, . . . . . 𝑛.               (1.48) 

The unique values of 𝑎𝑗 is obtained if 

𝑑𝑒𝑡[𝜃𝑗(𝑥𝑖)] ≠ 0.                    (1.49) 

Hereafter in the whole argument, we consider this is true when we discuss the collocation 

method. From condition 𝑑𝑒𝑡[𝜃𝑗(𝑥𝑖)] ≠ 0, it is followed that {𝜃0, 𝜃1, … 𝜃𝑛} is the linearly 

independent set over 𝐼 [76]. 

To see more clearly that 𝑃𝑛 is linear, and to give a more explicit formula, we introduce a 

new set of basis functions. For each 𝑖, 1 ≤  𝑖 ≤  𝑛 + 1,, let 𝑙𝑖 ∈ 𝑋𝑛 be that element that 

satisfies the interpolation conditions, 

𝑙𝑖(𝑡𝑗) = 𝛿𝑖𝑗,  𝑗 = 0,1,… , 𝑛 + 1.                  (1.50) 

By (1.48), there is a unique such 𝑙𝑖, and the set {𝑙𝑖: 1 ≤  𝑖 ≤  𝑛 + 1} is a new basis for 

𝑋𝑛. With polynomial interpolation, such functions 𝑙𝑖 are called Lagrange basis functions, 

and we will use this name with all types of approximating subspaces 𝑋𝑛. With this new 

basis, we can write, 

𝑃𝑛𝑢(𝑥) = ∑ 𝑢(𝑡𝑗)𝑙𝑗(𝑡)
𝑛+1
𝑗=0 ,                    (1.51) 

Clearly, 𝑃𝑛 is linear and finite rank. In addition, as an operator on 𝐶(𝐼) to 𝐶(𝐼), 
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∥ 𝑃𝑛 ∥= max
𝑡∈𝐼

∑ |𝑙𝑗(𝑡)|
𝑛
𝑗=1                                                                           (1.52) 

We note that, 

𝑃𝑛𝑢(𝑥) = 0, if and only if 𝑢(𝑥𝑖) = 0, ∀ 𝑖 = 0,1,2, . . . . . 𝑛, 

Now Eq. (1.45) asserts that, 

 𝑃𝑛𝜏𝑛 = 0, 

or, 

𝑃𝑛(𝛾 − 𝐾) 𝑢𝑛(𝑥) = 𝑃𝑛𝑓(𝑥),  ∀ 𝑢𝑛 ∈ 𝑋𝑛.                (1.53) 

1.8.4 Galerkin Method: 

To discuss this method, we assume 𝑋  to be a Hilbert space, for example, 𝑋 = 𝐿2(𝐼) and 

let ⟨ . | . ⟩ be the inner product defined on 𝑋. Now, we need 𝜏𝑛 to satisfy 

⟨ 𝜏𝑛| 𝜃𝑖⟩ = 0,  ∀ 𝑖 = 0,1,2, . . . . . 𝑛.                 (1.54) 

The term ⟨ 𝜏𝑛| 𝜃𝑖⟩ denotes the Fourier coefficient of 𝜏𝑛 with respect to the 𝜃𝑖.  

To approximate 𝑢𝑛, from Eq. (1.44) and (1.54), we obtain the linear system given by 

𝛾⟨  𝑢𝑛(𝑥)| 𝜃𝑖(𝑥)⟩ − ⟨ ∫ 𝐾(𝑥, 𝑡) 𝑢𝑛(𝑡)𝑑𝑡
 

𝐼
| 𝜃𝑖(𝑥)⟩ − ⟨ 𝑓(𝑥)| 𝜃𝑖(𝑥)⟩ = 0, 

𝛾 ∑ 𝑐𝑗
𝑛
𝑗=0 {⟨𝜃𝑗(𝑥) | 𝜃𝑖(𝑥)⟩ − ⟨ ∫ 𝐾(𝑥, 𝑡)𝜃𝑗(𝑥)𝑑𝑡

 

𝐼
| 𝜃𝑖(𝑥)⟩} − ⟨ 𝑓(𝑥)| 𝜃𝑖(𝑥)⟩ = 0,       (1.55) 

This is Galerkin's method for finding an estimated solution to Eq. (1.38). Now the same 

question arises as before in collocation method, is this system possess a solution, and if 

so, will it be unique? [76] 
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1.8.5 Existence and Uniqueness of the Solution Obtained by Collocation 

Method: 

For existence and uniqueness of the solution obtained by Galerkin method, again we 

introduce projection operator, 

𝑃𝑛: 𝑋𝑜𝑛𝑡𝑜⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑋𝑛, 

 defined as 𝑃𝑛𝑢 the solution of the following problem, 

∥ 𝑢 − 𝑃𝑛𝑢 ∥= 𝑚𝑖𝑛
𝑤∈𝑋𝑛

∥ 𝑢 − 𝑤 ∥.                 (1.56) 

Since the dimension of  𝑋𝑛 is finite, it is easy to show that the above problem has a 

solution; and as 𝑋𝑛 is an inner product space, uniqueness of the solution can be proved 

[76]. 

To obtain the better understanding of 𝑃𝑛, we define 𝑃𝑛𝑢 explicitly by introducing the 

orthonormal basis {𝜗0, 𝜗1, … 𝜗𝑛} for 𝑋𝑛, which is constructed by using the Gram-Schmidt 

process from {𝜃0, 𝜃1, … 𝜃𝑛}. The element 𝜗𝑖 is a linear combination of {𝜃0, 𝜃1, … 𝜃𝑛}. 

Moreover, 

⟨ 𝜗𝑖| 𝜗𝑗⟩ = 𝛿𝑖𝑗,  ∀ 𝑖, 𝑗 = 0,1,2, . . . . . 𝑛.                 (1.57) 

With {𝜗0, 𝜗1, … 𝜗𝑛}, it is clear that, 

𝑃𝑛𝑢 = ∑ ⟨ 𝑢| 𝜗𝑗⟩
𝑛
𝑖=0 𝜗𝑗.                   (1.58) 

We note that, 

𝑃𝑛𝑢(𝑥) = 0, if and only if ⟨ 𝑢| 𝜗𝑗⟩ = 0, ∀ 𝑖 = 0,1,2, . . . . . 𝑛. 
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From the above equation as, Eq. (1.54) can be written as 

 𝑃𝑛𝜏𝑛 = 0, 

or, 

𝑃𝑛(𝛾 − 𝐾) 𝑢𝑛(𝑥) = 𝑃𝑛𝑓(𝑥),  ∀ 𝑢𝑛 ∈ 𝑋𝑛.               (1.59) 

Note the similarity to Eq. (1.53).  

For more study on Projection method see [76-80]. 
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