
Chapter-4

Study of electro-magneto thermoelastic
wave propagation

14.1 On electro-magneto-thermoelastic plane waves
under Green- Naghdi theory of thermoelasticity-II

4.1.1 Introduction

The present section attempts to investigate the propagation of electro-magneto-

thermoelastic plane waves in an unbounded isotropic thermally and electrically con-

ducting media with finite conductivity in the context of type-II theory of thermoe-

lasticity by Green and Naghdi (1992). During 1991-1995, Green and Naghdi have

introduced their theory as an alternative way. The propagation of heat has been

modeled in a very elegant way to produce a fully consistent theory of thermoelastic-

ity. The theory proposed by Green and Naghdi (1991, 1992, 1993, 1995) has been

categorized into three parts which have been labeled as I, II and III. Type I is similar

to the classical theory of thermoelasticity having infinite speed of wave propagation.

Type II describes the finite speed of wave as a special case of type III i.e. in the heat

equation of type III, the heat flux is the combination of type I and II. In addition,

type II theory predicts the transmission of heat as thermal waves at finite speeds.

It must be mentioned here that propagation of electromagnetic waves in thermoe-

lastic materials is a very interesting topic for researchers due to its several applica-

tions in various fields of science and technology namely thermal power plants, atomic

physics, industrial engineering, submarine structures, aerospace etc. Paria (1962)
1This work is published to “Journal of Thermal Stresses”.
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and Wilson (1963) have used the heat conduction equation predicted by Fourier

law along with the electromagnetic theory to explain harmonically time dependent

plane waves of assigned frequency in a homogeneous, isotropic and unbounded solid.

Agarwal (1979), Neyfeh and Nemat-Nessar (1972) have investigated electromagnetic

plane waves in solids in context of generalized thermoelasticity theory. Roychoud-

huri (1984) and Roychoudhuri and Debnath (1983) have presented propagation of

magneto-thermoelastic plane waves in rotating thermoelastic media permeated by

a primary uniform magnetic field using generalized thermoelasticity of Lord and

Shulman (1967). Chandrasekharaiah (1996) has studied propagation of harmonic

plane wave in an unbounded medium by applying GN-II theory of thermoelasticity.

Roychoudhuri and Banerjee (Chattopadhyay) (2005) have reported magneto-elastic

plane waves in rotating media under thermoelasticity of type-II model. Das and

Kanoria (2009) also studied magneto-thermo-elastic waves in a medium with perfect

conductivity in the context of Green and Naghdi-III theory. Kothari and Mukhopad-

hyay explained the propagation of thermoelastic plane waves by employing Green

and Naghdi-III theory of thermoelasticity. Prasad and Mukhopadhyay (2012) have

reported a study of propagation of plane waves in rotating elastic medium under

two temperature thermoelasticity with relaxation time parameter.

Green-Naghdi type II theory accounts for a finite speed for thermal signal. How-

ever, there is no internal energy dissipation in this model. Hence, it can be identified

as an interesting model to investigate the effects of the interactions of thermal and

magnetic fields with mechanical strain field. Due to several applications of plane

waves in various fields, we have attempted to present a detailed study of electro-

magneto-thermoelastic plane waves in the presence of magnetic field in the context of

Green and Naghdi type-II theory of thermoelasticity. Specially, we consider that the

medium is of finite electrical conductivity and accounts for the Thomson effect. Ba-
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sic governing equations are modified by employing Green-Naghdi theory of type-II.

Problem has been solved by dividing it into two sub systems to extract both longitu-

dinal and transverse waves propagating through the medium. The first system that

corresponds to the longitudinal wave is found to be coupled with the thermal field.

However, the second system represents transverse wave that is uncoupled with the

thermal field. Both waves are observed to be affected with the magnetic field. The

nature of all identified waves are investigated in a detailed way by deriving analyt-

ical solution for dispersion relations. Asymptotic expansions of dispersion relation

solutions and various components of plane waves like, phase velocity, specific loss

and penetration depth are derived for high and low frequency values in all cases. In

order to observe the nature of waves in a more clear way and illustrate the analytical

results, we further carry out numerical solutions of the problem.The limiting behav-

ior of longitudinal and transverse waves are investigated. Several points highlighting

the effects of magnetic field on the behavior of different waves propagating through

the medium have been presented. The results of present study are compared with

the results of thermoelastic case and a detailed analysis on the effects of presence of

the magnetic field under this theory has been presented. The present study is be-

lieved to enhance the understanding of thermoelasticity without energy dissipation

theory for magneto-thermoelastic problems.

4.1.2 Formulation of the problem and governing
equations

We consider a problem of an infinite, homogeneous, isotropic, thermally and

electrically conducting solid. Assuming a fixed rectangular Cartesian coordinate

system xi, i = 1,2,3; we describe our problem with the following governing equations:
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Equations of motion:

Tij,j + (
−→
J ×

−→
B )i + ρeEi = ρüi (4.1.1)

such that i,j = 1,2,3

where Tij = λeδij +µ(ui,j +uj,i)− γθδij defines the stress-strain and temperature

relation.

Tij are the Cartesian components of the linear stress tensor. ρe and ρ are the

charge density and constant mass density, respectively. Comma followed by sub-

script implies partial derivative with respect to the corresponding coordinate and

superposed dot denotes the partial time derivatives. The term (
−→
J ×
−→
B )i in equation

(4.1.1) occurs due to the Lorentz force which arises due to the interaction between

electric and magnetic fields; where
−→
J is the electric charge density vector and

−→
B is

the magnetic flux density vector. Ei is component of electric flux density vector.

Equation of heat conduction:

Since we are employing Green and Naghdi type-II theory of thermoelasticity in

our problem, the heat conduction equation can be writen as

ρCvθ̈ + γθ0ë = K?∇2θ − π?0Ji,i (4.1.2)

where the terms used in the above equations are defined as below:

Cv is the specific heat at constant strain, θ0 is the reference temperature.π?0 is the

new material parameter characteristics of GN-II theory for magneto-thermoelastic

problem.π?0 may be termed as rate of Peltier coefficient, where Peltier coefficient is

the material parameter connecting the charge density with the heat flow density.
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Since we have taken the media affected with magnetic field, hence equations

(4.1.1) and (4.1.2) have to be supplemented by Maxwell equations of electro-magneto-

thermoelasticity which can be stated as follows:

−→
∇ ×

−→
H =

−→
J +

−̇→
D (4.1.3)

−→
∇ ×

−→
E = −

−̇→
B (4.1.4)

−→
∇ .
−→
B = 0 (4.1.5)

−→
∇ .
−→
D = ρe (4.1.6)

−→
B = µe

−→
H (4.1.7)

−→
D = ε

−→
E (4.1.8)

Further, the modified Ohm’s law is given by

−→
J = σ[

−→
E + −̇→u ×

−→
B ] + ρe

−̇→u − k0
−→
∇θ (4.1.9)

where
−→
H is the magnetic intensity vector,

−→
D is the electric flux vector, µe, ε are

magnetic permeability and electric permittivity, respectively. σ is the electric con-

ductivity. −→u is the displacement vector and k0 is the coefficient which connects the

electric current and the temperature gradient which is known as Seebeck coefficient.

The combined effect of Peltier coefficient and Seebeck coefficient is recognized as
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Thomson effect. This is notable point of our work that we have considered Thom-

son effect of interaction through Peltier and Seebeck coefficients in the governing

equations. In most of the work on magneto-thermoelasticity, this effect is ignored

due to simplicity.

Now, if we attempt to eliminate ρe,
−→
J ,
−→
B ,
−→
D from the equations (4.1.3)-(4.1.9)

and equations (4.1.1), (4.1.2), we obtain a system of non linear equations. We can

linearize them by setting
−→
H =

−→
H0 +

−→
h , where

−→
h represents the alteration in the

basic magnetic field
−→
H0. By assuming this, we achieve the following basic equations:

(
−→
∇ ×

−→
h ) = σ[

−→
E + µe(

−̇→u ×
−→
H0)]− k0

−→
∇θ + ε

−̇→
E (4.1.10)

(
−→
∇ ×

−→
E ) = −µe

−̇→
h (4.1.11)

ρ−̈→u =
−→
∇ .
−→
T + µeσ(

−→
E ×

−→
H0) + µ2

eσ(
−̇→u ×

−→
H0)×

−→
H0 − µek0(

−→
∇θ ×

−→
H0) (4.1.12)

ρCvθ̈ + γθ0ë = K?∇2θ + π?0ε(
−→
∇ .Ė) (4.1.13)

Here, we have neglected the products of
−→
h ,−→u ,

−→
E ,θand their derivatives for con-

sidering the problem as linear.

After eliminating
−→
h from equations (4.1.10), (4.1.11), we obtain the following

relation:

∇2−→E −
−→
∇(
−→
∇ .
−→
E ) = µeσ[

−̇→
E + µe(

−̈→u ×
−→
H0)]− µek0

−→
∇ θ̇ + µeε

−̈→
E (4.1.14)

Above equations (4.1.12)-(4.1.14) constitute a system of linearized equations which

are related with the displacement, thermal and electric fields.
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4.1.3 Non-dimensionalization of basic governing
equations

While doing our analysis, in order to simplify and parametrize our problem, we

introduce the following non dimensional quantities:

K? = ρCvc
2
0; c20 =

λ+2µ
ρ

; a = γθ0
µ
; g = γ

ρCv
; θ = θ0θ

′;

s′ = c20εµe; α = λ+2µ
µ

; εθ =
ag
α2 ; εe =

µeH2

ρc20
; t = t′

ω?
; u = u′c0

ω?
;

x = c0x′

w?
;
−→
E = Hµec0

g
ν = 1

σµe
; ν ′ = νω?

c20
; k′ = gk0θ0

H
; π? =

π?0εHµe
gρCvθ0

−→
H0 = H−→n such that n = (n1, n2, n3) denotes a unit vector in the direction of

−→
H0

and H is the magnitude of
−→
H0. ν

′ denotes the measure of magnetic viscosity. εe and

εθ are the magneto-thermo-elastic and thermoelastic coupling coefficients and ω? is

the characteristic frequency of the medium.

Now, introducing above non dimensional quantities in the equations (4.1.12)-

(4.1.14), we reach the following dimensionless field equations, respectively

ν ′α2üi = ν ′(α2−1)e,i+ν ′∇2ui−ν ′α2εθθ,i+α
2εe{(

−→
E×−→n )+(−̇→u×−→n )×−→n−ν ′k′(

−→
∇θ×−→n )}i

(4.1.15)

θ̈ − θ,ii + ë = π?(
−→
∇ .
−̇→
E ) (4.1.16)

ν ′s′
−̈→
E +

−̇→
E + (−̈→u ×−→n )− ν ′k′

−→
∇ θ̇ = ν ′∇2−→E − ν ′

−→
∇(
−→
∇ .
−→
E ) (4.1.17)

Primes have been removed from dimensionless quantities u′, t′, x′, θ′ for the shake

of clarity. We further use above equations (4.1.15)-(4.1.17) for solving our problem.

4.1.4 Dispersion relation and plane wave solutions

As we have taken an isotropic solid, so without any loss in generality, we may
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assume that waves are propagating in the x1direction only. There are three compo-

nents of displacement and electric field of wave namely (u1, u2,u3) and (E1, E2,E3),

respectively and they are acting in the directions x1,x2,x3, respectively. Further, we

assume that the magnetic field is functioning in the x1x3 plane i.e. −→n =(n1, 0,n3).

The choice of magnetic field is considered in such a manner that it does not effect

the significant characteristics of our problem. We assume that all the field variables

are the functions of x = (x1) and time t.

Applying all assumptions stated above in the equations (4.1.15)-(4.1.17), we ob-

tain the following seven equations:

ν ′ü1 = ν ′u′′1 − ν ′εθθ′ + εen3(E2 + n1u̇3 − n3u̇1) (4.1.18)

ν ′α2ü2 = ν ′u′′2 + εeα
2(n1E3 − n3E1 − u̇2 − ν ′k′n3θ

′) (4.1.19)

ν ′α2ü3 = ν ′u′′3 − εeα2n1(E2 + n1u̇3 − n3u̇1) (4.1.20)

θ̈ + ü′ − θ′′ = π?Ė ′1 (4.1.21)

ν ′s′Ë1 + Ė1 + n3ü2 − ν ′k′θ̇′ = 0 (4.1.22)

ν ′s′Ë2 + Ė2 + n1ü3 − n3ü1 = ν ′E ′′2 (4.1.23)

ν ′s′Ë3 + Ė3 − n1ü2 = ν ′E ′′3 (4.1.24)

In above equations, the primes represent differentiation with respect to the x1-
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coordinate.

Further, we implement some conditions in above equations as given below.

We assume that magnetic field is directed only towards x1- direction i.e. n3 = 0

and we have taken n1 = 1. With the help of this assumptions, we achieve the

following set of equations:

ü1 = u′′1 − εθθ′ (4.1.25)

ν ′α2ü2 = ν ′u′′2 + εeα
2(E3 − u̇2) (4.1.26)

ν ′α2ü3 = ν ′u′′3 − εeα2(E2 + u̇3) (4.1.27)

θ̈ + ü′ − θ′′ = π?Ė ′1 (4.1.28)

ν ′s′Ë1 + Ė1 − ν ′k′θ̇′ = 0 (4.1.29)

ν ′s′Ë2 + Ė2 + ü3 = ν ′E ′′2 (4.1.30)

ν ′s′Ë3 + Ė3 − ü2 = ν ′E ′′3 (4.1.31)

Now, subtracting equation (4.1.30) from equation (4.1.31 ) and adding equations

(4.1.26) and (4.1.27), we obtain

ν ′s′ ¨(E2 − Ë3) + (Ė2 − Ė3) + ü3 + ü2 = ν ′(E ′′2 − E ′′3 ) (4.1.32)
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ν ′α2(ü2 + ü3) = ν ′(u′′2 + u′′3) + εeα
2((E3 − E2)− (u̇2 + u̇3)) (4.1.33)

Let us now assume E2−E3 =M and u2+u3 = N . Hence, above equations imply

ν ′s′M̈ + Ṁ − ν ′M ′′ + N̈ = 0 (4.1.34)

ν ′α2N̈ − ν ′N ′′ + εeα
2(M + Ṅ) = 0 (4.1.35)

In what follows, we are going to deal with the five equations, namely equations

(4.1.25), (4.1.28), (4.1.29) and equations (4.1.34) and (4.1.35).

As we observe that equations (4.1.34) and (4.1.35) are independent with the

thermal field and these equations are coupled by two fields mechanical (elastic) field

and electrical field. Hence, the solutions of these two equations will constitute two

kinds of waves elastic (mode) wave and electrical mode wave. However, equations

(4.1.25), (4.1.28) and (4.1.29) are undoubtedly affected with the thermal field. Due

to this reason, we subdivide these five equations in two separate cases:

4.1.4.1 Case-I

This subsection contains the case in which system of equations are coupled with

the temperature field. The equations for this are:

ü1 = u′′1 − εθθ′ (4.1.36)

θ̈ + ü′ − θ′′ = π?Ė ′1 (4.1.37)

ν ′s′Ë1 + Ė1 − ν ′k′θ̇′ = 0 (4.1.38)
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This system preserves the longitudinal waves in nature. Here, the equations are

affected with the x1−component of electric field i.e. E1.

Solutions:

For finding the solutions of above equations, we take

u = a1e
i(−qx+ωt), θ = a2e

i(−qx+ωt), E1 = a3e
i(−qx+ωt) (4.1.39)

where q is the wave number and ω is the angular frequency of plane waves. Here,

we have assumed that ω is real and q may be complex quantity, where Im(q) ≤ 0

must hold for waves to be physically realistic.

Applying the quantities given by (4.1.39) in the equations given by (4.1.36)-

(4.1.38) and solving them for a1, a2, a3 we obtain the following dispersion relation

for case-I:

z4[1+ν ′2ω2(s′+πk′)2]− z2[P − iQ]+ (1+ν ′2s′ω2(s′+π?k′))− iν ′ωπk′ = 0 (4.1.40)

where z = q
ω
and P = ν ′2ω2[π?k′s′+2s′2 + s′2εθπ

?2k′2 +2s′k′π?+ s?k′π?εθ] + (2+

εθ), Q = ν ′ω[k′π?(1 + εθ)]

In order to obtain solution of equation (4.1.40), we can write it in the following

form:

[1 + ν ′2ω2(s′ + πk′)2]z2 = P − iQ±
√
X + iY (4.1.41)

where X =
√
P 2 −Q2 − 4{(1 + ν ′2ω2(s′ + π?k′)2)(1 + ν ′2s′ω2(s′ + π?k′))}

Y = −2PQ+ 4ν ′ωπ?k′(1 + ν ′2ω2(s′ + π?k′)2)

P and Q are already defined above.
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Asymptotic expressions for wave number:

Solution of equation (4.1.41) yields the solution for q. Out of four possible solu-

tions for q, only two solutions (q1,2) correspond to Im(q) ≤ 0. These two solutions

represent two different kinds of waves - modified (quasi) magneto-thermal wave and

modified (quasi) magneto-elastic wave. Both the waves are longitudinal in nature.

Since equations (4.1.36), (4.1.37) and (4.1.38) are coupled with the elastic field,

magnetic field as well as temperature field and we are obtaining dispersion relation

(equation (4.1.41)) from these three equations. So the waves obtained from equation

(4.1.41) are not purely elastic and not purely thermal in nature; they are affected

with the magnetic field parameters also. Due to this reason, waves are named as

modified (quasi) magneto-thermal wave and modified (quasi) magneto-elastic wave.

Now, by using theorem of complex analysis and after a long calculation, we will

derive the following approximated solutions for the cases of very high and low fre-

quency values.

High Frequency asymptotes: Assuming ω to be very large and solving

equation (4.1.41), we obtain the high frequency asymptotic expressions for q as

q1 =
1

2ν ′(s′ + π?k′)
[

√
A1 +

√
(A2

1 − 4ν ′4s′(s′ + π?k′)2)ω[1+{A7

4
− 1

2(ν ′(s′ + π?k′))2
} 1

ω2
]−i

√
A1 +

√
(A2

1 − 4ν ′4s′(s′ + π?k′)2)A8

2
[1 + { B8

2A8

− 1

2(ν ′(s′ + π?k′))2
} 1

ω2
]], ω →∞

(4.1.42)
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q2 =
1

ν ′(s′ + π?k′)
[
√
a1ω[1 + {

4a21a2 + b21
8a21

− 1

2(ν ′(s′ + π?k′))2
} 1

ω2
]− i

√
a1c1
2

[1 + { c2
2c1
− 1

2(ν ′(s′ + π?k′))2
} 1

ω2
]], ω →∞ (4.1.43)

Low frequency asymptotes:

Similarly, assuming ω to be very small and solving equation (4.1.41), we obtain

the low frequency asymptotic expressions for q as

q1 = ω

√
a

2
[1 + (

m7

2
+

b2

8a2
− (ν ′(s′ + π?k′))2

2
)ω2]− iω

√
b

a

[1− {a
2m8

2b2
+

(ν ′(s′ + π?k′))2

2
}ω2}], ω → 0 (4.1.44)

q2 = ω

√
a′

2
[1− {2P2a

′2

b′2
+

(ν ′(s′ + π?k′))2

2
}ω2]− iω2

√
b′

2a′

[1 + {2P2a
′2

b′2
+

(ν ′(s′ + π?k′))2

2
}ω2], ω → 0 (4.1.45)

where various notations used are defined as

A1 = ν ′2[3π?k′s′ + s′εθ(s
′ + π?k′) + 2s′2 + π?

2
k′2];

A2 = [2A2
1 − 8ν ′4s′(s′ + π?k′)2)(A1(4 + εθ)−B2

1 − 4ν ′2(2s′2 + π?
2
k′2 + 3s′π?k′)] +

(4ν ′3π?k′(s′ + π?k′)2 − 2A1B1)
2;

A3 =
A2+2{A1(4+εθ)−B2

1−4ν′2(s′(s′+π?k′)+(s′+π?k′)2)}
4(A2

1−4ν′4s′(s′+π?k′)2)

A4 =
A2−2[A1(4+εθ)−B2

1−4ν′2(s′(s′+π?k′)+(s′+π?k′)2)]

2
√
2(A2

1−4ν′4s′(s′+π?k′)2)
;
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A5 = 1 + A1√
(A2

1−4ν′4s′(s′+π?k′)2)
; A6 = 1 + B1

(
√

2(A2
1−4ν′4s′(s′+π?k′)2))

; A7 = B5

A5
+

A2
6A4+2A5B5

2A2
5

;

A8 = −B5

A5
+ (

A2
6A4+2A5B5

2A2
5

)2; B1 = ν ′π?k′(1 + εθ);

B2 = [A1(4+εθ)−B2
1−4ν ′2s′2]2+2(4ν ′3π?k′(s′+π?k′)2−2A1B1)(4π

?ν ′k′−B1(4+

2εθ));

B3 =
4(ε2θ+4εθ)(A

2
1−4ν′4s′(s′+π?k′)2)−A2

2+2B2
2

4(A2
1−4ν′4s′(s′+π?k′)2)2

, B4 =
−4(ε2θ+4εθ)(A

2
1−4ν′4s′(s′+π?k′)2)−A2

2+2B2
2

2
√
2(A2

1−4ν′4s′(s′+π?k′)2)
;

B5 =
1
2
[A3 +

2+εθ√
(A2

1−4ν′4s′(s′+π?k′)2)
], B6 =

B4

A4
;

B8 =
−1
4
[
A2

6A4+2A5B5

A2
5

]2+1
2
[
2A4A6B6+B2

5+2A5B5

A2
5

], a1 = 4
√
2[A1−

√
(A2

1 − 4ν ′4s′(s′ + π?k′)2)];

a2 =
(4+2εθ)−A3

√
(A2

1−4ν′4s′(s′+π?k′)2)
2

, b1 = ν ′π?k′(1+εθ)−
√
{A4(A2

1 − 4ν ′4s′(s′ + π?k′)2)};

b2 =
B4

√
{A4(A2

1−4ν′4s′(s′+π?k′)2)}
A4

, c1 =
1
2
[−a2
a1

+
2a1a2+b21

2a21
];

c2 = 1
2
[−a3 + 1

2
(
2b1b2+a22+2a1a3

a21
) − 2a1a2+b21

4a21
, ], m1 = 2(ε2θ + 4εθ)[A1(4 + εθ) − B2

1 −

4ν ′2s′(s′ + π?k′)− 4ν ′(s′ + π?k′)2];

m2 = [(A1(4 + εθ)− B2
1 − 4ν ′2s′(s′ + π?k′)− 4ν ′(s′ + π?k′)2)2 + 2(ε2θ + 4εθ)(A

2
1 −

4ν ′4s′(s′ + π?k′)2) + 2(4ν ′3π?k′(s′ + π?k′)2 − 2A1B1)(4ν
′π?k′ −B1(4 + 2εθ))];

m3 =
1
2
[ m1

2(ε2θ+4εθ)2
+ A1(4 + εθ)−B2

1 − 4ν ′2s′(s′ + π?k′)− 4ν ′(s′ + π?k′)2];

m4 = 1
2
[A2

1 − 4ν ′4s′(s′ + π?k′)2 + m2

2
− m2

1

4(ε2θ+4εθ)2
], m5 = m1

2(ε2θ+4εθ)
− A1(4 + εθ) +

B2
1 + 4ν ′2s′(s′ + π?k′) + 4ν ′(s′ + π?k′)2;

m7 =
1

(2+εθ)+(ε2θ+4εθ)2
[A1 +m3

√
ε2θ+4εθ

2
], m8 =

1
(2+εθ)+(ε2θ+4εθ)2

[
−m2

3

4
+ m4

2
];

a′ = (2 + εθ) + (ε2θ + 4εθ)
1/2, b = m5

√
ε2θ+4εθ

2
+B1, a = (2 + εθ)− (ε2θ + 4εθ)

1/2;

b′ = B1 −m5

√
ε2θ+4εθ

2
, P2 =

√
ε2θ+4εθ(

−m2
3

4
+
m4
2

)

(2+εθ)−(ε2θ+4εθ)1/2

From the above analytical results, we can now predict the nature of waves by

determining the physical components of waves like, phase velocity, specific loss and

penetration depth with the help of the following formulae:

Phase velocity = ω
Re[q]

Specific loss = 4π| Im[q]
Re[q]
|

Penetration depth = 1
|Im[q]|
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Out of the two waves represented by q1,2 we assume that the first wave correspond-

ing to q1 represents quasi-magneto-thermal wave and the second wave represented

by denotes quasi-magneto-elastic wave.

In the next section, using above formulae, all wave components and their limiting

values will be derived for both types of waves (quasi-magneto-thermal wave and

quasi-magneto-elastic wave ) that we have identified in this case.

Quasi-magneto-thermal wave

(A) High frequency asymptotic expressions for components of
quasi-magneto-thermal wave

(a) Phase velocity

For the present case, Phase velocity can be achieved by the following formula:

Phase velocity =Vt = ω
Re[q1]

From the solution given by (4.1.42), we obtain the asymptotic solution for phase

velocity of quasi-magneto-thermal wave for very high frequency values as

Phase velocity = Vt ∼ 2ν′(s′+π?k′)

[
√
A1+
√

(A2
1−4ν′4s′(s′+π?k′)2)

[1− {A7

4
− 1

2(ν′(s′+π?k′))2
} 1
ω2 ]

Clearly, Vt tends to constant value 2ν′(s′+π?k′)√
A1+
√

(A2
1−4ν′4s′(s′+π?k′)2)

as ω →∞

(b) Specific loss

Specific loss can be achieved by the following formula:

Specific loss = St =4π| Im[q1]
Re[q1]

|

From equation (4.1.42), we find the solution for specific loss of quasi-magneto-

thermal wave for high frequency values as follows:

St ∼ 4π
√
A8√
2

1
ω
[1 + { B8

2A8
− A7

4
} 1
ω2 ]

Therefore St tends to 0 as ω →∞.
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(c) Penetration depth

Penetration depth can be determined by the following formula:

Penetration depth = Dt =
1

|Im[q1]|

Equation (4.1.42) yields, the solution for penetration depth of quasi-magneto-

thermal wave for high frequency values as follows:

Dt∼ 2ν′(s′+π?k′)√
(A1+
√

(A2
1−4ν′4s′(s′+π?k′)2))A8

[1− { B8

2A8
− 1

2(ν′(s′+π?k′))2
} 1
ω2 ]

Which implies that Dt tends to constant value 2ν′(s′+π?k′)√
(A1+
√

(A2
1−4ν′4s′(s′+π?k′)2))A8

as

ω →∞.

(B) Low frequency asymptotic expressions for components of
quasi-magneto-thermal wave

(a) Phase velocity

By using solution given by equation (4.1.44), we obtain the approximated solution

of phase velocity of quasi-magneto-thermal wave for low frequency values as

Phase velocity = Vt ∼
√

2
a
[1− (m7

2
+ b2

8a2
− (ν′(s′+π?k′))2

2
)ω2]

which implies that Vt tends to constant value equal to
√

2
a
as ω → 0.

(b) Specific loss = St ∼
√
2b
a
[1− {a2m8

2b2
+ m7

2
+ b2

8a2
}ω2]

From above St tends to constant equal to
√
2b
a

as ω → 0.

(c) Penetration depth = Dt ∼
√
2

ω
√

b
a

[1 + {a2m8

2b2
+ (ν′(s′+π?k′))2

2
}ω2}]

Clearly Dt becomes ∞ as ω → 0.

Quasi-magneto-elastic wave

In a similar way as above, asymptotic expressions of all the physical components
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of second wave, i.e., quasi-magneto-elastic wave are determined from solution for q2

given by (4.1.43) and (4.1.45) in the following form:

(C) High frequency asymptotic expressions for components of
quasi-magneto-elastic wave

(a) Phase velocity = ω
Re[q2]

Therefore, phase velocity of quasi-magneto-elastic wave = Ve ∼ ν′(s′+π?k′)√
a1

[1 −

{4a
2
1a2+b

2
1

8a21
− 1

2(ν′(s′+π?k′))2
} 1
ω2 ]

Here, we note that Ve tends to constant value ν′(s′+π?k′)√
a1

as ω →∞.

(b) Specific loss = 4π| Im[q2]
Re[q2]

|

Using above formula, we achieve

Specific loss = Se ∼
√

c1
2

1
ω
[1 + { c2

2c1
− 4a21a2+b

2
1

8a21
} 1
ω2 ]

which shows that Se → 0 as ω →∞.

(c) Penetration depth = 1
|Im[q2]|

With the help of formula given above we find

Penetration depth = De ∼
√
2ν′(s′+π?k′)√

a1c1
[1− { c2

2c1
− 1

2(ν′(s′+π?k′))2
} 1
ω2 ]

and clearly, De →
√
2ν′(s′+π?k′)√

a1c1
as ω →∞.

(D) Low frequency asymptotic expressions for components of
quasi-magneto-elastic wave

(a) Phase velocity = Ve ∼
√

2
a′
[1 + {2P2a′2

b′2
+ (ν′(s′+π?k′))2

2
}ω2]

which implies that Ve →constant value equal to
√

2
a′

as ω → 0.

(b) Specific loss = Se ∼ ω
√
b′

a′
[1 + {4P2a′2

b′2
+ (ν ′(s′ + π?k′))2}ω2]

which indicates that Se →0 as ω → 0.
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(c) Penetration depth = De ∼
√

2a′

b′
1
ω2 [1− {2P2a′2

b′2
+ (ν′(s′+π?k′))2

2
}ω2]

Therefore, we observe that De→∞as ω → 0.

4.1.4.2 Case-II

In the present case, as given by equations (4.1.34), (4.1.35) the system of equations

is independent of thermal field θ. Equations are given as

ν ′s′M̈ + Ṁ − ν ′M ′′ + N̈ = 0 (4.1.46)

ν ′α2N̈ − ν ′N ′′ + εeα
2(M + Ṅ) = 0 (4.1.47)

Dispersion relation solutions for case-II

In order to obtain the solutions of equations (4.1.46) and (4.1.47), we assume

M = a4e
i(−qx+ωt), N = a5e

i(−qx+ωt) (4.1.48)

On solving equations (4.1.46) and (4.1.47) for a4, a5, we obtain the following

dispersion relation for the present case:

ν ′q4 − q2[ν ′2ω2(s′ + α2)− iω(1 + α2εθ)] + α2s′ν ′2ω4 − iα2ω3(1 + s′εe) = 0 (4.1.49)

As we can clearly observe from equation (4.1.49), we can find the four solutions

for the wave number q and out of these four possible solutions for q, we take only two

solutions (q3,4) that correspond to Im(q) ≤ 0 for the wave to be physically realistic.

Hence, in the present case, two different kinds of waves are generated. Since only
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two different fields: mechanical and electrical fields are effective here, these two

solutions represent two different kinds of waves namely, quasi-electro magneto shear

wave and quasi-magneto-elastic shear wave. Here we are achieving shear waves in

nature. By solving the dispersion relation (4.1.49) and following the similar approach

as in Case-I, we derive the high frequency and low frequency asymptotic solutions

for wave number, q for the second system as follows:

High frequency asymptotes:

q3 = ω
4
√
2ν ′s′

2
[1+

m′14
2

1

ω2
]−i

√
m′2 +m′4
2
√
2ν ′s′

[1−
(m′13(b

′
1 +

√
m′1))

2

ω2(m′2 +m′4)
2

], ω →∞ (4.1.50)

q4 = ω
4
√
2ν ′α2

2
√
2

[1 +
m?

6

2ω2
]− im?

7

√
2ν ′α2[1− (m?

5)
2

m?
7

1

ω2
], ω →∞ (4.1.51)

Low frequency asymptotes:

q3 =

√
ω

2

√
{m′2 +

√
m′2}[1 +

m′7
2
ω]− i

√
ω

2

√
{m′2 +

√
m′2}[1−

m′7
2
ω], ω →0

(4.1.52)

q4 =
4
√
m′9
4

ω[1 +
m′11
2
ω2]− i′m

′
13ω

2

√
2

[1 +
(m′10)

2

{2m′2(m′6)2 +m′10m
′
9}
ω2], ω →0 (4.1.53)

where, all constants are given by

b′1 = ν ′(s′+α2), m′1 = (ν ′(s′−α2))2, m′2 = (1+α2εe), m
′
4 =

m′1((m
′
2)

2+(m′3+2m′1m
′
2)

2)

4(m′2)
2 ;

m′3 = (s′ + α2) + α2(1 + α2εe)− 2α2(1 + s′εe), m′6 = [(
m′3
m′1

)2 − 4
m′2
m′1

];

m′7 = b′1 +
m′3

2
√
m′2
, m′9 = b′1 −

m′3
2
√
m′2
, m′10 =

m′3m
′
5

2
√
m′2

;

m′11 =
−3m′9m′10+m′2(m′6)2

(m′9)
2 , m′13 =

√
m′9m

′
10+m

′
2(m

′
6)

2

(m′9)
2 ;

m′14 =
(m′2)

2−4m′1m′2
8
√
m′1

+
(m′2+m

′
4)

2

4(2ν′s′)2
;
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m?
5 = (m′2 −m?

4)
2 − (2ν ′α2)

((m′2)
2−4m′1m′2)
4
√
m′1

;

m?
6 =

m?5
4
− ((m′2)

2−4m′1m′2)
16
√
m′1

, m?
7 =

m?5
4
+

((m′2)
2−4m′1m′2)

16
√
m′1

.

Quasi-electro-magnetic-shear wave

From the analytical solutions given by equations (4.1.50) and (4.1.52), we can

predict the nature of quasi-electro-magnetic shear wave by determining the physical

components of this wave. With the help of suitable formulae stated above, we find

the asymptotic expressions of various wave components and their limiting values for

this wave as follows:

Asymptotic expansions for phase velocity, specific loss and penetration
depth for quasi-magneto-elastic shear wave

From equations (4.1.50) and (4.1.52) and with the help of desired formulae of

phase velocity, specific loss and penetration depth, we derive the asymptotic expres-

sions of the wave components and their limiting values for quasi-electro-magnetic-

shear wave in the following form:

(E) High frequency asymptotes for components of
quasi-electro-magnetic shear wave

(a) Phase velocity =Vel = ω
Re[q3]

∼ 2
4√
2∗ν′∗s′

[1− m′14
2

1
ω2 ]

We observe that Vel becomes constant value 2
4√
2ν′s′

as ω →∞.

(b) Specific loss = Sel = 4π| Im[q3]
Re[q3]

|∼

√
m′2+m

′
4

2
√
2ν′s′

4√
2ν′s′
2

1
ω
[1− { (m

′
13(b

′
1+
√
m′1))

2

ω2(m′2+m
′
4)

2 +
m′14
2
} 1
ω2 ]

Hence, Sel has limiting value 0 as ω →∞.

(c) Penetration depth = Del =
1

|Im[q3]| ∼
1√

m′2+m
′
4

2
√
2ν′s′

[1 +
(2ν′s′m′13))

2

ω2(m′2+m
′
4)

2 ]

Clearly, Del tends to constant value 1√
m′2+m

′
4

2
√
2ν′s′

as ω →∞.
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(F) Low frequency asymptotes for components of quasi-electro-magnetic
shear wave

(a) Phase velocity =Vel ∼
√
2ω√

{m′2+
√
m′2}

[1− m′7
2
ω]

Hence,Vel tends to 0 as ω → 0.

(b) Specific loss = Sel ∼ 4π

√
{m′2+
√
m′2}√

{m′2+
√
m′2}

[1−m′7ω]

which indicates that Sel tends to constant value 4π as ω → 0.

(c) Penetration depth

Penetration depth = Del ∼
√
2

√
ω
√
{m′2+
√
m′2}

[1 +
m′7
2
ω]

We note that Del tends to ∞as ω → 0.

Quasi-magneto-elastic shear wave

From equations (4.1.51) and (4.1.53) and with the help of desired formulae of

phase velocity, specific loss and penetration depth, we derive the asymptotic expres-

sions of the wave components and their limiting values for quasi-magneto-elastic-

shear wave as follows:

(G) High frequency asymptotes for quasi-magneto-elastic shear wave

(a) Phase velocity = Vs =
ω

Re[q4]
∼ 1

4√
2ν′α2
2
√
2

[1− m?6
2ω2 ]

Vs tends to constant value 2
√
2

4√
2ν′α2

as ω →∞.

(b) Specific loss = Ss = 4π| Im[q4]
Re[q4]

|∼4π 2
√
2m?7
√
2ν′α2

4√
2ν′α2

1
ω
[1− { (m

?
5)

2

m?7
+

m?6
2

1
ω2 ]

which implies that Ss becomes 0 when ω →∞.
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(c) Penetration depth = Ds =
1

|Im[q4]| ∼
1

m?7
√
2ν′α2

[1 +
(m?5)

2

m?7

1
ω2 ]

which indicates that Ds tends to 1

m?7
√
2ν′α2

when ω →∞.

(H) Low frequency asymptotes for quasi-magneto-elastic shear wave

(a) Phase velocity = Vs ∼ 4
4
√
m′9

[1− m′11
2
ω2] , and Vs tends to constant 4

4
√
m′9

as

ω → 0.

(b) Specific loss = Ss ∼ 4π
m′13√

2

4
√

m′9
4

ω[1 + { (m′10)
2

{2m′2(m′6)2+m′10m′9}
− m′11

2
}ω2]

and Ss tends to 0 as ω → 0.

(c ) Penetration depth = Ds ∼
√
2

m′13

1
ω2 [1− (m′10)

2

{2m′2(m′6)2+m′10m′9}
ω2] , implying that

Ds tends to ∞as ω → 0.

4.1.5 Numerical results

In the previous section, we observed that we can divide our problem into two

different cases that correspond to two different types of waves. One wave is longi-

tudinal in nature and coupled with the thermal field. For this case, we identified

two different modes of longitudinal wave: quasi-magneto-thermal wave and quasi-

magneto-elastic wave. The second case corresponds to transverse mode wave that

is uncoupled with the thermal field. Two different modes are identified for this

case too. One is quasi-magneto-elastic shear wave and other one is quasi-electro-

magnetic shear wave. We derived the asymptotic expressions of various important

wave components for all types of identified waves and found the limiting behavior

for very high frequency and low frequency values.

In this section, we make an effort to understand the nature of waves more explic-

itly for intermediate values of frequency and verify our analytical results of physical
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components of waves like, phase velocity, specific loss and penetration depth for all

cases. For this, we compute the numerical values of different wave characterization

for the intermediate values of wave frequency by direct solution of the corresponding

dispersion relations. We assume the following values of parameters for a copper like

material:

εθ = 0.0168 , λ = 7.76×1010Nm−2, µ = 3.86×1010Nm−2, µe = 4π×10−7NA−2;

σ = 5.7× 107Sm−1, ω∗ = 1.72× 1011sec−1, ρ = 8954kg/m3, H = 1000C/ms

We assume following data for dimensionless parameters:

k′ = 1; π? = 1

We have used software Mathematica (version 6) and by using the formulae of vari-

ous components of waves like, phase velocity, specific loss and attenuation coefficient

or penetration depth, we compute the numerical values of the wave characteriza-

tions for the different values of frequency and present them in different Figures.

Description of the nature of waves as we observe are presented below:

4.1.6 Combined analysis of analytical and numerical
results

4.1.6.1 Analysis of phase velocity

Case-I

Figures 4.1.1 and 4.1.2 represent the variation of phase velocity of quasi-magneto-

thermal mode longitudinal wave for low ad high frequency values, respectively in the

context of Green and Naghdi-II theory of thermoelasticity. Figure 4.1.1 represents

that the phase velocity of quasi-magneto-thermal mode wave starts from a constant

value, then increases for a very small range and attains a constant value near 1.08.

Here the notable point is that the phase velocity of quasi-magneto thermal wave

is constant in both the cases when ω → 0 as well as when ω → ∞. These results
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are in complete agreement with our analytical results. We further note that the

limiting value of phase velocity of this wave as ω →∞is effected with the magnetic

parameter and in the contrary, the limiting value as ω → 0 is not affected with the

magnetic parameter. This is the important feature of present study in presence of

magnetic field. In contrary to this, we find that in absence of magnetic field, we

obtain a constant speed of thermal mode wave under GN-II theory all the time and

the wave speed is independent of frequency (see Chandrasekharaiah (1996)).

Figures 4.1.3 and 4.1.4 show the nature of phase velocity of quasi-magneto-elastic

mode longitudinal wave. The behavior of phase velocity of quasi-magneto elastic

mode longitudinal wave resembles with the nature of phase velocity of quasi magneto

thermal mode wave i.e. it also starts increasing from a constant value with the

increase of frequency and finally goes towards a constant limiting value. But its

constant speed is less than the phase velocity of quasi magneto thermal mode wave

and achieves the value 0.95 (Figures 4.1.3 and 4.1.4). This result is also in agreement

with our analytical results and we noted that the elastic mode wave propagates with

the speed equal to
√
2ν′(s′+π?k′)√

a1
as frequency tends to infinity.

We observe one more important point from the analytical results that phase ve-

locities of both longitudinal waves are only dependent on thermoelastic coupling

constant εθ for low values of frequency but for high values of frequency, phase ve-

locities of both waves are affected by magnetic parameters.

Case-II

Figures 4.1.5 and 4.1.6 exhibit the nature of phase velocity of quasi-electro-

magnetic shear wave for low and high frequency values, respectively. In the present

case, the phase velocity of wave is slowly dependent on the frequency. It starts in-

creasing with the frequency and becomes constant very soon; However its constant
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value is very less and equal to is 0.2. Also from the analytical results we have reached

at the conclusion that initially phase velocity is 0 and it starts increasing against

frequency and its limiting value is equal to 2
4√
2ν′s′

as frequency tends to infinity.

Figure 4.1.7 depicts the behavior of phase velocity of quasi-magneto-elastic mode

shear wave and here we observe that phase velocity is always constant i.e. it is

independent with the frequency and this result is proved by our analytical result.

This constant value is equal to 0.5 which is clearly less than 1. Here again we reach

at the conclusion that quasi-magneto-elastic mode shear waves propagates slowly

in comparison to quasi-magneto-elastic mode longitudinal wave. As shear waves

moves slowly in comparison to longitudinal waves, hence we are getting shear waves

in the present case having lower speed in comparison to case-I. We found from the

analytical results that its value is equal to 2
√
2

4√
2ν′α2

.

4.1.6.2 Analysis of specific loss

Case-I

The objective of the present study is to understand the nature of waves predicted

under the theory of thermoelasticity of Green and Naghdi type-II , also called as

thermoelasticity without energy dissipation. The effect of the theory in presence of

magnetic field on specific loss of waves is identified in the present study. Figures

4.1.8 and 4.1.9 display the variations of specific loss for quasi-magneto thermal mode

wave for low and high values of frequency, respectively. From the numerical results

it is clear that initially the value of specific loss is 0 but it increases as frequency

increases and after reaching a maximum value it starts decreasing and goes to 0.

Although, this maximum value is small but we can conclude here that the behavior

of specific loss is dependent on frequency, ω in the presence of magnetic field. This

fact is also in complete agreement with our analytical results. On the contrary, as
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reported by Chandrasekharaiah (1996), we note that when magnetic parameters are

absent, we obtain that there is no specific loss in waves. This is a distinct feature

observed in the present study.

Figures 4.1.10, 4.1.11 depict the nature of specific loss for quasi magneto elastic

mode wave for low and high frequencies, respectively. Here, we obtain that the

behavior of specific loss of quasi-magneto elastic wave is similar in nature as of

quasi-magneto thermal wave.

Case-II

This case corresponds to electrical and elastic mode shear waves. Figures 4.1.12

and 4.1.13 represent the variation of specific loss for quasi-electro-magnetic shear

wave for low and high values of frequency, respectively. Here we achieve that the

loss is in decreasing trend with the frequency, it starts from a constant value and

then decreases as frequency increases and ultimately goes towards 0. The behavior

of specific loss for quasi magneto elastic mode shear wave is observed to be very small

value near zero for all values of ω. Which is also evident from Figures 4.1.7 and

4.1.11 showing that phase velocity is constant and penetration depth is of very high

value. Here, we conclude that quasi-magneto elastic shear wave has very negligible

specific loss as compared to the quasi-electro-magnetic shear waves and this fact is

in agreement with our analytical results.

4.1.6.3 Analysis of penetration depth

Case-I

Figures 4.1.14 and 4.1.15 depict the nature of penetration depth for quasi-magneto-

thermal mode longitudinal wave and quasi-magneto-elastic mode longitudinal wave,

respectively. In the present case, the trend of variation of penetration depth is sim-

ilar in nature for both the waves. It starts from infinity and goes on decreasing
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and becomes constant. But their constant limiting value (minimum value) is very

high. However, comparatively the value of depth is less for thermal mode wave in

comparison with elastic mode wave. This is also in complete agreement with our

analytical results and we observed that at very low frequency we achieve the infinite

value of depth but their limiting values when ω →∞ are 2
√
2ν′(s′+π?k′)√

A1+
√

(A2
1−4ν′4s′(s′+π?k′)2)A8

2

and
√
2ν′(s′+πk′)√

a1c1
for quasi-magneto-thermal mode and quasi-magneto-elastic mode

longitudinal wave, respectively.

Case-II

From the analytical results, we can say that the nature of penetration depth

for the present case is in such a manner that initially it starts from infinity and

then decreases as the frequency increases and ultimately it becomes constant. This

constant has a very high value. This fact is also verified by our numerical results

presented in Figures 4.1.16 and 4.1.17.

Figure 4.1.1 Phase velocity for quasi-magneto thermal wave (low
frequency)
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Figure 4.1.2 Phase velocity for quasi-magneto thermal wave (high
frequency)

Figure 4.1.3 Phase velocity for quasi-magneto elastic wave (low
frequency)
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Figure 4.1.4 Phase velocity for quasi-magneto elastic wave (high
frequency)

Figure 4.1.5 Phase velocity for quasi-electro-magnetic shear wave (low
frequency)
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Figure 4.1.6 Phase velocity for quasi-electro-magnetic shear wave (high
frequency)

Figure 4.1.7 Phase velocity for quasi-magneto elastic shear wave
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Figure 4.1.8 Specific loss for quasi-magneto thermal wave (low
frequency)

Figure 4.1.9 Specific loss for quasi-magneto thermal wave (high
frequency)
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Figure 4.1.10 Specific loss for quasi-magneto elastic wave (low
frequency)

Figure 4.1.11 Specific loss for quasi-magneto elastic wave (high
frequency)
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Figure 4.1.12 Specific loss for quasi-electro-magnetic shear wave (low
frequency)

Figure 4.1.13 Specific loss for quasi-electro-magnetic shear wave (high
frequency)
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Figure 4.1.14 Penetration depth for quasi-magneto thermal wave

Figure 4.1.15 Penetration depth for quasi-magneto elastic wave
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Figure 4.1.16 Penetration depth for quasi-electro- magnetic shear wave

Figure 4.1.17 Penetration depth for quasi-magneto-elastic shear wave
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4.1.7 Conclusions

In the present study, we deal with a detailed investigation of electro-magneto-

thermoelastic plane waves in the presence of magnetic field in the context of Green

and Naghdi type-II theory of thermoelasticity. We have subdivided our problem

in two sub cases. For the analytical results, small and high frequency asymptotic

approximation technique have been employed. We identify different mode waves and

analyze each type by deriving asymptotic expansions of various wave components.

Numerical results have also been presented. From analytical and numerical results

in two cases, we can conclude the following features:

1. We obtain longitudinal and transverse mode waves corresponding to two sepa-

rate cases in which the transverse mode wave is completely independent of the

thermal field, but mechanical and electrical fields are coupled together. Hence,

we identify quasi-magneto-elastic shear wave and quasi-electro-magnetic shear

wave.

2. The longitudinal wave is coupled with thermal field. We identify quasi-magneto

elastic mode longitudinal wave and quasi-magneto-thermal mode longitudinal

wave. Both waves are almost similar in nature. They are dispersive in na-

ture and show constant limiting speed as frequency increases to high value.

However, both waves propagate with negligible specific loss and very high

penetration depth.

3. Presence of magnetic field plays a very important role in the results of longi-

tudinal waves which can be understood from the following discussion:
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when we put all magnetic field parameters equal to 0 in equation (4.1.41), we obtain

the dispersive relation coupled with purely elastic and thermal fields. The dispersion

relation equation is given by

q4 − {ω2(2 + εθ)}q2 + ω4 = 0 (4.1.54)

Solution of above equation gives four real roots. From all the roots of above

equation, we take two positive roots of q i.e. q1,2 and with the help of them we can

calculate phase velocity of purely elastic mode and purely thermal mode longitudinal

waves as

V1,2 =

√
2√

(2 + εθ)±
√
ε2θ + 4εθ

(4.1.55)

It is clear from above results that phase velocity of elastic and thermal waves

are constant and are frequency independent. They have no imaginary parts in

the absence of magnetic field. However from our analytical and numerical results

we achieve that phase velocity is dependent on the frequency in the presence of

magnetic field. We can again say that since imaginary parts are absent in the roots

of dispersive relation (equation (4.1.55)), hence specific loss will be completely zero

and penetration depth will be infinite that means there is no decay of waves and

waves will penetrate the materials till an infinite depth in materials. Similar results

are reported by Chandrasekharaiah (1996) for the thermoelastic case. In the present

study, we considered the presence of magnetic field and due to that we observe that

phase velocity of elastic mode wave and thermal mode wave is slowly dependent

on frequency ω. It starts from a constant value and then increases as the frequency

increases but it finally becomes constant. Further more, we note a small value of

specific loss and very high value of penetration depth in presence of magnetic field.
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4. We obtain quasi-electro-magnetic shear wave and quasi-magneto-elastic shear

wave in which phase velocity of quasi-magneto elastic mode shear wave is always

constant, i.e. frequency independent and its value is 0.5, however quasi-electro-

magnetic shear wave is slowly dependent on frequency. Like the case of longitudinal

waves, for the transverse mode waves, the specific loss shows very less value and

penetration depth has a very high constant limiting value, although they are disper-

sive in nature. It is believed that the results of the present investigation highlight

several specific features of magneto-thermoelastic interactions under thermoelastic-

ity without energy dissipation which has not been investigated by any researcher in

this direction.
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14.2 On magneto-thermo-elastic wave propagation
in a finitely conducting medium under thermoelas-
ticity of type- I, II and III

4.2.1 Introduction

In the present section, we investigate the propagation of electro-magneto-thermoelastic

plane waves of assigned frequency in a homogeneous, isotropic and finitely conduct-

ing elastic medium permeated by a primary uniform external magnetic field in the

context of Green and Naghdi of type-III (GN-III). We formulate our problem to

account for the interactions between the elastic, thermal as well as magnetic fields.

A general dispersion relation for coupled waves is deduced to ascertain the nature of

waves propagating through the medium. Perturbation technique has been employed

to obtain the solution of dispersion relation for small thermo-elastic coupling param-

eter and identify three different types of waves. We specially analyze the nature of

important wave components like, phase velocity, specific loss and penetration depth

of all three modes of waves. We attempt to compute these wave components numer-

ically to observe their variations with frequency. The effect of presence of magnetic

field is analyzed. The results under theories of type GN-I and II have also been

exhibited as a special cases in which we have found that the coupled thermoelastic

waves are un-attenuated and non-dispersive in case of Green-Naghdi-II model which

is completely in contrast with the theories of type-I and type-III. Some specific fea-

tures of type-III model are highlighted. We achieve significant variations among the

results predicted by all three theories.

1

This work is in ’under review’ in Journal “Archives of Mechanics”.

1



4.2.2 Problem formulation and basic governing
equations

For our present study, an infinite, homogeneous, isotropic, thermally and electri-

cally conducting solid permeated by a primary magnetic field ~B0 = (B1, B2, B3) is

considered. The media is characterized by the density ρ and Lame elastic constants

λ and µ.

Using a fixed rectangular Cartesian coordinate system (x,y,z ) and employing the

thermoelasticity theory of Green and Naghdi (1991-1993), the equations of motion

and the equation of heat conduction in the presence of magnetic field in the absence

of external body force (mechanical) and heat sources can be represented in the

following manner:

Equation of motion:

µ∇2~u+ (λ+ µ)~∇(~∇.~u) + ~J × ~B − γ~∇θ = ρ~̈u (4.2.1)

Equation of heat conduction (1991):

K?∇2θ +K∇2θ̇ = ρCvθ̈ + γT0üi,i (4.2.2)

where ~J is the current density vector and ~J × ~B is the electromagnetic body force

(Lorentz force).

~B = ~B0 +~b is the total magnetic field which is assumed to be small so that the

products with ~b and ~̇u and their derivatives can be neglected for the linearization of

the field equations. ~b = (bx, by, bz) is the perturbed magnetic field. Dots denote the

derivatives with respect to the time t.

Notice that if we put K? = 0 in equation (4.2.2), then the equation is acknowl-
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edged by the heat conduction equation for GN-I theory of thermoelasticity and if

we substitute K = 0 in equation (4.2.2), we obtain the heat conduction equation of

GN-II theory of thermoelasticity.

Since magnetic field has been applied in the medium, hence the equation of mo-

tion needs to be supplemented by generalized Ohm’s law in a continuous medium

with Maxwell’s electromagnetic field equations.

Maxwell equations (where the displacement current and charge density are ne-

glected) are given by

~∇× ~H = ~J (4.2.3)

~∇× ~E = −∂
−→
B

∂t
(4.2.4)

where ~B = µe ~H and µe is the magnetic permeability.

~∇. ~B = 0 (4.2.5)

Generalized Ohm’s law is given by

~J = σ[ ~E +
∂u

∂t
× ~B] (4.2.6)

Here, ∂u
∂t

is the particle velocity of the medium. Small effect of temperature gradient

on ~J is neglected.

4.2.3 Dispersion relation and its analytical solution

We assume that plane waves are propagating towards x -direction. Due to this all

the field quantities are proportional to ei(kx−ωt), where k is the wave number and ω

is the angular frequency of plane waves. Here we have assumed that ω is real and
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k may be complex quantity, where Im(k) ≤ 0 must hold for waves to be physically

realistic. In the context of above consideration, we can write all the quantities in

the following manner:

~u = (u, v, w) = (u0, v0, w0)e
i(kx−ωt)

θ = θ0e
i(kx−ωt), ~E = (Ex, Ey, Ez),

−→
J = (j1, j2, j3)e

i(kx−ωt), ~b = (bx, by, bz) = (b1, b2, b3)e
i(kx−ωt)

where u0, v0, w0; j1, j2, j3, b1, b2, b3, θ0 are constants.

With the help of Maxwell relations, we achieve the following relation:

div
−→
b = 0 (4.2.7)

Above relation implies that bx = 0. Using equation (4.2.3) we obtain

µe
−→
J = ~∇×

−→
b (4.2.8)

which is in agreement with the following value of
−→
J

~J = [0,−ikbz
µe

,
ikby
µe

] (4.2.9)

and

~J × ~B0 = [−ik(bzB3 + byB2)

µe
,
ikbyB1

µe
,
ikbzB1

µe
] (4.2.10)

Thus the term
−→
J ×

−→
B can be replaced by the term

−→
J ×

−→
B0.

Substituting values of the quantities ~u and θ in the equation of heat conduction ,

we achieve the following relation:
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θ = αu0 (4.2.11)

where

α =
iνθ0kω

2

K?k2 − iKk2ω − ρCvω2
(4.2.12)

We obtain ~E = (Ex, Ey, Ez) = (Ex,
ωbz
k
,−ωby

k
)

Now, making use of the field quantities ~u, ~J and ~E and comparing both sides of the

modified Ohm’s law (in which ~B is replaced by ~B0), we achieve the following three

relations:

σ[Ex − iω(qB3 − rB2)] = 0 (4.2.13)

σ[
ωbz
k
− iω(rB1 − pB3)] = −

ikbz
µe

(4.2.14)

σ[−ωby
k
− iω(pB2 − qB1)] =

ikby
µe

(4.2.15)

Further, substituting the values of field quantities −→u ,
−→
J , ~B0,~θ in the equation of

motion, we achieve the following relations:

u0(−ρω2 + (λ+ 2µ)k2 + iναk) +
ik

µe
(b3B3 + b2B2) = 0 (4.2.16)

v0(−ρω2 + µk2)− ik

µe
(b2B1) = 0 (4.2.17)

w0(−ρω2 + µk2)− ik

µe
(b3B1) = 0 (4.2.18)
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Equations (4.2.14) and (4.2.15) can be rewritten as

u0σ(iωB3) + w0(−σiωB1) + b3[
ik

µe
− σω

k
] = 0 (4.2.19)

u0σ(−iωB2) + v0(σiωB1)− b2[
ik

µe
+
σω

k
] = 0 (4.2.20)

Equations [(4.2.16)-(4.2.20)] constitute a system of five equations with five unknowns

namely u0, v0, w0, b2, b3.

We can make further assumptions: we have taken that ~b is directed along y-axis

and we consider w0 = 0 provided that (µk2 − ρω2 6= 0) so that b3 = 0 (equation

(4.2.18)). Hence, applied and perturbed magnetic field are taken as (
−→
B1,
−→
B2, 0) and

(0,
−→
b2 , 0), respectively. Applying the above assumptions in the equations [(4.2.16)-

(4.2.20)], all above five equations reduce into three following homogeneous equations

having three unknowns u0, v0 and b2 as

u0[−ρω2 + (λ+ 2µ)k2 + iναk] +
ikB2b2
µe

= 0 (4.2.21)

v0(−ρω2 + µk2)− ikB1b2
µe

= 0 (4.2.22)

u0(σiωB2)− v0σ(iωB1) + b2(
ik

µe
+
σω

k
) = 0 (4.2.23)

In order to have a solution for u0, v0 and b2 of the above three equations, we must

have ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ρω2 + (λ+ 2µ)k2 + iναk 0 ikB2

µe

0 µk2 − ρω2 −ikB1

µe

iσωB2 0 ( ik
µe

+ σω
k
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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Now, we assume that the initial magnetic field is directed towards y axis i.e. ~B0 =

(0, B2, 0) i.e. B1 = 0 in the above equation (4.2.23). For simplifying the expansion

of above determinant, we introduce above the following non dimensional quantities:

χ = ω
ω? , ξ = kc1

ω? , εH = ω?νH
c21

εθ =
T0ν2

ρ2Cvc21
, νH = 1

µeσ
,

k1 =
K?

ρCvc21
, k2 =

Kω?

ρCvc21

c1 =
√

(λ+2µ)
ρ

, c2 =
√

µ
ρ

where c1 is the longitudinal elastic wave velocity and c2 is the transverse elastic wave

velocity. We further assume that

s = c2
c1
, RH =

B2
2

ρc21µe
.

where RH is the magnetic pressure number. Substituting the value of α from eqn.

(4.2.12) and employing all dimensionless quantities in the expansion of the above

determinant, we find the following dispersion relation:

(s2ξ2 − χ2)[{(ξ2 − χ2)(ξ2k1 − χ2)− ik2ξ2χ(ξ2 − χ2)− εθξ2χ2}(χ+ iξ2εH)

+RHχξ
2{(ξ2k1 − χ2)− ik2ξ2χ}] = 0 (4.2.24)

The first part (s2ξ2 − χ2) = 0 in (4.2.24) corresponds to a transverse elastic wave

which is clearly found to be uncoupled by thermal and magnetic field. Hence, we

take the second part of (4.2.24) as

{(ξ2−χ2)(ξ2k1−χ2)−ik2ξ2χ(ξ2−χ2)−εθξ2χ2}(χ+iξ2εH)+RHχξ
2{(ξ2k1−χ2)−ik2ξ2χ} = 0

(4.2.25)

Above equation is clearly identified as the dispersion relation for coupled thermal-

dilatational-electrical waves propagating in the medium in the present context. (If

k2 = 0 in equation (4.2.24) (i.e. for Green-Naghdi-II); we will achieve the equa-
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tion which matches completely with equation (3.29) of Roychoudhuri and Banerjee

(2005)). With the help of equation (4.2.25), we will characterize the behaviour of

plane waves propagating in the present context. We will specially concentrate on

the analysis of the important wave characterizations like, phase velocity, specific

loss and penetration depth. For solving equation (4.2.25), we attempt to find the

perturbation solution of the dispersion equation for small values of εθ. Therefore,

substituting εθ= 0 in the dispersion relation, we achieve the following solutions:

ξ2 = Aχ2 (4.2.26)

where A = k1+ik2χ
k21+k

2
2χ

2 = a1 + ib1

[(ξ2 − χ2)(χ+ iξ2εH) +RHχξ
2] = 0 (4.2.27)

Equation (4.2.26) being an equation of degree 4, we consider the roots of above

equation (4.2.27) as ±α1and ±α2.

where

α2
1,2 =M2

1,2 (4.2.28)

where

M2
2,1 =

iχ2εH − χ(1 +RH)± {χ2(1 +RH)
2 − χ4ε2H − 2χ3(1 +RH)εHi+ 4iεHχ

3}
1
2

2iεH
(4.2.29)

On simplifying above equation, we obtain its more simplified form given by

M2
2 = a4 + ib4 (4.2.30)
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and

M2
1 = a5 + ib5 (4.2.31)

where a4 = χ2εH+b3
2εH

, b4 =
χ(1+RH)−a3

2εH
;

a5 =
χ2εH−b3

2εH
, b5 =

χ(1+RH)+a3
2εH

;

a3 =

√
a2+
√
a22+b

2
2

2
, b3 =

√
−a2+
√
a22+b

2
2

2
;

a2 = χ2(1 +RH)
2 − χ4ε2H , b2 = 2χ3εH(1−RH)

Since we are trying to find the perturbation solution for small values of thermoe-

lastic coupling constant εθ. Then we write ξ2 in the following forms:

ξ21 = α2
1 + n1εθ +O(ε2θ) (4.2.32)

ξ22 = α2
2 + n2εθ +O(ε2θ) (4.2.33)

ξ23 = Aχ2 + n3εθ +O(ε2θ) (4.2.34)

Substituting equations (4.2.32), (4.2.33) and (4.2.34) in equation (4.2.25) and com-

paring the lowest power of εθ on both sides of equation and neglecting the terms of

O(ε2θ), we obtain the following solution:

ξ21 = α2
1[1 + Aεθχ

2 (χ+ iα2
1εH)

G1

] (4.2.35)

ξ22 = α2
2[1 + Aεθχ

2 (χ+ iα2
2εH)

G2

] (4.2.36)

ξ23 = Aχ2[1 +
Aεθχ

3(1 + iAχεH)

(A− 1)(χ3 + iAεHχ4) +RHAχ3
] (4.2.37)
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where

G1,2 = ((χ+iα2
1,2εH)(α

2
1,2−χ2)+χRHα

2
1,2)+(α2

1,2−χ2)((1+RH)χ+2iα2
1,2εH−iεHχ2)

(4.2.38)

Further simplifying equation (4.2.38), we obtain

G1 = a6 + ib6 (4.2.39)

G2 = a7 + ib7 (4.2.40)

where a6 = (χ−b5εH)(a5−χ2)−a5b5εH+χRHa5+(a5−χ2)((1+RH)χ−2b5εH)−

2a5b5εH + b5εHχ
2

b6 = b5(χ − b5εH) + a5εH(a5 − χ2) + χRHb5 + b5(1 + RH)χ − 2b25εH + (2a5εH −

εHχ
2)(a5 − χ2)

a7 = (χ − b4εH)(a4 − χ2) − a4b4εH + χRHa4 + (a4 − χ2)((1 + RH)χ − 2b4εH) −

2a4b4εH + b4εHχ
2

b7 = b4(χ − b4εH) + a4εH(a4 − χ2) + χRHb4 + b4(1 + RH)χ − 2b24εH + (2a4εH −

εHχ
2)(a4 − χ2)

Clearly, the above expressions for ξi, i = 1, 2, 3 (with Im(ξi ≤ 0) correspond to

three modes of plane waves propagating inside the medium.

4.2.4 Analytical expressions of various components
of magneto-thermo-elastic plane wave

In order to calculate several components of waves like, phase velocity, specific loss

and penetration depth, we use the following formulae:
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Phase velocity:

V1,2,3 =
χ

Re[ξ1,2,3]
(4.2.41)

Specific loss:

S1,2,3 = 4π|Im[ξ1,2,3]

Re[ξ1,2,3]
| (4.2.42)

Penetration depth:

D1,2,3 =
1

|Im[ξ1,2,3]|
(4.2.43)

Now, substituting expressions of α2
1, α2

2, G1, G2 and A in equations (4.2.35), (4.2.36)

and (4.2.37) and further solving them, we obtain their more simplified form in the

following manner:

ξ21 = a5 + εθ[
a5χ

2(P1a6 +Q1b6)− b5χ2(a6Q1 − b6P1)

a26 + b26
]

+i[b5 + εθ[
b5χ

2(P1a6 +Q1b6) + a5χ
2(a6Q1 − b6P1)

a26 + b26
]] (4.2.44)

ξ22 = a4 + εθ[
a4χ

2(P2a7 +Q2b7)− b4χ2(a7Q2 − b7P2)

a27 + b27
]

+i[b4 + εθ[
b4χ

2(P2a7 +Q2b7) + a4χ
2(a7Q2 − b7P2)

a27 + b27
]] (4.2.45)

ξ23 = χ2[a1 + Cεθ + i(b1 +Dεθ)] (4.2.46)

where P1 = a1χ− a1b5εH − b1a5εH , Q1 = b1χ− b1b5εH + a5a1εH ;

P2 = a1χ− a1b4εH − b1a4εH , Q2 = b1χ− b1b4εH + a4a1εH ;

C = a1a8P3+a1b8Q3−b1a8Q3+b1b8P3

a28+b
2
8

, D = b1a8P3+b1b8Q3+a1a8Q3−a1b8P3

a28+b
2
8

;

P3 = a1χ
3 − 2a1b1εHχ

4, Q3 = b1χ
3 − b21εHχ4;

a8 = a1χ
3(1 +RH)− 2a1b1εHχ

4, b8 = b1χ
3(1 +RH)− b1εHχ4
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With the help of theorem of complex analysis (Ponnusami (2001)), we obtain real

and imaginary parts of ξ1, ξ2, ξ3 in the following manner:

Re[ξ1] =

√
a5 +

√
a25 + b25√
2

+
εθ

2
√
2(
√
a5 +

√
a25 + b25)

[χ2S + (Sa5 + S ′b5)
χ4

(a25 + b25)
]

(4.2.47)

Im[ξ1] =

√
−a5 +

√
a25 + b25√

2
+

εθ

2
√
2(
√
−a5 +

√
a25 + b25)

[−χ2S+(−Sa5+S ′b5)
χ4

(a25 + b25)
)]

(4.2.48)

where S = [a5(P1a6+Q1b6)−b5(a6Q1−b6P1)

a26+b
2
6

],S ′ = [ b5(P1a6+Q1b6)+a5(a6Q1−b6P1)

a26+b
2
6

]

Similarly,

Re[ξ2] =

√
a4 +

√
a24 + b24√
2

+
εθ

2
√
2(
√
a4 +

√
a24 + b24)

[χ2T + (Ta4 + T ′b4)
χ4

(a24 + b24)
)]

(4.2.49)

Im[ξ2] =

√
−a4 +

√
a24 + b24√

2
+

εθ

2
√
2(
√
−a4 +

√
a24 + b24)

[−χ2T+(−Ta4+T ′b4)
χ4

(a24 + b24)
)]

(4.2.50)

where T = [a4(P2a7+Q2b7)−b4(a7Q2−b7P2)

a27+b
2
7

],T ′ = [ b4(P2a7+Q2b7)+a4(a7Q2−b7P2)

a27+b
2
7

]

Re[ξ3] =
χ
√
a1 +

√
a21 + b21√

2
+

χεθ

2
√
2
√
a1 +

√
a21 + b21

[C +
Ca1 +Db1√

a21 + b21
] (4.2.51)
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Im[ξ3] =
χ
√
−a1 +

√
a21 + b21√

2
+

χεθ

2
√
2
√
−a1 +

√
a21 + b21

[−C +
−Ca1 +Db1√

a21 + b21
]

(4.2.52)

From the solutions obtained as above, we can clearly observe that there are three

modes of waves which are dissimilar to each other. We denote the first wave as

modified (quasi-magneto) elastic (dilatational) wave, the second one as modified

(quasi-magneto) thermal wave and the third one as (quasi-magneto) electrical wave.

It is observed that both the elastic and thermal mode wave are influenced by the

thermoelastic coupling constants εθ, magneto-elastic coupling constant εH , as well as

magnetic pressure number RH . We will specially concentrate on these two modes.

Using equations [(4.2.47)-(4.2.52)] in the formulae given by [(4.2.41)-(4.2.43)], we

can obtain the various components of magneto-thermoelastic plane wave like, phase

velocity, specific loss and penetration depth for all three kinds of waves regarding

GN-III theory of thermoelasticity. For all the waves considered here, we consider

the cases when Im(ξi) ≤ 0.

For special cases, if we assume k1 = 0 in the above solutions then obtained solution

is acknowledged by solutions for GN-I theory of thermoelasticity and similarly, if

we substitute k2 = 0 in above solutions, then we obtain the case of GN-II theory of

thermoelasticity.

4.2.5 Numerical results

From the analytical results obtained above, we conclude that three various modes

of waves have been extracted from the coupled dispersion relation (equation (4.2.25))

which are named as modified (quasi-magneto) elastic (dilatational) wave, modified

(quasi-magneto) thermal wave and (quasi-magneto) electrical wave. In order to

illustrate the analytical solution and to have a critical analysis of the nature of waves
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with the variation of frequency, we will now make an attempt to show the variations

of various wave components of the identified waves with the help of numerical results.

We will also assess the limiting behavior of wave components for very high and low

frequency values.

We make an attempt to represent the plane wave characterizations numerically

with the help of computational work by using programming on mathematica. Cop-

per material has been chosen for the purpose of numerical evaluations. The physical

data for our problem are taken as follows Ezzat (2004):

εθ = 0.0168

λ = 7.76× 1010Nm−2

µ = 3.86× 1010Nm−2

µe = 4 ∗ 10−7Nms2/C2

σ = 5.7 ∗ 107Sm−1

ω? = 1.72 ∗ 1011sec−1

ρ = 8954Kgm−3

We assume the non-dimensional values of k2 = 1.

We will specially analyze the physical parameters of waves like, phase velocity,

specific loss and penetration depth. Using the formulae given by equations (4.2.40)-

(4.2.42), we compute these components of waves of different modes and display

our results in various Figures. Our analytical work is devoted to GN-III theory

of magneto thermoelasticity for a finitely conducting medium. Furthermore, in

order to make a comparison between GN-I, GN-II & GN-III models, we carry out

our computational work for these two special cases too. Due to this reason, we

have considered five different cases in each figure. These cases are differentiated

as we have taken five values of the non dimensional thermal conductivity rate i.e.

k1 = 0, 0.5, 1, 2, 3. k1 = 0 represents the case of GN-I model and other four values of
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k1represent the case of GN-III model of thermoelasticity. In each Figure, the thin

solid line is used for k1 = 0(GN-I), thick dotted line is for k1 = 0.5 , thin dashed line

is for k1 = 1, thick solid line is for k1 = 2 and thick dashed line is used for k1 = 3.

We find that the trend of all the wave components of the third mode wave, i.e.,

electric mode wave are almost similar in the contexts of GN-I and GN-III model.

However, a prominent difference in the results under GN-I model and GN-III model

is indicated for the quasi-magneto elastic wave and quasi-magneto thermal mode

wave. It is further observed that for the two cases when k1 = 0 and k1 = 0.5, i.e.,

when k1 < 1, the nature of waves under GN-III model are very similar to the nature

of waves under GN-I model. However, when the value of dimensionless thermal

conductivity-rate is greater than 1, the nature of waves are changed i.e. the cases of

k1 > 1 give more prominently different results of GN-III theory of thermoelasticity as

compared to GN-I model. Figures for the case of GN-II model have been presented

separately. We highlight several specific features arisen out of the numerical results

in the following sections:

4.2.5.1 Analysis of phase velocity

Using the formula given by (4.2.40), we compute the phase velocity of all three

modes of waves. Figures 4.2.1 and 4.2.2 display the variation of phase velocity of

modified (quasi-magneto) elastic (dilatational) wave for the high and low frequency

values, respectively. The important observation from Figure 4.2.1 is that the nature

of plots for the cases k1 = 0, 0.5 are almost similar to each other, but other three

plots are different from them. However, in other three cases there is a significant

difference in variations of phase velocity of this mode, although surprisingly in all

cases each figure goes towards a constant limiting value which is nearer to 1. It is

further noted that for the first two cases ( when k1 = 0, 0.5), the phase velocity of
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magneto-elastic wave starts increasing from 0 value with the increase of frequency

and after achieving a local maximum value starts decreasing and become constant

value 1. But in the cases when k1 ≥ 1, phase velocity continuously increases to

reach to its constant limiting value 1 without showing any local maxima. This is

more clearly understandable from Figure 4.2.2. Hence from the above description,

we can conclude that modified elastic wave behaves differently in the context of

GN-III theory of thermoelasticity as compared to GN-I theory.

Figures 4.2.3 and 4.2.4 show the variations of modified (quasi-magneto) thermal

wave in the contexts of GN-I and GN-III models for high and low frequencies,

respectively. In the present context, waves are propagating from a constant limiting

value greater than 0 when frequency tends to zero value and then starts increasing

with respect to frequency and goes towards infinity. The differences of results under

GN-I and GN-III is more significant for low frequency values (see Figure (4.2.4)) and

as frequency increases the differences decrease. We observe that wave propagates

with faster speed in GN-I case in comparison to GN-III model of thermoelasticity,

although the case k1 =0.5 of GN-III model shows very similar behaviour like the

case of GN-I. Further we notice that in three cases when k1 =0, 0.5 and 1, we locate

a minimum value of speed of modified (quasi-magneto) thermal wave nearer to 1

for a critical value of frequency and thereafter speed of wave starts increasing with

respect to frequency. When k1 > 1,wave moves with increasing speed and goes

towards infinity (without showing any local minimum value) with the increase of

frequency.

Figures 4.2.5 and 4.2.6 present the behavior of phase velocity of (quasi-magneto)

electrical wave in GN-I and GN-III models of thermoelasticity for high and low

frequency, respectively. Here, phase velocity of waves increases rapidly with respect

to frequency in both Figures. In the present case, wave is unaffected with the values
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of k1 and the predictions of GN-I and GN-III model is almost similar in nature.

4.2.5.2 Analysis of specific loss

Specific loss is defined as the loss of energy per stress cycle as defined by formula

(4.2.41). Figures 4.2.7 and 4.2.8 exhibit the variations of specific loss of modified

(quasi-magneto) dilatational mode wave for high and low frequencies, respectively.

In high frequency case, initially specific loss is 0 but it starts increasing with respect

to frequency and giving a maximum value of specific loss it starts decreasing and

goes towards 0 value. This maximum value is different for different values of k1and

this difference is more clear from Figure 4.2.8. It is further evident from Figure

4.2.8. that the maximum value of loss for GN-III model is less than that of GN-

I model and results are very close in nature for k1 = 0 and k1 = 0.5. There is

no prominent difference in results for small values of k1, specially where k1 is less

than 1 but for the cases when the value of k1 is greater than 1, difference among

the results of specific loss in GN-I and GN-III is more prominent. Figures 4.2.9 and

4.2.10 depict the variation of specific loss of modified (quasi-magneto) thermal mode

wave. Here, we obtain significant differences between GN-I and GN-III for both high

and low frequency values, although the specific loss of magneto-thermal wave in all

cases show a constant limiting value nearer to 4π, ultimately. However, the trends

of variation of plots in various cases are different. When k1 = 0 i.e. in case of

GN-I model, specific loss suddenly increases and reaches to its constant value 4π

but as thermal conductivity rate increases from the value 1, the specific loss slowly

increases to reach to the same constant value 4π which is realistic in physical point

of view. Differences among plots are more prominent in low frequency cases ( see

Figure 4.2.10). The specific loss of (quasi-magneto) electrical wave is observed to to

be constant in all cases and it is unaffected with the values of thermal conductivity
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rate, k1(see Figures 4.2.11, 4.2.12)

4.2.5.3 Analysis of penetration depth

The behaviour of penetration depth of modified (quasi-magneto) elastic dilata-

tional wave can be seen from Figures 4.2.13, 4.2.14 which show that it decreases

from infinite value as the frequency increases and reaches to constant limiting value

119. But we observe significant differences among the plots of this field for different

thermal conductivity rate. We see that this difference is more prominent for lower

frequency values, although in all cases, it finally reaches constant value 119. Further

more, it is noted that their mode of variation with respect to frequency is different.

When k1is small, specially when it is less than 1, the trend of plots is almost similar.

It starts decreasing from infinity as frequency increases but its mode of variation

is not smooth when k1is less than 1. While deceasing, penetration depth shows a

corner point before it becomes constant and this peak value decreases as thermal

conductivity rate increases. When k1>1, depth decreases smoothly and becomes

constant value 119 and no minimum peak value is observed.

From Figures 4.2.15 and 4.2.16, we obtain the behaviour of penetration depth of

modified (quasi-magneto) thermal mode wave for high and low frequencies, respec-

tively. Difference among plots for various values of k1is not prominent for very high

frequency values, but the trend of variation in all cases is decreasing from infinity

to a very low constant value nearer to 0. When we concentrate on Figure 4.2.16

which shows the variation for low frequency cases, we note prominent disagreement

of GN-I theory with GN-III theory. Although, this wave field shows a decreasing

trend from infinity in all five cases but their mode of variation is different. In the

plot of GN-I, behaviour of plot is not smooth for all frequency values and it gives a
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corner point for a critical value of frequency. For the case when k1 = 0.5, the plot

is similar in nature to that of GN-I. Here the mode of variation of wave is also not

smooth and gives a corner point. However, in this case, the value of penetration

depth at the corner point is higher than that in case of GN-I model. However, for the

cases when k1 ≥ 1, the trend of variation of plots is smooth and decreases smoothly

from infinity to a very less value nearer to 0.

Penetration depth of quasi-magneto electrical wave exhibits rapidly decreasing

behaviour with respect to frequency and becomes constant with the finite value in

both the GN-I and GN-III models of thermoelasticity (see Figures 4.2.17 and 4.2.18)

and there is no significant differences in the results predicted by GN-I and GN-III

models.

Figure 4.2.1 Phase velocity of quasi-magneto-dilatational wave (low
frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

19



Figure 4.2.2 Phase velocity of quasi-magneto-dilatational wave (high
frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.3 Phase velocity of quasi-magneto-thermal wave (low fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3
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Figure 4.2.4 Phase velocity of quasi-magneto-thermal wave (high fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.5 Phase velocity of quasi-magneto-electrical wave (low fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3
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Figure 4.2.6 Phase velocity of quasi-magneto-electrical wave (high fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.7 Specific loss of quasi-magneto-dilatational wave (low fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3
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Figure 4.2.8 Specific loss of quasi-magneto-dilatational wave (high fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.9 Specific loss of quasi-magneto-thermal wave (low frequency):
Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line: k1 = 1 , Thick
line: k1 = 2 , Thick dashed line: k1 = 3
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Figure 4.2.10 Specific loss of quasi-magneto-thermal wave (high fre-
quency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Fig.4.2.11 Specific loss of quasi-magneto-electrical wave (low frequency):
Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line: k1 = 1 , Thick
line: k1 = 2 , Thick dashed line: k1 = 3
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Fig.4.2.12 Specific loss of quasi-magneto-electrical wave (high frequency):
Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line: k1 = 1 , Thick
line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.13 Penetration depth of quasi-magneto-dilatational wave
(low frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin
dashed line: k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3
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Figure 4.2.14 Penetration depth of quasi-magneto-dilatational wave
(high frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin
dashed line: k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.15 Penetration depth of quasi-magneto-thermal wave (low
frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

26



Figure 4.2.16 Penetration depth of quasi-magneto-thermal wave (high
frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

Figure 4.2.17 Penetration depth of quasi-magneto-electrical wave (low
frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3
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Figure 4.2.18 Penetration depth of quasi-magneto-electrical wave (high
frequency): Thin line: k1 = 0 (GN-I), Thick dotted line: k1 = 0.5 , Thin dashed line:
k1 = 1 , Thick line: k1 = 2 , Thick dashed line: k1 = 3

4.2.6 Special case: (GN-II model)

As we have already stated above that when k2 = 0, we obtain the equations

for Green and Naghdi-II (GN-II) model of magneto-thermoelasticity. We have pre-

sented the numerical results in context of this theory too. Figures 4.2.19 and 4.2.20

display the nature of propagation of modified (quasi-magneto) elastic dilatational

wave and modified (quasi-magneto) thermal wave, respectively. In this case, we

achieve completely different nature of thermal wave in comparison to the results

predicted by two models GN-I and GN-III. Here we obtain that phase velocity of

quasi-magneto dilatational wave as well as of quasi-magneto thermal mode wave

show almost similar trend of variation and have constant limiting value. Phase-

velocity of thermal wave is greater that the phase velocity of elastic mode wave and

both of them reaches to constant value as we increase the frequency. We have al-

ready identified that the speed of modified (quasi magneto) thermal wave increases
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with the increases of frequency in cases of GN-I and GN-III models and goes to-

wards infinity, but it is constant in GN-II model and this is the special feature of

GN-II model of magneto-thermoelasticity that the speed of magneto-thermal wave

is always finite in this case.

Figure 4.2.19 Phase velocity of Quasi-magneto-dilatational wave for
GN-II

Figure 4.2.20 Phase velocity of Quasi-magneto-thermal wave for GN-II
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4.2.7 Conclusions

In the present work, dispersion relation solutions for the plane wave propagat-

ing in a magneto-thermoelastic media with finite electrical conductivity have been

determined by employing Green and Naghdi theory of thermoelasticity of type-III.

We have made a comparative study of GN-I and GN-III theory of thermoelastic-

ity in presence of an external magnetic field. From the derived dispersion relation

solution, transverse and longitudinal plane waves are investigated. We find that

transverse mode elastic wave is uncoupled from the thermal and magnetic field;

Further a general dispersion relation associated to the coupled dilatational-thermal

and electrical wave is identified and we make attempt to extract three different

modes of waves from this coupled dispersion relation. These waves are identified

as quasi-magneto-elastic wave (dilatational wave), quasi-magneto-thermal wave and

quasi-magneto-electrical wave. The quasi-magneto-electrical wave is found to have

similar variation under GN-I and GN-II theory. However, significant differences are

obtained in other two modes, namely modified (quasi-magneto) elastic and modified

(quasi-magneto) thermal mode wave predicted by three different models. Hence,

we pay attention to these two modes and analyze various wave components like,

phase velocity, specific loss and penetration depth. The behavior of the wave com-

ponents in limiting cases of frequency values have been investigated with the help

of graphical plots. Various features are highlighted. The results under GN-II theory

of thermoelasticity have also been presented numerically as a special case. It is

believed that this study would be useful due to its various applications in different

areas of physics, geophysics etc.
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The most highlighted features of the present investigation can be summarized as
follows:

1. Significant resemblance and non- resemblance among the results under GN-I,

GN-II and GN-III theory of thermoelasticity have been identified.

2. The phase velocity of thermal mode wave is found to be an increasing function

of frequency under GN-I and GN-III models.

3. Quasi-magneto dilatational and thermal mode waves propagate faster in the

theory of type GN-I in comparison to GN-III theory of thermoelasticity. How-

ever, phase velocity of quasi magneto-electric wave is unaffected whether we

employ GN-I theory or GN-III theory. Quasi-magneto dilatational and ther-

mal wave is found to be non-dispersive, i.e., propagate with constant speed

and there is no significant variation on the phase velocity of both the modi-

fied elastic wave and modified thermal wave with respect to frequency in the

context of GN-II theory of thermoelasiticity.

4. Penetration depth has a less finite value in the case of GN-I and GN-III theory

of thermoelasticity. However in GN-II, we see that penetration depth for both

waves namely, quasi-magneto dilatational wave and quasi-magneto thermal

wave is infinite since waves are propagating with constant speed and there is

no specific energy loss of waves. This is a very distinct feature of GN-II model.

5. In view of above points, we can conclude that for coupled magneto-thermoalstic

problem, GN-II model exhibits realistic behaviour in comparison to GN-I and

GN-III models w.r.t. phase velocity of thermal wave, but when we analyze the

behaviour of penetration depth, we find that predictions of GN-I and GN-III

theory is more realistic as compared to GN-II model as we obtain in this case
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an infinite penetration depth which is also physically unrealistic prediction by

GN-II model.

6. It is observed that when thermal conductivity rate, k1 < 1, the plots of all

wave fields in the context of GN-III theory shows much resemblance with the

plots of GN-I. This implies that the results of GN-III model of thermoelasticity

are more prominently different as compared to GN-I model when the thermal

conductivity rate is greater than 1.
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