
Chapter-5

Investigation on magneto thermolastic disturbances
under thermoelasticity with dual phase-lags

15 Investigation on magneto-thermoelastic disturbances in-
duced by thermal shock in an elastic half space having finite
conductivity under dual phase-lag heat conduction

5.1 Introduction

The present chapter seeks to investigate the magneto-thermoelastic interactions in

a finitely conducting elastic half-space in contact with vacuum under dual phase-lag

thermoelasticity theory. Due to the advancement of short-pulse laser technologies

and their huge applications to modern micro-fabrication technologies serious atten-

tion of researchers is being paid to high rate heating on thin films (Tzou (1995a)).

The fact has been noticed that laser pulses can be made shorter to the range of

femtoseconds (10−15s ) and when the response time is shorter, the non-equilibrium

thermodynamic transition and the microscopic effects in the energy exchange dur-

ing heat transport procedure become prominent. In view of recent experiments,

the heat conduction theory of Cattaneo and Vernotte also fails in some cases, spe-

cially for heating of thin films (Brorson et al. (1987). In order to take into account

the microscopic effects in heat transport mechanism, some models have been de-

veloped such as phonon-scattering model (Joseph and Preziosi (1989, 1990), Guyer

and Krumhansl (1966)), phonon-electron interaction model (Brorson et al. (1987),

Anisimov et al. (1974) and Fujimoto et al. (1984)) and microscopic two-step model
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(Qiu and Tien (1992, 1993)). Subsequently, Tzou (1995(a,b)) has incorporated the

effect of micro-structural interactions in the fast transient process of heat transport

phenomenon and proposed a more generalized law of heat conduction, known as

dual phase-lag model, in the form

−→q (−→r , t+ τq) = −K
−→
∇T (−→r , t+ τt) 1.9

Here τq, τt are two delay times where τq represents the phase-lag of the heat flux

vector and it captures the thermal wave behavior, a small-scale response in time

for heat flux and τt is the phase lag of the temperature gradient and it captures

the effect of phonon-electron interactions, a micro scale response in space. Thus,

the dual phase lag concept is capable of capturing the small-scale response in both

space and time. The phase-lags τq and τt are assumed to be positive and they are the

intrinsic properties of medium (Tzou (1997)). Equation (1.9) represents a universal

model which is a good explanation of all fundamental behaviors in diffusion, ther-

mal wave, phonon-electron scattering associated with the shortening of the response

time. This model establishes that either the temperature gradient may dominate the

heat flux or that the heat flux may dominate the temperature gradient. Later on,

the dual phase-lag heat conduction model has been extended to the theory of ther-

moelasticity with dual phase-lags by Tzou (1997). Subsequently, this theory of dual

phase-lag thermoelasticity has been illustrated along with the formulation of basic

governing equations by Chandrashekharaiah (1998a). This theory is now referred to

as dual-phase-lag thermoelasticity theory that accounts for the second sound effect.

Roychoudhuri (2007b) investigated a problem of one-dimensional waves in an elastic

half space with its plane subjected to some boundary conditions to analyze the ef-

fect of phase-lags. Some qualitative analysis on dual phase-lag thermoelasticity have
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been reported by Quintanilla (2003b) and Quintanilla and Racke (2006a, 2006b).

Prasad et al. (2010) have investigated the propagation of harmonic plane waves by

obtaining the dispersion relation for an isotropic and homogeneous medium in the

context of this theory. In this respect, we also refer the work reported by Al-Nimr

and Al-Huniti (2000), Chen et al. (2002), Lee and Tsai (2008) and Abdallah (2009)

etc.

Now, we aim to investigate the propagation of magneto-thermoelastic distur-

bances produced by a thermal shock in a finitely conducting elastic half-space in

contact with vacuum. Normal load has been applied on the boundary of the exist-

ing media that is supposed to be permeated by a primary uniform magnetic field.

We employ both the parabolic type (dual phase-lag magneto-thermoelasticity of

type I (MTDPL-I)) and hyperbolic type (dual phase-lag magneto-thermoelasticity

of type II (MTDPL-II)) dual phase-lag heat conduction models to account for the

interactions among the magnetic, elastic and thermal fields. Integral transform tech-

nique is applied to solve the present problem and the analytical results of both the

cases have been obtained separately. A detailed analysis of results has been done

in order to understand the nature of waves propagating inside the medium and the

effects of the phase-lag parameters. The effect of the presence of magnetic field has

been highlighted. Numerical results have also been obtained to analyze the effect of

magnetic field on the behavior of the solution more clearly and a detailed analysis

of the results predicted by two models has been presented. It has been noted
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that in some cases, there are significant differences in the solution obtained in the

contexts of MTDPL-I and MTDPL-II theory of magneto-thermoelasticity.

5.2 Formulation of the problem: governing
equations

In our problem, we have taken a homogeneous and isotropic finitely conducting

elastic half space permeated by a primary uniform magnetic field such that a normal

load and thermal shock have been applied on the boundary x1 = 0, due to which

magneto-thermoelastic disturbances have been initiated and allowed to propagate

through the medium x1 ≥ 0.

To formulate our problem, we need to consider all the basic governing equations of

magnetic, thermal and mechanical fields which are mutually interacting each other.

Firstly, we consider the following equations given by Maxwell (1867):

~∇× ~E = −µ0

C
.
∂~h

∂t
(5.1)

~∇× ~h =
4π

C
~j (5.2)

~∇.~h = 0 (5.3)

Generalized Ohm’s law is given as

~j = λ0[ ~E +
µ0

C
(~̇u× ~H0)] (5.4)

where ~E, ~h, ~H0 represent the electric field, perturbed magnetic field and the

initial constant magnetic field, respectively. µ0 and λ0 are magnetic permeability
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and electrical conductivity of the medium, respectively and C is the velocity of light.

~j is the current density vector and ~u is the displacement vector.

Equation of motion including electromagnetic field is given by (Kaliski and Nowacki

(1962))

µ∇2~u+ (λ+ µ)~∇(~∇.~u) +
µ0

4π
[(~∇× ~h)× ~H0]− γ~∇θ = ρ~̈u (5.5)

where, θ is the temperature above uniform reference temperature T0.

By employing dual phase-lag heat conduction model-II (DPL-II; (see Tzou (1997)

and Chandrashekharaiah (1998))), we take the heat conduction equation for our

study in the form

K(1 + τt
∂

∂t
)∇2θ = (1 + τq

∂

∂t
+ τ 2q

∂2

∂t2
)(ρCvθ̇ + γT0u̇i,i) (5.6)

Special case: In the above equation, substituting τ 2q = 0, we achieve following heat

conduction equation under dual phase-lag model-I (DPL-I)[(1997),(1998)]:

K(1 + τt
∂

∂t
)∇2θ = (1 + τq

∂

∂t
)(ρCvθ̇ + γT0u̇i,i) (5.7)

The above two heat conduction models are known as hyperbolic type dual phase-

lag magneto-thermoelastic model-II (MTDPL-II) and parabolic type dual phase-lag

magneto-thermoelastic model-I (MTDPL-I), respectively. Here ’Thomson effect’ has

been neglected due to its very small value. Cv is the specific heat at constant strain

and ρ is the density.

From equations (1)-(4), after elimination of ~E and ~j, we achieve the following

relation:

∇2~h− β~̇h = −β~∇× (~̇u× ~H0) (5.8)

where β = 4πλ0µ0
C2
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For simplification, we assume that the magneto-thermoelastic waves propagated

in the medium xi ≥ 0 depend on one direction i.e. x1 and the time t. Furthermore,

it has been assumed that the initial magnetic field vector is applicable towards x3

axis i.e. ~H0 = (0, 0, H3), where H3 is a constant.

Therefore, equations[(5.1)-(5.4)] lead to

~j =
C

4π
(0,−∂h3

∂x1
, 0) (5.9)

~̇h = −C
µ0

(0, 0,
∂E2

∂x1
) (5.10)

~j = λ0[0, (E2 −
µ0H3u̇1
C

), 0] (5.11)

Since, wave is propagating in x1 direction and we have assumed that the magnetic

field has been applied in x3 direction, then consequently electric field is given by

~E = (0, E2, 0). where

E2 = − C

4πλ0
.
∂h3
∂x1

+
µ0H3u̇1
C

(5.12)

In view of the above assumptions, equations (5.5)-(5.8) reduce to the forms

(λ+ 2µ)
∂2u1
∂x21

− µ0H3

4π
.
∂h3
∂x1
− γ ∂θ

∂x1
= ρ.

∂2u1
∂t2

(5.13)

K(1 + τt
∂

∂t
)∇2θ = (1 + τq

∂

∂t
+ τ 2q

∂2

∂t2
)(ρCv

∂θ

∂t
+ γT0

∂2u1
∂x1∂t

) (5.14)

K(1 + τt
∂

∂t
)∇2θ = (1 + τq

∂

∂t
)(ρCv

∂θ

∂t
+ γT0

∂2u1
∂x1∂t

) (5.15)

∂2h3
∂x21

− β∂h3
∂t

= βH3
∂2u1
∂x1∂t

(5.16)

For simplicity, in what follows we will use the notations u1 = u, x1 = x.
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Now, since the medium has been assumed to be in contact with vacuum, above

equations need to be added to the electrodynamic equations in vacuum. In vacuum,

the system of equations of electrodynamics reduce to the following forms:

(
∂2

∂x′2
− 1

C2

∂2

∂t2
)h̃3 = 0, (

∂2

∂x′2
− 1

C2

∂2

∂t2
)Ẽ2 = 0, ~̇̃h = C(0, 0,

∂Ẽ2

∂x′
),

~̇̃E = C(0,
∂h̃3
∂x′

, 0) (5.17)

where x′ = −x

For our present study, the equations (5.13), (5.14), (5.16)-(5.17) constitute the

system under MTDPL-II model and the equations (5.13), (5.15)-(5.17) constitute

the system under MTDPL-I model. We will study both the systems separately.

5.3 Initial and boundary conditions

In general, Maxwell electro-magnetic stress tensor Tij in CGS unit is defined as

Tij = µ0
4π

(hiHj + hjHi − δijhkHk) i, j, k = 1,2,3

Therefore, by using this relation, we have taken for our problem

T11 = −µ0h3H3

4π
, T̃11 = − h̃3H3

4π
(5.18)

where T11 and T̃11 are the components of Maxwell stress tensor in the elastic medium

and in vacuum, respectively.

The normal stress in the elastic medium is given by

σ11 = (λ+ 2µ)
∂u

∂x
− γθ (5.19)
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Therefore, we assume the following boundary conditions as

σ11 + T11 − T̃11 = σ0H(t) on x = x′ = 0 (5.20)

E2 = Ẽ2, h3 = h̃3 on x = x′ = 0 (5.21)

where H(t) is the Heaviside unit function and σ0 is a constant stress.

The thermal boundary condition has been taken in the following manner:

θ(x, t) = θ0H(t) on x = x′ = 0 (5.22)

where θ0 is a constant.

The initial conditions for MTDPL-II model are assumed to be homogeneous and

they are taken as

u(x, 0) = 0, θ(x, 0) = 0,
∂u(x, 0)

∂t
= 0

∂θ(x, 0)

∂t
= 0,

∂2u(x, 0)

∂t2
= 0,

∂2θ(x, 0)

∂t2
= 0

In the similar way, the initial conditions for MTDPL-I are considered as

u(x, 0) = 0, θ(x, 0) = 0,
∂u(x, 0)

∂t
= 0,

∂θ(x, 0)

∂t
= 0 (5.23)

5.4 Solution of the problem

In order to simplify the solution of the problem, we introduce the following no-

tations and non dimensional quantities:

ξ = C0x
k
, t′ = C2

0 t

k
, u′ = C0(λ+2µ+α2

0ρ)u

kγT0
, θ′ = θ

T0
, k = K

ρCv
, ε = γ2T0

Ce(λ+2µ+α2
0ρ)

;

Ce = ρCv, h3 = h, η1 = µ0H3

4πγT0
, η2 = 1

kβ
, η3 = H3γT0

ρC2
0
, η4 =

C2
0

4πλ0k
, η5 = µ0γH3T0

ρC2 ;
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C2
1 = λ+2µ

ρ
, C2

0 = C2
1 + α2

0, α = C0

C
, α2

0 =
µ0H2

3

4πρ
, τ ′q =

C2
0

k
τq, τ

′
t =

C2
0

k
τt

Using above notations and non dimensional quantities on boundary conditions

[(5.20)-(5.22)], we get the following simplified forms of our boundary conditions:

C2
1

C2
0

u,ξ − θ + η′h̃ =
σ0
γT0

H(τ) on ξ = ξ′ = 0 (5.24)

h = h̃ on ξ = ξ′ = 0 (5.25)

−η4h,ξt + η5u,tt + h̃,ξ = 0 on ξ = ξ′ = 0 (5.26)

θ =
θ0
T0
H(τ) on ξ = ξ′ = 0 (5.27)

where we have used the notation η′ = (1−µ0)H3

4πγT0
. Here primes have been removed

from the quantities t′,u′, θ′ for the shake of clarity.

Further, the total stress σ1 in the elastic half space is given by

σ1 = σ11 + T11 (5.28)

From above equation, we get the dimensionless form of total stress as σ, where

σ = σ1
γT0

.

Now, the initial conditions for MTDPL-II model become

u(ξ, 0) = 0, θ(ξ, 0) = 0,
∂u′

∂t
(ξ, 0) = 0

∂θ

∂t
(ξ, 0) = 0,

∂2u

∂t2
(ξ, 0) = 0,

∂2θ

∂t2
(ξ, 0) = 0

Similarly, the initial conditions for MTDPL-I model are reduce to

u(ξ, 0) = 0, θ(ξ, 0) = 0,
∂u

∂t
(ξ, 0) = 0,

∂θ

∂t
(ξ, 0) = 0 (5.29)
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Equation given by (5.17) get the form

h̃,ξξ − α2h̃,tt = 0, Ẽ2,ξ′ξ′ − α2Ẽ2,tt = 0 (5.30)

where ξ′ > 0 and ξ′ = −ξ, h̃3 = h̃

Now, we study the present problem in the contexts of two different models-

MTDPL-I and MTDPL-II separately.

5.4.1 Case-I: Magneto-thermoelastic dual phase lag model-II
(MTDPL-II)

First, applying the above non dimensional quantities in equations (5.13), (5.14)

and (5.16), we obtain the following equations:

C2
1

C2
0

u,ξξ − η1h,ξ − θ,ξ − u,tt = 0, ξ > 0 (5.31)

(1 + τ
′

t

∂

∂t
)θ,ξξ − (1 + τ

′

q

∂

∂t
+ τ

′2
q

∂2

∂t2
)(θ,t + εu,ξt) = 0, ξ > 0 (5.32)

η2h,ξξ − h,t = η3u,ξt, ξ > 0 (5.33)

On setting τ ′t = 0 and τ
′2
q = 0 in above equations (5.31)-(5.33), we find that the

resulting equations are in agreement with the equations of (Roychoudhuri and Baner-

jee (Mukhopadhyay) (1996)). Above equations given by (5.31)-(5.33) constitute the

set of coupled partial differential equations with coupled boundary conditions in

three variables u, θ and h. Since, it is very difficult to solve this system analytically,

therefore for the purpose of simplification, it is assumed that the perturbed magnetic

field h varies very slowly with distance so that ∂2h
∂ξ2
≈ 0. Then, equations (5.33)and

(5.31) reduce to

h = −η3u,ξ, ξ > 0 (5.34)
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u,ξξ − θ,ξ − u,tt = 0, ξ > 0 (5.35)

In order to solve the problem, we first apply Laplace transform to both sides of

equation (5.35) and we obtain the following equation:

(
∂2

∂ξ2
− s2)−→u − ∂θ

∂ξ
= 0, ξ > 0 (5.36)

where, the over-headed bars represent the fields in the Laplace transform domain.

Equations (5.32) and [(5.24)-(5.27)] reduce to

((1 + τ
′

ts
2)
∂2

∂ξ2
− (1 + τ

′

qs
2 + τ

′2
q s

3)s)θ̄ − εs(1 + τ
′

qs
2 + τ

′2
q s

3)
∂ū

∂ξ
= 0, ξ > 0 (5.37)

C2
1

C2
0

∂~u

∂ξ
− θ̄ + η′¯̃h =

σ0
γT0

1

s
on ξ = ξ′ = 0 (5.38)

h̄ = ¯̃h on ξ = ξ′ = 0 (5.39)

η5s
2ū+ (1− η4s)

∂h̄

∂ξ
= 0 on ξ = ξ′ = 0 (5.40)

θ̄ =
θ0
T0
.
1

s
on ξ = ξ′ = 0 (5.41)

Elimination of ū from equation (5.36) and equation (5.37) yields

[(1 + τ
′

ts
2)
∂4

∂ξ4
− (s(1 + τ

′

qs
2 + τ

′2
q s

3) + s2(1 + τ
′

ts
2) + εs(1 + τ

′

qs
2 + τ

′2
q s

3))
∂2

∂ξ2

+s3(1 + τ
′

qs
2 + τ

′2
q s

3)]θ̄ = 0 (5.42)

The general solution of the above equation, vanishing at ξ →∞ is given by

θ̄ = Ae−λ1ξ +Be−λ2ξ (5.43)
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where A and B are arbitrary constants and λ21 and λ22 are the roots of the equation

given below:

[(1+τ
′

ts
2)λ4−(s(1+τ

′

qs
2+τ

′2
q s

3)+s2(1+τ
′

ts
2)+εs(1+τ

′

qs
2+τ

′2
q s

3))λ2+s3(1+τ
′

qs
2+τ

′2
q s

3)] = 0

(5.44)

A, B are determined from equations (5.38), (5.41) and (5.43) as

A =
(k1λ22(1+τ

′
t s

2)−k2s−k2τ
′
qs

3−k2τ
′2
q s4)

sη′′(λ22−λ21)(1+τ
′
t s

2)
, B =

−(k1λ21(1+τ
′
t s

2)−k2s−k2τ
′
qs

3−k2τ
′2
q s4)

sη′′(λ22−λ21)(1+τ
′
t s

2)
;

where, k1 = θ0η′′

T0
, k2 = θ0η′′

T0
+ θ0ε

T0
+ σ0ε

γT0

By using equations (5.34), (5.37) and (5.43), we achieve the following analytical

solution of displacement and perturbed magnetic field and total stress in the Laplace

transform domain in terms of A and B as

ū(ξ, s) =
1

εs(1 + τ ′qs
2 + τ ′2q s

3)
[A{

(1 + τ
′
qs

2 + τ
′2
q s

3)s− (1 + τ
′
ts

2)λ21
λ1

}e−λ1ξ

+B{
(1 + τ

′
qs

2 + τ
′2
q s

3)s− (1 + τ
′
ts

2)λ22
λ2

}e−λ2ξ] (5.45)

h̄(ξ, s) = − η3
εs(1 + τ ′qs

2 + τ ′2q s
3)

[A{−(1 + τ
′

qs
2 + τ

′2
q s

3)s+ (1 + τ
′

ts
2)λ21}e−λ1ξ

+B{−(1 + τ
′

qs
2 + τ

′2
q s

3)s+ (1 + τ
′

ts
2)λ22}e−λ2ξ] (5.46)

σ̄(ξ, s) =
1

εs(1 + τ ′qs
2 + τ ′2q s

3)
[A{−(1 + τ

′

qs
2 + τ

′2
q s

3)s+ (1 + τ
′

ts
2)λ21}e−λ1ξ

+B{−(1 + τ
′

qs
2 + τ

′2
q s

3)s+ (1 + τ
′

ts
2)λ22}e−λ2ξ]− [Ae−λ1ξ +Be−λ2ξ]

5.4.2 Case-II: Magneto-thermoelastic dual phase-lag model-I
(MTDPL-I)

The case when we apply τ ′2q = 0 in the above solutions of case-I represent the

case of MTDPL-I. Further, applying τ ′2q = 0 in equation (5.44), we get the following
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equation for magneto-thermoelastic dual phase-lag model-I (MTDPL-I):

[(1+τ
′

ts
2)λ′4− (s(1+τ

′

qs
2)+s2(1+τ

′

ts
2)+ εs(1+τ

′

qs
2))λ′2 +s3(1+τ

′

qs
2)] = 0 (5.48)

We denote the roots of above equation (5.48) as λ′21 and λ′22 so that the solutions in

the context of MTDPL-I can be obtained from equations (5.43), (5.45), (5.46) and

(5.47) by replacing λ1 and λ2 with λ′1 , λ′2, respectively.

5.5 Short-time approximation

It is clear from equations (5.44) and (5.48) that the roots of both equations are

dependent on Laplace transform parameter s. The closed form analytical solutions

of the above system in physical domain is therefore a formidable task. However,

phase-lag effects are short-lived; therefore, we attempt to understand the behavior

of waves propagating through the medium by deriving the solutions applicable for

very small values of time. Hence, in this section we concentrate our attention on

small-time approximated analytical solutions for both the cases. For our analysis,

we obtain our results for MTDPL-I and MTDPL-II theories separately.

5.5.1 Case-I: Magneto-thermoelastic dual phase-lag model-II

Assuming s to be very large, we obtain the solution of equation (5.44) for large

s as

λ1 =

√
a4
2τ
′
t

s+
a5

2
√

2a4τ
′
t

+ (
a4

1
2

8
√

2τ
′
t

(
−a25
a24

+
4a6
a4

)−
√
a4

2
√

2τ
′3
t

)
1

s
+O(s−2) (5.49)

λ2 =

√
a7
2τ
′
t

s+
a8

2
√

2a7τ
′
t

+ (
a6

1
2

8
√

2τ
′
t

(
−a27
a26

+
4a8
a6

)−
√
a6

2
√

2τ
′3
t

)
1

s
+O(s−2) (5.50)

where
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a1 = ((1 + 8ε)τ
′2
q + τ

′
t )

2 − 4τ
′2
q τ

′
t , a2 = 2τ

′3
q (1 + ε)2 − 2τ

′
qτ
′
t ;

a3 = (1 + ε)2τ
′2
q + 2τ

′
t + 2τ

′2
q (ε− 1), a4 = a

1
2
1 + τ

′
t + τ

′2
q (1 + ε), a5 = (1 + ε)τ

′
q + a2

2
√
a1
;

a6 = 1 +
a
1
2
1

8
(4a3
a1
− a22

a21
), a7 = a

1
2
1 + τ

′
t − τ

′2
q (1 + ε), a8 = (1 + ε)τ

′
q − a2

2
√
a1

For the sake of convenience, we write λ1 and λ2 in the following form:

λ1 =
s

v1
+B1 +D1(

1

s
) +O(s−2) (5.51)

λ2 =
s

v2
+B2 +D2(

1

s
) +O(s−2) (5.52)

where different notations in the above equations are given by

B1 = a5

2
√

2a4τ
′
t

, 1
v1

=
√

a4
2τ
′
t

;

D1 = ( a4
1
2

8
√

2τ
′
t

(
−a25
a24

+ 4a6
a4

)−
√
a4

2
√

2τ
′3
t

);

B2 = a8

2
√

2a7τ
′
t

, 1
v2

=
√

a7
2τ
′
t

;

D2 = ( a6
1
2

8
√

2τ
′
t

(
−a27
a26

+ 4a8
a6

)−
√
a6

2
√

2τ
′3
t

)

5.5.1.1 Solution in Laplace transform domain

Substituting values of A and B and λ1 and λ2 in the expressions of temperature,

displacement and perturbed magnetic field given by (equations (5.43), (5.45), and

(5.46), we achieve the solutions in terms of increasing powers of 1
s
for MTDPL-II in

the following forms:

θ̄(ξ, s) =
v21v

2
2

η′′τ ′t(v
2
1 − v22)

[(
N1

s
+
N2

s2
)e
−(B1+

s
v1

)ξ − (
N ′1
s

+
N ′2
s2

)e
−(B2+

s
v2

)ξ
] (5.53)

ū(ξ, s) =
v31v

2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

[M1
1

s2
+M2

1

s3
]e
−(B1+

s
v1

)ξ−

v32v
2
1

η′′ετ ′2q τ
′
t(v

2
1 − v22)

[M ′
1

1

s2
+M ′

2

1

s3
]e
−(B2+

s
v2

)ξ (5.54)
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h̄(ξ, s) =
η3v

2
1v

2
2

η′′ε(v21 − v22)
{[Q1

1

s
+Q2

1

s2
]e
−(B1+

s
v1

)ξ − [Q′1
1

s
+Q′2

1

s2
]e
−(B2+

s
v2

)ξ} (5.55)

where, all constants used above are given by

N1 = k1
v22

+ k1τ
′
tB

2
2 − 2v1v2

(v1B2−v2B1)

(v21−v22)
(−k2τ

′
q +

2k1B2τ
′
t

v2
)

N2 = (2k1B2

v2
− k2)− 2v1v2

(v1B2−v2B1)

(v21−v22)
(k1
v22

+ k1τ
′
tB

2
2)

N ′1 = k1
v21

+ k1τ
′
tB

2
1 − 2v1v2

(v1B2−v2B1)

(v21−v22)
(−k2τ

′
q +

2k1B1τ
′
t

v1
)

N ′2 = (2k1B1

v1
− k2)− 2v1v2

(v1B2−v2B1)

(v21−v22)
(k1
v21

+ k1τ
′
tB

2
1)

M1 = (τ
′2
q −

τ
′
t

v21
)(−k2τ

′2
q +

k1τ
′
t

v22
)

M2 = {(B1v1(τ
′2
q −

τ
′
t

v21
) + τ

′
q − 2B1τ

′
t ) + (τ

′2
q −

τ
′
t

v21
)(2v1v2(v1B2−v2B1)

(v21−v22)
+ 1

τ ′q
}

M ′
1 = (τ

′2
q −

τ ′t
v22

)(−k2τ
′2
q +

k1τ
′
t

v21
)

M ′
2 = {(B2v2(τ

′2
q −

τ
′
t

v22
) + τ

′
q − 2B2τ

′
t ) + (τ

′2
q −

τ
′
t

v22
)(2v1v2(v1B2−v2B1)

(v21−v22)
+ 1

τ ′q
}

Q1 = (−k2τ
′2
q +

k1τ
′
t

v1
)(− 1

τ
′
t

+ 1
v21τ
′2
q

),Q′1 = (−k2τ
′2
q +

k1τ
′
t

v2
)(− 1

τ
′
t

+ 1
v22τ
′2
q

)

Q2 = (−k2τ
′2
q +

k1τ
′
t

v1
)(− 1

τ
′
t

+ 1
v21τ
′2
q

)+(−k2τ
′2
q +

k1τ
′
t

v22
)( 2B1

v1τ
′2
q
− 1

τ ′qτ
′
t

)−2v1v2(v1B2−v2B1)

(v21−v22)
)(−k2τ

′2
q +

k1τ
′
t

v1
)(− 1

τ
′
t

+ 1
v21τ
′2
q

)

Q′2 = (−k2τ
′2
q +

k1τ
′
t

v2
)(− 1

τ
′
t

+ 1
v22τ
′2
q

)+(−k2τ
′2
q +

k1τ
′
t

v21
)( 2B2

v2τ
′2
q
− 1

τ ′qτ
′
t

)−2v1v2(v1B2−v2B1)

(v21−v22)
(−k2τ

′2
q +

k1τ
′
t

v2
)(− 1

τ
′
t

+ 1
v22τ
′2
q

)

From equation (5.47), we further obtain the non dimensional total stress in the

half space in Laplace transform domain as

σ̄(ξ, s) =
v21v

2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

{[P1
1

s
+ P2

1

s2
]e
−(B1+

s
v1

)ξ − [P ′1
1

s
+ P ′2

1

s2
]e
−(B2+

s
v2

)ξ}

− v21v
2
2

η′′τ ′t(v
2
1 − v22)

[(
N1

s
+
N2

s2
)e
−(B1+

s
v1

)ξ − (
N ′1
s

+
N ′2
s2

)e
−(B2+

s
v2

)ξ
] (5.56)

where

P1 = (−τ ′2q +
τ
′
t

v21
)(−k2τ

′2
q +

k1τ
′
t

v22
), P ′1 = (−τ ′2q +

τ
′
t

v22
)(−k2τ

′2
q +

k1τ
′
t

v21
)

P2 = {−(−τ ′2q +
τ
′
t

v21
)(−k2τ

′2
q +

k1τ
′
t

v22
)( 1
τ ′q

+ 2v1v2(v1B2−v2B1)

(v21−v22)
)+(−τ ′2q +

τ
′
t

v21
)(−k2τ

′
q+

2k1B2τ
′
t

v2
)+

(−τ ′2q +
τ
′
t

v21
)(−k2τ

′2
q +

k1τ
′
t

v22
)}
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P ′2 = {−(−τ ′2q +
τ
′
t

v22
)(−k2τ

′2
q +

k1τ
′
t

v21
( 1
τ ′q

+ 2v1v2(v1B2−v2B1)

(v21−v22)
)+(−τ ′2q +

τ
′
t

v22
)(−k2τ

′
q+

2k1B1τ
′
t

v1
)+

(−τ ′2q +
τ
′
t

v22
)(−k2τ

′2
q +

k1τ
′
t

v21
)}

This completes the solution in Laplace transform domain for the case of MTDPL-

II model.

5.5.1.2 Solution in physical domain

The solutions obtained in the previous section are given in Laplace transform do-

main. The solution of different fields in physical domain can be derived by inverting

the Laplace transforms involved in the expressions given by equations [(5.53)-(5.56)]

for MTDPL-II case. By applying suitable formulae of Laplace inversion, we finally

obtain the solution in physical domain for the case of MTDPL-II as follows:

θ(ξ, t) =
v21v

2
2

η′′(v21 − v22)
[e−B1ξ(N1H(t− ξ

v1
) +N2(t−

ξ

v1
)H(t− ξ

v1
))−

e−B2ξ(N ′1H(t− ξ

v2
) +N ′2(t−

ξ

v2
)H(t− ξ

v2
))] (5.57)

u(ξ, t) =
v31v

2
2

η′′ετ ′2q (v21 − v22)
e−B1ξ[F1(t−

ξ

v1
)H(t− ξ

v1
) + F2(t−

ξ

v1
)2H(t− ξ

v1
)]

− v31v
2
2

η′′ετ ′2q (v21 − v22)
e−B2ξ[M ′

1(t−
ξ

v1
)H(t− ξ

v1
) +M ′

2(t−
ξ

v1
)2H(t− ξ

v1
)] (5.58)

h(ξ, t) =
η3v

2
1v

2
2

η′′ε(v21 − v22)
{[Q1H(t− ξ

v1
) +Q2(t−

ξ

v1
)H(− ξ

v1
))]e−B1ξ

−[Q′1H(t− ξ

v2
) +Q′2(t−

ξ

v2
)H(t− ξ

v2
)]e−B2ξ} (5.59)

σ(ξ, t) =
v21v

2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

{[P1H(t− ξ

v1
) + P2(t−

ξ

v1
)H(t− ξ

v1
)]e−B1ξ

−[P ′1H(t− ξ

v2
)+(t− ξ

v2
)H(t− ξ

v2
)]e−B2ξ}− v21v

2
2

η′′τ ′t(v
2
1 − v22)

{[N1H(t− ξ

v1
)+N2(t−

ξ

v1
)H(t− ξ

v1
)]e−B1ξ
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−[N ′1H(t− ξ

v2
) +N ′2(t−

ξ

v2
)H(t− ξ

v2
)]e−B2ξ} (5.60)

5.5.2 Case-II: Magneto-thermoelastic dual phase-lag model-I
(MTDPL-I)

In a similar way like MTDPL-II, assuming s to be very large, we obtain the

solution of equation (5.48) for large s as

λ′1 = C2 + s+
B4

s
+O(s−2) (5.61)

λ′2 = (
G1√
s

+

√
s

c2
) +O(s

−3
2 ) (5.62)

where the different constants which are independent of s are given by

B4 = 16(2 + τ
′
t ) + 8τ

′2
q (1 + 2(1 + ε)2)− 1

2τ
′
t

− ε2τ
′2
q

16τ
′2
t

, C2 =
ετ
′
q

4τt′
;

G1 =
B2τ

′
q

2(2+ε)τ
′
t

, 1
c2

=
√

(2+ε)τ ′q

2τ
′
t

5.5.2.1 Solution in Laplace transform domain

From the same pattern as in case 5.1.1, applying τ ′2q = 0 and replacing λ1 with

λ′1 and λ2 with λ′2 in equations [(5.43),(5.45) and (5.46)] and in the expressions of

A and B we obtain the following results for MTDPL-I:

θ̄(ξ, s) =
1

η′′τ
′
t (−1 + 2G1

c2
)
[
S1

s2
+
S2

s3
]e−(s+C2)ξ

− 1

η′′τ
′
t (−1 + 2G1

c2
)
[
S ′1
s

+
S ′2
s2

]e
−(
√
s

c2
+

G1√
s
)ξ (5.63)

ū(ξ, s) =
1

η′′τ ′qτ
′
t ε

[
L1

s2
+
L2

s3
]e−(C2+s)ξ − c2

η′′τ ′qτ
′
t ε

[
L′1

s
3
2

+
L′2

s
5
2

]e
−(
√
s

c2
+

G1√
s
)ξ (5.64)

h̄(ξ, s) =
1

η′′τ ′qτ
′
t ε(1− 2G1

c2
)
[R1

1

s
+R2

1

s2
]e−(C2+s)ξ
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− 1

η′′τ ′qτ
′
t ε(1− 2G1

c2
)
[R′1

1

s
+R′2

1

s2
]e
−(
√
s

c2
+

G1√
s
)ξ (5.65)

where different notations are given by

S1 = (k1τ
′
t −

k2τ
′
q

c22
), S2 = (

−2G1k1k2τ
′
t τ
′
q

c2
−

(−2C2+
1

c22
)

(−1+ 2G1
c2

)
(k1τ

′
t −

k2τ
′
q

c22
));

S ′1 = k1τ
′
t , S ′2 = {(−k2τ

′
q + 2C2k1τ

′
t ) + k1τ

′
t

(−2C2+
1

c22
)

(−1+ 2G1
c2

)
};

L1 = τ
′
t (
k1τ
′
t

c22
− k2τ

′
q), L2 ==

2k1τ
′
t τ
′
qG1

c2
+ (

τ
′
t

c2
− τ ′q − C2τ

′
t )(−k2τ

′
q +

k1τ
′
t

c22
);

L′1 = (−τ ′q +
τ
′
t

c22
)(−k2τ

′
q + 2k1C2τ

′
t ), L′2 = k1τ

′
t (2C2 − 1

c2
)(τ

′
q −

τ
′
t

c22
)− c2G1(τ

′
q −

τ
′
t

c2
);

R1 = τ
′
t (
−k1τ

′
t

c22
− k2τ

′
t ), R2 = [

2G1k1τ
′2
t

c22
+ (2C2τ

′
t − τ

′
q)(−k2τ

′
q +

k1τ
′
t

c22
)];

R′1 = k1τ
′
t(−τ

′
q +

τ
′
t

c22
), R′2 = [

2G1k1τ
′2
t

c22
(−τ ′q +

τ
′
t

c22
)(−k2τ

′
q + 2k1C2τ

′
t )]

Similarly, we obtain the non dimensional total stress in Laplace transform domain

(from eq. (5.47)) for MTDPL-I model is given by

σ̄(ξ, s) =
1

η′′ετ
′
tτ
′
q

[{b1
s

+
b′1
s2
}e−(C2+s)ξ − {d

s
+
d′

s2
}e−(

G1√
s
+
√
s

c2
)
]

− 1

η′′τ
′
t (−1 + 2G1

c2
)
[
S1

s2
+
S2

s3
]e−(s+C2)ξ +

1

η′′τ
′
t (−1 + 2G1

c2
)
[
S ′1
s

+
S ′2
s2

]e
−(
√
s

c2
+

G1√
s
)ξ (5.66)

where

b1 = 2C2τ
′
t (
−2G1

c2
+ (−2C2 + 1

c2
))(−k2τ

′
q + 1

c22
)

b′1 = (−2G1

c2
+ (−2C2 + 1

c2
))(−k2τ ′q + 1

c22
)( 1
τ ′q

(−k2τ
′
q + 1

c22
) + 2G1

c2
(−2C2 + 1

c2
))

d = (2C2− 1
c2

)k1(1+τ
′
t )+2C2− 1

c2

τ
′
t

c22
(−k2τ

′
q+2k1C2τ

′
t )+(−k2τ

′
q+2k1C2τ

′
t )(

2G1τ
′
t

c2
−τ ′q)

d′ = ( 1
τ ′q

(−k2τ
′
q+2k1C2τ

′
t )+k1(1+τ

′
t )(−2C2+ 1

c2
))(

τ ′t
c22

)+(
2G1τ ′t
c2
−τ ′q)(2C2− 1

c22
)(−k2τ

′
q+

2k1C2τ
′
t )

This completes the solution in Laplace transform domain for the case of MTDPL-I

model.

5.5.2.2 Solution in physical domain

In a similar way like the case of MTDPL-II, the solution of different fields in phys-
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ical domain for this case can be derived by inverting the Laplace transform involved

in the expressions given by equations [(5.63)-(5.66)]. By using suitable formulae of

Laplace inversion, we obtain the solution in physical domain for the present case as

follows:

θ(ξ, t) =
1

η′′τ
′
t (−1 + 2G1

c2
)
e−C2ξ[S1(t− ξ)H(t− ξ) + S2(t− ξ)2H(t− ξ)]

− 1

η′′τ
′
t (−1 + 2G1

c2
)
[S ′1Erfc(

ξ

2c2
√
t
) + S ′24t i

2Erfc(
ξ

2c2
√
t
)] (5.67)

u(ξ, t) =
1

η′′τ
′
tτ
′
qε
e−C2ξ[L1(t− ξ)H(t− ξ) + L2(t− ξ)2H(t− ξ)]− c2

η′′τ
′
tτ
′
qε

[F1(4t)
1
2 i Erfc(

ξ

2c2
√
t
) + F2(4t)

3
2 i3Erfc(

ξ

2c2
√
t
)] (5.68)

h(ξ, t) =
1

η′′τ
′
tτ
′
qε(1− 2G1

c2
)
[R1H(t− ξ) +R2(t− ξ)H(t− ξ)]e−C2ξ

− 1

η′′τ
′
tτ
′
qε(1− 2G1

c2
)
[R′1Erfc(

ξ

2c2
√
t
) +R′24t i

2Erfc(
ξ

2c2
√
t
)] (5.69)

σ(ξ, t) =
1

η′′ετ
′
tτ
′
q

[e−C2ξ{b1H(t− ξ) + b′1(t− ξ)H(t− ξ)}

−{d Erfc( ξ

2c2
√
t
) + d′4t i2Erfc(

ξ

2c2
√
t
)}]− 1

η′′ετ
′
t (−1 + 2G1

c2
)
e−C2ξ

[S1(t−ξ)H(t−ξ)+S2(t−ξ)2H(t−ξ)]+ 1

η′′ετ
′
t (−1 + 2G1

c2
)
[S ′1Erfc(

ξ

2c2
√
t
)+S ′24ti

2Erfc(
ξ

2c2
√
t
)]

(5.70)

where inErfc(z) =
´∞
z
in−1erf(x)dx, i0Erfc(z) = Erfc(z), i−1Erfc(z) = 2√

π
e−z

2

5.6 Analysis of analytical results

The solution obtained in the sections 5.5.1.2 and 5.5.2.2 for different fields in the

physical domain indicate some significant informations predicted by two different
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models of dual phase-lags. From the short time approximated solutions given by

equations (5.57)-(5.60) in the context of MTDPL-II model and the solutions given by

(5.67)-(5.70) in the case of MTDPL-I, we can observe that the solution of each field

consists of two parts under both the theories of magneto-thermoelasticity (MTDPL-I

and MTDPL-II); one part of solution is modified elastic and the other one is modified

thermal in nature. In the case of MTDPL-I model, the terms containing H(t − ξ)

represent modified elastic wave propagating with speed unity. Hence, in this case

we conclude that the non dimensional speed of elastic wave is finite and equal to

1, which imply that non dimensional speed of elastic wave is not effected by any

of the phase-lag parameters τ ′q and τ
′
t and it is also independent from the effect

of magnetic field. We further note that the modified elastic wave in this case is

propagating with an attenuation and C2 is the attenuating coefficient of this wave.

From the expression of C2, it is evident that the attenuation coefficient is clearly

dependent on phase-lag parameters τ ′q and τ
′
t in such a manner that on increasing τ ′q,

attenuation coefficient increases and when we increase τ ′t , the value of attenuation

coefficient decreases. Attenuation coefficient is also dependent on the magnetic field

(see eq. (5.61)). It is observed that the value of attenuation coefficient decreases

when magnetic field increases. The other part of solutions of each field in case of

MTDPL-I theory is not wave type, but a diffusive type and imply that the speed

of thermal wave is not finite in this case. The solution is however influenced by the

presence of magnetic field.

The solution under MTDPL-II model are completely different in nature. In this

case, solution of each field like, displacement, temperature, total stress consists of

two different waves propagating with finite speeds and attenuating with distance.

Here, v1 and v2 are the finite speeds of the modified elastic and modified thermal

waves, respectively (since v1 < v2). Accordingly, in the solutions of temperature,
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displacement and stress under MTDPL-II, the terms which contain H(t− ξ
v1

), rep-

resent the contribution of elastic mode wave in the neighborhood of the wavefront

ξ = v1t; similarly the terms containing H(t − ξ
v2

) represent the incorporation of

thermal mode wave in the neighborhood of wavefront ξ = v2t. The expressions for

the speeds denote that both the speeds are influenced by the two phase lags τ ′q and

τ ′t and both are effected by magnetic field too. Furthermore B1 and B2 represent

attenuation coefficients for the modified elastic wave and modified thermal wave,

respectively. B1 and B2 both are dependent on two phase lags and also both are

dependent on magneto-thermoelastic coupling constant ε. This implies that the

speed and attenuation of both the waves are influenced by the magnetic field under

MTDPL-II model.

Furthermore we observe in case of MTDPL-II that the physical fields such as

temperature, stress and perturbed magnetic field have discontinuities with finite

jumps at both the elastic and thermal wave fronts but displacement is continuous

at both the wave fronts (see equations (5.57)-(5.60)).

However, in the context of MTDPL-I model, we find different results. We ob-

serve here that only stress and perturbed magnetic field are discontinuous with finite

jumps at elastic wavefront but temperature and displacement are free from any dis-

continuities (see equations (5.67)-(5.70)). This result is also in contrast with the

results of Roychoudhuri and Banerjee (Mukhopadhyay) (1996) in which Lord Shul-

man model (LS model) has been used and in that model we see that temperature,

stress and perturbed magnetic field suffer from discontinuities with finite jumps at

both the elastic and thermal wave fronts and only displacement is free from any

discontinuities. This indicates a distinct feature of dual-phase-lag model-I.

The finite jump discontinuities at the elastic wave front in MTDPL-I model and

the finite jump discontinuities at elastic and thermal wave fronts in case of MTDPL-
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II model for different fields are obtained as follows:

Finite jumps under MTDPL-II model:

[θ+ − θ−]ξ=v1t =
v21v

2
2

η′′(v21−v22)
[N1e

−B1v1t], [θ+ − θ−]ξ=v2t =
−v21v22

η′′(v21−v22)
[N2e

−B2v2t]

[h+ − h−]ξ=v1t =
η3v21v

2
2

η′′ε(v21−v22)
{[Q1e

−B1v1t], [h+ − h−]ξ=v2t =
−η3v21v22
η′′ε(v21−v22)

{[Q′1e−B2v2t]

[σ+ − σ−]ξ=v1t =
v21v

2
2

η′′ετ ′2q τ
′
t (v

2
1−v22)

[P1e
−B1v1t]− v21v

2
2

η′′τ
′
t (v

2
1−v22)

{[N1e
−B1v1t]

[σ+ − σ−]ξ=v2t = −[
v21v

2
2

η′′ετ ′2q τ
′
t (v

2
1−v22)

[P ′1e
−B2v2t]− v21v

2
2

η′′τ
′
t (v

2
1−v22)

[N ′1e
−B2v2t]]

Finite jumps in the context of MTDPL-I model:

[σ+ − σ−]ξ=t = 1

β′′ετ ′qτ
′
t

[b1e
−C2t]− 1

η′′ετ
′
t (−1+

2G1
c2

)
[S1e

−C2t]

[h+ − h−]ξ=t = 1

η′′τ
′
t τ
′
qε(1−

2G1
c2

)
[R1e

−C2t]

5.7 Numerical results and discussion

In the previous section, we made attempt to derive short-time approximated ana-

lytical results predicted by two models MTDPL-I and MTDPL-II that represent the

effects of magneto-thermo-elastic interaction and highlighted the effects of phase-

lag parameters and presence of magnetic field. However in the present section, we

aim to illustrate the problem and instead of short-time approximated solutions,

we study the behaviour of numerical values of the physical fields like temperature,

displacement and stress and perturbed magnetic field with distance under two dif-

ferent models: MTDPL-I and MTDPL-II model. Here, we employ the numerical

method proposed by Bellmen et al. (1966) for the inversion of Laplace transforms,

and compute the numerical values of these physical quantities by directly solving

equations (5.43)-(5.48) numerically. We have used software Mathematica for our

computational work. The results are plotted for MTDPL-I and MTDPL-II models

separately to show the behavior of the fields at three non-dimensional times 1.21,

0.69 and 0.13. In order to observe the effects of magnetic field, we also plot the

corresponding results under DPL-I and DPL-II models by assuming the magnetic
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parameters in our solution to be zero. We have chosen the copper material for our

numerical computation. We have used the following physical data for the copper

material: k = 1.14cm2/s, T0 = 20oc, H3 = 104oersted;

λ = 1.387× 1012dyn/cm2, µ = 0.448× 1012dyn/cm2, ρ = 8.930g/cm3;

µ0 = 1, αt = (16.5× 10−6)oc−1

We further assume the following dimensionless values

σ′0 = σ0
γT0

= 1, θ′0 = θ0
T0

= 1, τ ′q = 0.2, τ ′t = 0.15

5.7.1 Behavior of temperature under MTDPL-I and
MTDPL-II

It is clear from Figures 5.1, 5.2 and 5.3 that the results of temperature field

under DPL-I and MTDPL-I are almost the same. Similarly, the results of DPL-II

and MTDPL-II are also in complete agreement. However, the results under DPL-I

and MDPL-I are significantly different with the results under DPL-II and MTDPL-

II models. This imply that although the effect of magnetic field is not prominent

in the behavior of temperature field under MTDPL-I and MTDPL-II models, but

there are significant differences among the results of two different theories (MTDPL-

I and MTDPL-II). This difference decreases as the time decreases. Although, the

behavior of temperature is in decreasing trend in all figures but we observe that

the non-dimensional temperature field achieves negative value before approaching

to zero value in MTDPL-II but it is always positive in MTDPL-I case.

5.7.2 Behavior of displacement under MTDPL-I and
MTDPL-II

Figs. 5.4, 5.5 and 5.6 represent the nature of displacement field at various times

t = 1.21, 0.69 and 0.13 for MTDPL-I and MTDPL-II models. Here, the effect of

magnetic field is prominent in both the cases (MTDPL-I and MTDPL-II) at all
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three times, although its effect gradually decreases as the distance from boundary

increases. The consequence of the presence of magnetic field is in such a manner

that the value of displacement becomes less in the presence of magnetic field at

higher time but this behavior becomes opposite at smaller time (i.e., at t = 0.69

and τ = 0.13). Here,the value of displacement becomes greater when we consider

the presence of magnetic field in the medium. This fact is evident for both the

theories MTDPL-I and MTDPL-II. Furthermore, the maximum numerical value of

displacement is greater in MTDPL-II model in comparison to the results under

MTDPL-I model and there is a prominent difference in predictions by MTDPL-I

and MTDPL-II models.

5.7.3 Behavior of stress under MTDPL-I and MTDPL-II

Figures 5.7, 5.8 and 5.9 exhibit the nature of stress field at different times 1.21

and 0.69 and 0.13 predicted by two models. It is noted that the influence of magnetic

field is significant on the nature of stress field in the contexts of both the models.

In the absence of magnetic field, when the distance ξ = 0, the value of stress is 1 at

all three times in cases of MTDPL-I and MTDPL-II models but in the presence of

magnetic field, the value of stress becomes greater than 1 under both the theories.

Furthermore, we also observe that the minimum value of stress in case of MTDPL-I

is greater than the minimum value of stress in case of MTDPL-II at higher times,

i.e., at t =1.21 and t = 0.69 (see Figures 5.7 and 5.8). However, Fig. 5.9 indicates

that at very small time, the minimum value of stress in case of MTDPL-I is less

than the minimum value of stress under MTDPL-II model.
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Furthermore, the difference between two models decreases as time decreases.

5.7.4 Behavior of perturbed magnetic field under MTDPL-I
and MTDPL-II

Figs. 5.10, 5.11 and 5.12 display the nature of perturbed magnetic field at differ-

ent times 1.21 and 0.69 and 0.13 for two models. Here the difference between the

predictions by two models is significant. Minimum value of perturbed magnetic field

in MTDPL-II is less than minimum value of perturbed magnetic field for MTDPL-I,

however maximum value of perturbed magnetic field in MTDPL-II is greater than

maximum value of perturbed magnetic field for MTDPL-I.
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Figure 5.1 Variation of temperature distribution with distance at t =
1.21

Figure 5.2 Variation of temperature distribution with distance at t =
0.69
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Figure 5.3 Variation of temperature distribution with distance at t =
0.13

Figure 5.4 Variation of displacement with distance at t = 1.21
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Figure 5.5 Variation of displacement with distance at t = 0.69

Figure 5.6 Variation of displacement with distance at t = 0.13
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Figure 5.7 Variation of stress with distance at t = 1.21

Figure 5.8 Variation of stress with distance at t = 0.69
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Figure 5.9 Variation of stress with distance at t = 0.13

Figure 5.10 Variation of perturbed magnetic field with distance at t =
1.21
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Figure 5.11 Variation of perturbed magnetic field with distance at t =
0.69

Figure 5.12 Variation of perturbed magnetic field with distance at t =
0.13
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5.8 Conclusions

In the present work, we employed dual phase-lag magneto-thermoelasticity theory

and studied a problem of elastic half space with finite conductivity permeated by

a uniform magnetic field. The boundary of the half space is subjected to a normal

load and a thermal shock that originate magneto-thermoelastic waves inside the

medium.

We have presented a thorough analysis of the effects of magnetic field on wave

propagation, and to investigate the nature of distributions of different fields like

temperature, displacement, stress and perturbed magnetic field in the media in

contexts of two models of magneto-thermoelasticity with dual phase-lags, namely

MTDPL-I model and MTDPL-II model. The numerical values of distributions of

the physical fields for a suitable material have also been computed and displayed in

graphical forms.

Significant differences among the analytical results predicted by two models MTDPL-

I and MTDPL-II are observed. In the case of MTDPL-I, we found that solution of

each field consists of two parts. The first one is a wave part that is identified as

modified elastic wave and the second part is not wave type, but of diffusive type.

The non-dimensional speed of elastic wave is found to be finite and equal to 1,

i.e. the dimensionless speed of elastic wave is not effected by any of the phase-lag

parameters τ ′q and τ
′
t and it is also independent from the effect of magnetic field.

But the attenuation coefficient of modified elastic wave is dependent on phase-lag

parameters τ ′q and τ ′t . However, we note that the solution of each field variable in

case of MTDPL-II model consists of two coupled waves: modified elastic and mod-

ified thermal wave. The non-dimensional speed of both the waves are finite and

dependent on phase-lag parameters τ ′q and τ
′
t and magnetic field too. Furthermore,

32



we observe that temperature, stress and perturbed magnetic fields have discontinu-

ities with finite jumps at both the elastic and thermal wave fronts and displacement

is observed to be continuous in nature at both the wavefronts in the context of

MTDPL-II model. However, we obtain different results under MTDPL-I model.

We observe here that in this case, only stress and perturbed magnetic field show

discontinuities having finite jumps at elastic wave front but the temperature and

displacement are free from any discontinuities.

We also observe significant differences in the numerical results predicted by two

different models. It is noted that the non dimensional temperature achieves negative

value for a region before approaching to zero value in MTDPL-II but it is always

positive under MTDPL-I case. While observing the nature of stress, it is found that

the minimum value of stress in MTDPL-I is greater than the minimum value of

stress in MTDPL-II at higher time, although during initial time of interaction, the

minimum value of stress in MTDPL-I is less than the minimum value of stress in

MTDPL-II. Furthermore, the maximum numerical value of displacement is greater

in case of MTDPL-II as compared to the case of MTDPL-I.

Magnetic field is not prominently effective in the distribution of temperature in

the contexts of both the MTDPL-I and MTDPL-II models, however, the stress field

and displacement field are effected by the presence of magnetic field under both the

models.
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